
A Formalism for Specification of Java API Interfaces
Davide Ancona
University of Genoa

davide.ancona@unige.it

Francesco Dagnino
University of Genoa

francesco.dagnino@dibris.unige.it

Luca Franceschini
University of Genoa

luca.franceschini@dibris.unige.it

CCS Concepts • Software and its engineering → API
languages; Specification languages; Software verification;

Keywords Trace expressions, specification, Java, API, run-
time verification
ACM Reference Format:
Davide Ancona, Francesco Dagnino, and Luca Franceschini. 2018.
A Formalism for Specification of Java API Interfaces. In Proceedings
of 20th Workshop on Formal Techniques for Java-like Programs (FT-
fJP’18). ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

Introduction
The standard Java API defines a number of useful and widely
used interfaces, where the flow of methods invoked on ob-
jects must follow certain patterns to ensure their correct use.
Typically, such patterns are informally specified in the docu-
mentationwith several rules, which often do not cover full de-
tails, and are scattered throughout the whole documentation,
since they usually involve more methods which are invoked
subsequently. Failing to follow such rules causes a throw
of IllegalStateException, or similar exceptions. Let us con-
sider, for instance, the specification of the following types
defined by the standard API of Java 10 in module java.base.

java.util.Iterator The specification of remove states that
IllegalStateException is thrown if the nextmethod has not
yet been called, or it has already been called after the last
call to the next method. The documentation does not cover
the situation when the method is called after method next

has been called, and has thrown NoSuchElementException:
also in this case remove should throw IllegalStateException.
This example shows that rules on correct method invocation
necessarily involve more methods (remove and next in this
case), and often depend on the outcome of method calls
(if next throws NoSuchElemenetException, then remove must
throw IllegalStateException if subsequently invoked).

Another illegal flow concerns methods hasNext and next:
invocation of method next is illegal if the previous call to

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
FTfJP’18, July 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

hasNext has returned false. As in the previous case, this im-
plicit rule depends on the outcome of a method call (hasNext).
Finally, although the interface does not enforce it, always
invoking hasNext before next is a best practice.

java.util.regex.Matcher Classes Matcher and Pattern pro-
vide support for regular expressions. The introductory docu-
mentation states that attempting to query a matcher before a
successful match causes a throw of IllegalStateException;
according to the same documentation, a successful match cor-
responds to the event “any of the method between matches,
lookingAt and find has been called and returned true”. By
further reading the documentation in the methods specific
sections, one can find the equivalent rule stating that, for
all query methods of the matcher, IllegalStateException is
thrown if no match has yet been attempted, or if the previous
match operation failed. Finally, one can discover that some
methods, as reset and region, reset the state of the matcher,
and invalidate any previous successful match. Also in this
case, understanding the rules for correct method call flows
requires to carefully collect and suitably combine together
all information scattered throughout the documentation.

Another interesting example concerns Stream API intro-
duced in Java 8, considered in detail in the following sections.
In this work we informally present a specification lan-

guage based on trace expressions which is more expressive
than other formalisms [3, 4, 6] and show how it could be
successfully employed to formally specify sophisticated rules
on correct method invocation flows for Java API interfaces.

Trace Expressions
Trace expressions [1] are a formalism expressly devised for
runtime verification purposes [5]. In this context, the system
under test is observed and relevant events are collected in a
trace encoding the single execution. A monitor then verifies
the trace against the formal specification which defines the
expected global behavior of the system. As such, a trace ex-
pression denotes the set of traces corresponding to all correct
runs of the system, formally defined with a labeled transition
system [2]. In this work events are method invocations on
objects, with arguments and returned values (or exceptions).

The formalism features a rich set of operators: the empty
trace ϵ ; prefix θ : τ , denoting the set of traces starting with
an event matching θ followed by a trace accepted by τ ; con-
catenation τ1 · τ2, intersection τ1 ∧ τ2 and union τ1 ∨ τ2, with
their intuitive meanings; shuffle τ1 | τ2 (a.k.a. interleaving),
denoting the set of any shuffle of a trace accepted by τ1 and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


FTfJP’18, July 2018, Amsterdam, Netherlands Davide Ancona, Francesco Dagnino, and Luca Franceschini

one accepted by τ2. {x ;τ } declares the variable x scoped in
τ , allowing trace expressions to be parametric w.r.t. some
value that will only be known at runtime [2]. Furthermore,
in this work we use generic trace expressions, exploiting the
Java-like syntax τ<x>, for the sake of reuse and readability.

A Formalization of the Java Stream API
In java.util.stream objects represent possibly unbounded
sequences of data to be processed only once in a lazy way.
The processing of a stream consists in a pipeline of operations
specified through a functional interface. The Java specifica-
tion describes two types of operations:

intermediate operations transform the given stream
into a new one, they describe the intermediate steps
in a processing pipeline and are lazily evaluated;

terminal operations trigger the whole pipeline, they
usually do not produce a new stream and, once they
are invoked, the stream is marked as consumed and
hence it cannot be used anymore.

As for the examples presented in the previous section, also
for streams the documentation contains elaborated rules to
ensure that the flows of invoked methods follow certain pat-
terns. The Java specification explicitly says that each stream
should be used only once. This means that, after any opera-
tion, only the output stream can be used to specify further
manipulations; in other words, branching in a processing
pipeline is not allowed.
We can formalize this behaviour using trace expressions.

