
Subtype Polymorphism à la carte
via Machine Learning on Dependent Types

Jerry Swan
University of York, UK
jerry.swan@york.ac.uk

Colin G. Johnson
University of Kent, UK
c.g.johnson@kent.ac.uk

Edwin C. Brady
University of St Andrews, UK
ecb10@st-andrews.ac.uk

1 PROBLEM STATEMENT
The essential rationale for subtype polymorphism is adherence to
the ‘Open/Closed Principle’ [12]: the ability to write framework
code in terms of superclasses and subsequently invoke it with any
subclass that exhibits ‘proper subtyping’ via the Liskov Substitu-
tion Principle (LSP) [11]. Formally, the LSP states that if ϕ(t : T)
is a provable property of objects t of type T , then ϕ(s) should be
true for objects s of subtype S of T . In practice, such properties
have typically been those expressible via ‘Design by Contract’ [12],
specifically preconditions, postconditions and invariants. Such ab-
straction via subtype polymorphism is intended to insulate against
requirements change. However, when new requirements do neces-
sitate a change of contract, the maintenance consequences can be
severe. In the (typical) absence of explicit language or tool support,
enforcement of proper subtyping is laborious and error-prone: con-
tractual changes typically require manual inspection/repair of the
class hierarchy to determine/address violations of the LSP.

We therefore claim that the traditional practice of creating top
down, a priori problem domain abstractions via the LSP is ‘upside
down’ and that there is a useful role for Machine Learning to play
in inducing these abstractions. More specifically:

(1) Rather than stipulating subtype relationships upfront, they
can be reverse-engineered from a codebase.

(2) Such ‘just in time reification’ can usefully be incorporated
into Machine Learning approaches to program synthesis (e.g.
[8, 9]).

(3) Induced subtype relationships offer the potential for both
increased comprehensibility and asymptotic runtime effi-
ciency.

Below, we outline one specific realisation of the above, in which
contracts are specified via dependent types.

2 SUBTYPES VIA DEPENDENT TYPES
For ‘Design by Contract’ purposes, classes consist of:

• Zero or more attributes.
• An invariant, i.e. a relation on the Cartesian product of the
attributes.

• A collection of methods, each having associated operational
semantics, as specified by pre- and post- conditions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ML4PL 2018, July 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

data Vec2 = MkVec2 Double Double

move : (x , y : Double) → Vec2 → Vec2
move x y (MkVec2 xpos ypos) = MkVec2 (xpos+x) (ypos+y)

data C i r c l e : Vec2 → Type where
MkCirc le : (r a d i u s : Double) → C i r c l e p o s i t i o n

data E l l i p s e : Vec2 → Type where
MkE l l i p s e : (rad iusX , r ad iu sY : Double) →

E l l i p s e p o s i t i o n

moveCi rc l e : (x , y : Double) → C i r c l e pos →
C i r c l e (move x y pos)

moveCi rc l e x y (MkCirc le rad) = MkCirc le rad

moveE l l i p s e : (x , y : Double) → E l l i p s e pos →
E l l i p s e (move x y pos)

moveE l l i p s e x y (MkE l l i p s e r x ry) = MkE l l i p s e r x ry

Listing 1: Type-level contracts for Circle and Ellipse in Idris

Interpreting the Liskov Substitution Principle via Design by
Contract, we can say that some class S is a proper subtype of some
superclass T iff:

• S maintains the invariant of T .
• For all overridden methods of T , S “requires no more and
ensures no less” than the superclass method it overrides.
This is formally expressed as subclass methods having the
option of (respectively) weakening/strengthening their pre-
and post-conditions.

Dependently-typed languages (such as Agda and Idris) allow
families of types to be indexed by values. It is therefore possible
to express contracts at the type level via dependent types (see e.g.
Brady [2], Chapter 9). The Idris code of Listing 1 gives a contract
for functions moveEllipse and moveCircle that respectively perform
translation of Circle and Ellipse datatypes. Vec2 is a type represent-
ing 2D vectors, and the declaration data Circle : Vec2 → Type
expresses the fact that Circle is dependent on Vec2, i.e. there is a
distinct Circle type for each possible value of type Vec2. The type
signature of the moveCircle function thus expresses the postcon-
dition that translating a circle yields a new circle of type indexed
by an appropriately translated Vec2. Similarly for Ellipse. Listing 2
describes a Movable superclass that abstractly defines the contract
for translation, with concrete subtypes of Movable then defined for
Circle and Ellipse.

3 SUPERTYPE INDUCTION VIA MACHINE
LEARNING

We propose that such induction of supertypes could usefully be
carried out by a Machine Learning (ML) system. Related work in

https://doi.org/10.475/123_4

ML4PL 2018, July 2018, Amsterdam, Netherlands J. Swan, C. G. Johnson, E. C. Brady

in te r face Movable (s : Vec2 → Type) where
move : (x , y : Double) → s pos → s (move x y pos)
p o s i t i o n : s pos → Vec2
p o s i t i o n { pos } s = pos

Movable C i r c l e where
move = moveCi r c l e

Movable E l l i p s e where
move = moveE l l i p s e

Listing 2: Induced Movable supertype for Circle and Ellipse

this general area has mined a dependently-typed codebase in search
of re-usable proof tactics [10]. For supertype induction, the role of
ML is to take datatype definitions such as those in Listing 1 and
automatically construct supertypes such as the one in Listing 2.

We envision this as being a component of an integrated compila-
tion/development system; the incorporation of ML (into a role more
traditionally played by exact/proof search) places this within the re-
search agenda of Search Based Software Engineering [6] which aims
to integrate heuristic approaches into the software development
workflow. For example, ML could be a background process, where
code is constantly scanned for possible supertype abstractions. Al-
ternatively, the developer might assert that certain datatypes belong
to a putative supertype, and the system searches for an abstraction.

In terms of the motivating statement about the difficulty of man-
ual maintenance of subtype hierarchies, a key role for the search
process is to help maintain consistency as the codebase evolves.
When expressed via dependent types, contract failures are recog-
nised at compile time. A ML system of the kind proposed here then
has the potential to facilitate automated repair of the hierarchy.

To frame a problem in terms ofML, we need to define a search/hy-
pothesis space, and an objective/loss function which specifies the
quality of a proposed solution from the hypothesis space. A key
role of the objective function is to measure how well a proposed
supertype captures the properties of the set of subtypes w.r.t. the
LSP, i.e. whether subtypes respect the preconditions, postconditions
and invariants of the proposed supertype. The hypothesis space
here is that of datatype definitions, which is a combinatorially large
function of the size of the codebase (e.g. via consideration of all
permutations of equivalent function arguments etc).

We suggest two specific use cases for which a practical search
could be done: The first is to explore the space of possible combina-
tions of existing functions (modulo renaming, as appropriate). Par-
ticularly for the background search, the objective function would
need to penalise ‘useless’ supertype abstractions: one approach
would be to require proposed abstractions to have nontrivial pre-
conditions, postconditions and invariants.

in te r face (V e r i f i e dSem ig r oup a , Monoid a) =>
Ver i f i edMono id a where

t o t a l mono idNeu t r a l I sNeu t r a l L : (l : a) → l <+> A lgeb ra .
n e u t r a l = l

t o t a l mono idNeut ra l I sNeu t ra lR : (r : a) → Algeb ra .
n e u t r a l <+> r = r

Listing 3: Monoid supertype with contract

The second is to use ML to explore a codebase for possible corre-
spondences with well-known pre-existing abstract types (orderings,

monoids, rings, monads etc). and consequently making efficient
algorithms (and parallelisations, etc) available. For example, if the
abstraction process recognises that some datatype is an instance
of a Monoid (i.e. an associative binary operator with identity, List-
ing 3), then exponentiation (i.e. iterated application of the binary
operator) can be performed in logarithmic (as opposed to linear)
time. By re-factoring ad hoc datatypes and associated functions
into well-known abstractions there is also the attendant potential
for greater human readability.