The set E of events consists of three types of elements:
o(sidi , sido ), where o is the name of an intermediate opera-
tion, sidi is (the identifier of) the input stream and sido is
(the identifier of) the returned output stream; c (sid), where
c is the name of a terminal operation and sid is (the iden-
tifier of) the stream on which it is applied; n(sid), stating
that a new stream sid has been created. Accordingly, we use
three event types matching, respectively: new(sid) all events
of shape n(sid); intermediate(sidi , sido ) all events of shape
o(sidi , sido ) terminal(sid) all events of shape c (sid). Correct
method invocation flows for streams can be specified by the
following trace expression τnew :

τnew = ϵ ∨ ({sid;new(sid) : τop<sid>} | τnew )

τop<sid> = {sid′; intermediate(sid, sid′) : τop<sid′>}
∨ (terminal(sid) : ϵ ) ∨ ϵ

τnew requires all traces to begin with a creation operation.
τop<sid> defines the allowed operations on a stream sid: we
can either produce, with an intermediate operation, a stream
sid′ starting from sid and then continue operating only on
sid′, or consume sid and then we cannot do anything else
on sid. In this way, we can only operate on the last stream of
a processing pipeline, thus avoiding branching, and we can
consume the stream only once. Actually, this trace expression
is more in line with the specification than the real imple-
mentation; indeed, there are special kinds of operations, like
parallel and sequential, classified as intermediate in the

documentation but behaving differently. They are not lazy
and do not return a new stream, but are used to switch the
state of the whole pipeline they belong to; the only feature
they share with the other intermediate operators is that they
are not terminal. More importantly, in contradiction with the
specification of intermediate operations, the implementation
allows such switching operations to be invoked on a stream
even after another intermediate operation has been already
applied on it, as shown in the following code snippet.

IntStream s1 = IntStream.range(1, 10);

IntStream s2 = s1.filter(x -> x % 2 == 0);

s1.parallel ();

s2.collect(HashSet ::new , HashSet ::add ,

HashSet :: removeAll );

Operation parallel is invoked on s1 immediately after the
standard intermediate operation filter. No exception is
thrown, while the trace expression τnew rejects such a pro-
gram, since after s1.filter no other operation can be in-
voked on s1. Invocation of parallel has the effect that the ele-
ments of the streams involved in the pipeline of s1will be pro-
cessed in parallel. Hence, the combiner HashSet::removeAll
passed as argument to the terminal operation collect is used
to merge the partial result containers computed in parallel.
Of course, the correct combiner HashSet::addAll should be
used instead, but the aim of the example is showing the side
effect of parallel; if we remove s1.parallel from the code,
then the correct result [2, 4, 6, 8] is computed, instead of
[], because streams are sequential by default, and, hence, the
combiner is unused in this case.
Furthermore, the implementation allows multiple invo-

cations of switching operations on the same pipeline, even
though only the last one is considered, thus favoring error-
prone practices. To avoid this, we can enforce best practices
with a trace expression τ ′new allowing no more than one
switching operation per pipeline. To this aim, we add the
event type switch(sid) matching invocations of switching
operations (the definition of τop<sid> is the same as above):

τ ′new = ϵ ∨ ({sid;new(sid) : τ ′op<sid>} | τ
′
new )

τ ′op<sid> = {sid
′; intermediate(sid, sid′) : τ ′op<sid

′>}

∨ (switch(sid) : τop<sid>) ∨ (terminal(sid) : ϵ ) ∨ ϵ

Conclusion
The documentation of Java APIs often contains scattered
rules for specifying complex patterns for legal method invo-
cation flows which are difficult to follow, and sometimes are
not implemented coherently. We have shown on the specific
example provided by the package java.util.stream, how
such patterns can be globally defined by compact and for-
mal specifications, based on trace expressions, that could be
employed for annotating Java interfaces. We plan to exploit
such a formalism for dynamic verification of correct method
invocation flows for Java API interfaces.



A Formalism for Specification of Java API Interfaces FTfJP’18, July 2018, Amsterdam, Netherlands

References
[1] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2016. Com-

paring Trace Expressions and Linear Temporal Logic for Runtime Veri-
fication. In Theory and Practice of Formal Methods: Essays Dedicated to
Frank de Boer on the Occasion of His 60th Birthday, Erika Ábrahám, Mar-
cello Bonsangue, and Einar Broch Johnsen (Eds.). Springer International
Publishing, Cham, 47–64. https://doi.org/10.1007/978-3-319-30734-3_6

[2] Davide Ancona, Angelo Ferrando, and Viviana Mascardi. 2017. Para-
metric Runtime Verification of Multiagent Systems. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems (AAMAS
’17). International Foundation for Autonomous Agents and Multiagent
Systems, Richland, SC, 1457–1459. http://dl.acm.org/citation.cfm?id=
3091282.3091328

[3] Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum
Vasconcelos. 2015. Modular Session Types for Objects. Logical Methods
in Computer Science 11, 4 (2015). https://doi.org/10.2168/LMCS-11(4:
12)2015

[4] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay.
2018. Typechecking protocols with Mungo and StMungo: A session
type toolchain for Java. Sci. Comput. Program. 155 (2018), 52–75. https:
//doi.org/10.1016/j.scico.2017.10.006

[5] Martin Leucker and Christian Schallhart. 2009. A brief account of
runtime verification. The Journal of Logic and Algebraic Programming
78, 5 (2009), 293 – 303. https://doi.org/10.1016/j.jlap.2008.08.004 The
1st Workshop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS’07).

[6] Cláudio Vasconcelos and António Ravara. 2017. From object-oriented
code with assertions to behavioural types. In Proceedings of the Sympo-
sium on Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7,
2017, Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng
(Eds.). ACM, 1492–1497. https://doi.org/10.1145/3019612.3019733

https://doi.org/10.1007/978-3-319-30734-3_6
http://dl.acm.org/citation.cfm?id=3091282.3091328
http://dl.acm.org/citation.cfm?id=3091282.3091328
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1145/3019612.3019733

	References