The choice of specific machine learning methods to be used is
open-ended. An important challenge is finding an objective function
that guides the search towards interesting supertypes, either by
using an interestingness measure [4] or by some form of interactive
learning [13] where the user gives feedback on suggestions, and
the system builds a model based on that feedback. Furthermore,
there may be a link between the hierarchical representation found
in layered learning methods such as deep learning [5] and the type
hierarchy.

While the induction of supertypes can undoubtedly be framed as
a Machine Learning problem, it will necessarily require heuristics
that are tuned according to specific use cases. The key research
challenge is therefore to devise an objective function for Machine
Learning which incorporates human factors concerns for purposes
of productive interaction with the developer.

REFERENCES
[1] Edwin C. Brady. 2011. Idris: Systems Programming Meets Full Dependent

Types. In Proceedings of the 5th ACM Workshop on Programming Languages
Meets Program Verification (PLPV ’11). ACM, New York, NY, USA, 43–54. DOI:
http://dx.doi.org/10.1145/1929529.1929536

[2] Edwin C. Brady. 2016. Type-driven Development with Idris. Manning Publications
Company.

[3] Thibault Gauthier and Cezary Kaliszyk. 2014. Matching Concepts across HOL
Libraries. In Intelligent Computer Mathematics, Stephen M. Watt, James H. Dav-
enport, Alan P. Sexton, Petr Sojka, and Josef Urban (Eds.). Springer International
Publishing, Cham, 267–281.

[4] Liqiang Geng and Howard J. Hamilton. 2006. Interestingness Measures for
Data Mining: A Survey. ACM Comput. Surv. 38, 3, Article 9 (Sept. 2006). DOI:
http://dx.doi.org/10.1145/1132960.1132963

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[6] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
Software Engineering: Trends, Techniques and Applications. Comput. Surveys
45, 1 (2012), 11:1–11:61.

[7] Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and Ewen Maclean.
2013. Proof-Pattern Recognition and Lemma Discovery in ACL2. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, Ken McMillan, Aart Middeldorp,
and Andrei Voronkov (Eds.). Springer, Berlin, Heidelberg, 389–406.

[8] Zoltan A. Kocsis and Jerry Swan. 2014. Asymptotic Genetic Improvement Pro-
gramming with Type Functors and Catamorphisms. In Semantic Methods in
Genetic Programming (SMGP) at Parallel Problem Solving from Nature (PPSN XIV),
Colin Johnson, Krzysztof Krawiec, Alberto Moraglio, and Michael O’Neill (Eds.).
Ljubljana, Slovenia.

[9] Zoltan A. Kocsis and Jerry Swan. 2017. Genetic Programming + Proof Search
= Automatic Improvement. Journal of Automated Reasoning (Mar 2017). DOI:
http://dx.doi.org/10.1007/s10817-017-9409-5

[10] Ekaterina Komendantskaya and Jónathan Heras. 2017. Proof Mining with Depen-
dent Types. In Intelligent Computer Mathematics - 10th International Conference,
CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings. 303–318.

[11] Barbara Liskov. 1987. Keynote Address - Data Abstraction and Hierarchy. SIG-
PLAN Not. 23, 5 (Jan. 1987), 17–34. DOI:http://dx.doi.org/10.1145/62139.62141

[12] Bertrand Meyer. 1988. Object-Oriented Software Construction (1st ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

[13] Hideyuki Takagi. 2001. Interactive evolutionary computation: fusion of the
capabilities of EC optimization and human evaluation. Proc. IEEE 89, 9 (2001),
1275–1296.

http://dx.doi.org/10.1145/1929529.1929536
http://dx.doi.org/10.1145/1132960.1132963
http://www.deeplearningbook.org
http://dx.doi.org/10.1007/s10817-017-9409-5
http://dx.doi.org/10.1145/62139.62141

	1 Problem Statement
	2 Subtypes via Dependent Types
	3 Supertype Induction via Machine Learning
	References

