
An Exercise in Verifying Sequential Programs
with VerCors
Sebastiaan J.C. Joosten

Wytse Oortwijn
Mohsen Safari

Marieke Huisman
University of Twente, The Netherlands

{s.j.c.joosten,w.h.m.oortwijn,m.safari,m.huisman}@utwente.nl

Abstract
Society nowadays relies heavily on software, which makes
verifying the correctness of software crucially important.
Various verification tools have been proposed for this pur-
pose, each focusing on a limited set of tasks, as there are
many different ways to build and reason about software. This
paper discusses two case studies from the VerifyThis2018
verification competition, worked out using the VerCors veri-
fication toolset. These case studies are sequential, while Ver-
Cors specialises in reasoning about parallel and concurrent
software. This paper elaborates on our experiences of using
VerCors to verify sequential programs. The first case study in-
volves specifying and verifying the behaviour of a gap buffer;
a data-structure commonly used in text editors. The second
case study involves verifying a combinatorial problem based
on Project Euler problem #114. We find that VerCors is well
capable of reasoning about sequential software, and that
certain techniques to reason about concurrency can help to
reason about sequential programs. However, the extra an-
notations required to reason about concurrency bring some
specificational overhead.

ACM Reference Format:
Sebastiaan J.C. Joosten,WytseOortwijn,Mohsen Safari, andMarieke
Huisman. 2018. An Exercise in Verifying Sequential Programs with
VerCors. In (ISSTA Companion/ECOOP Companion’18), July 16–21,
2018, Amsterdam, Netherlands. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3236454.3236483

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5939-9/18/07. . . $15.00
https://doi.org/10.1145/3236454.3236479

1 Introduction
Now that society relies on software, verification of software
is of crucial importance. Different tools help in software
verification, and many of those have been created with only
a limited set of verification tasks and targets in mind. This
is a problem for both developers and users of verification
tools: users risk investing effort in learning and using a tool
that does not enable them to verify the code, or properties of
that code, that they are most interested in. Developers risk
spending time on improving parts of the tool that have no
real impact for users. Case studies in such tools help bridge
the gap between users and developers, by finding blind-spots:
programs that turn out to be hard to verify because tools lack
support for it. This case study works on problems created by
people who are not the tool developers, making the problem
particularly well suited for taking us out of our comfort zone.

To support developers in verifying their software, several
verification tools have been created. These tools allow the
programmer to annotate their code with specifications, ex-
pressing the intended behaviour of the program, so that the
tool can mechanically verify that the program behaves as
specified. In 2012, the VerifyThis competition was held to
test these tools, resulting in a special issue of case studies [9].
Participating teams used various tools, including KeY [1], Ver-
iFast [10], KIV [7], Why3 [8], GNATprove (based on Why3),
AutoProof [13], and VerCors [3]. In our case study, we use a
tool for verification of concurrent software: VerCors [3].
As VerCors is intended to reason about concurrent soft-

ware, it has been used to verify different kinds of concurrent
code. This includes several Java control structures such as
different types of locks as well as (lock-free) concurrent col-
lections [2–5, 12]. In contrast to the work mentioned in this
paragraph, we focus on verification of sequential programs.
This paper discusses two sequential case studies, which

were given as verification challenges as part of the VerifyThis
competition in 2018. Even though sequential verification
may be considered a special case of concurrent verification,
the techniques to reason about concurrency are generally
different from sequential verification techniques, especially
when applied in a tool. All of the authors are involved in
the development of VerCors, but took on the role of users
during the competition. The purpose of these case studies

https://doi.org/10.1145/3236454.3236483
https://doi.org/10.1145/3236454.3236483

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands S.J.C. Joosten, W. Oortwijn, M. Safari, and M. Huisman

Z3

VerCors
Tool

Silicon

Silver

Viper

Transformations

OpenCL

OpenMP

PVL

Java

Figure 1. The workflow of the VerCors toolset.

is to address blind-spots that arise because VerCors is only
developed with concurrency in mind.
The case-study has some surprising results. Unsurpris-

ingly, using the wrong tool for the job hinders the verifica-
tion effort. However, this effect is very limited, and most of
the verification is surprisingly similar as to how it would
be for sequential verification. Moreover, some of the fea-
tures intended for parallelism actually helped verification
of sequential programs: In the second example we used the
parallel-block construct in VerCors to prove quantified facts
about sequential programs. We give recommendations on
how VerCors should be improved, and highlight some fea-
tures of VerCors that might be useful for other programs.
This paper is structured as follows. Section 2 elaborates

on the verification capabilities and workflow of VerCors.
Section 3 presents the first case study: the behaviour of a gap
buffer, a data structure often used in e.g. text editors. Section 4
discusses our second case study, which involves counting
how many sequences of black and red tiles of length 50 can
be constructed, given some restrictions on their construction
(based on Project Euler problem #114). Section 5 concludes
by discussing the lessons learned during the verification of
the VerifyThis2018 challenges and gives future work.

2 The VerCors Toolset
VerCors is a toolset that specialises in verifying programs
written in high-level languages with parallelism and concur-
rency features [6]. Notably, VerCors is able to reason about
locks and fork/join concurrency in Java, but can also han-
dle advanced language features such as GPU kernels with
barriers and atomic operations in OpenCL, and compiler di-
rectives for automated parallelism in a subset of OpenMP for
C. VerCors allows to verify race freedom, memory safety and
functional correctness of these languages and uses separation
logic with permission accounting as its logical foundation.

2.1 Workflow
Figure 1 gives an overview of the workflow of VerCors. Ver-
Cors takes programs as input written in high-level languages
and annotated with JML-like specifications. Multiple front-
end languages are supported, including (subsets of) Java,
PVL, OpenCL, and OpenMP for C. PVL stands for Prototypal
Verification Language and is a verification language used by
the developers to prototype new verification features.

The VerCors toolchain transforms input programs and
their specifications into the intermediate language of Ver-
Cors. The main goal of VerCors is to lift existing verification
technology towards high-level languages and concurrency
features, rather than developing new verification technol-
ogy. In essence, VerCors is a set of language transformations
that transform programs in this intermediate language into
input for the Viper toolset [11], which is the back-end of
VerCors. The Viper toolset uses the intermediate verification
language Silver as its input language and allows to reason
about programs with persistent mutable state, annotated
with separation logic-style specifications. Viper eventually
encodes the verification problem into an SMT problem.
VerCors can easily be extended with new front-end lan-

guages with parallelism or concurrency features, by translat-
ing them into the intermediate language of VerCors. Since
all language transformations work on this intermediate rep-
resentation, full verification support is then available for all
the translated language features in the new language.

2.2 Obtaining and using VerCors
The source code of VerCors is available online1, as well as a
list of verified case studies and examples2. The latter webpage
includes an online interface that allows to try VerCors online.
The two verification challenges discussed in Sections 3 and 4
can also be found and verified online via this webpage.

3 Challenge One: Gap Buffer
The first challenge of VerifyThis2018 involves verifying four
basic operations on a gap buffer, which is a data-structure
commonly used in text editors to move the text cursor and
to add or delete characters at the cursor’s location.
A gap buffer is an integer array a, together with two in-

dices 0 ≤ l ≤ r < a.lenдth, such that a[l], . . . ,a[r] is a gap: a
region of unused entries in a. The index l represents the cur-
rent position of the cursor and the contents of the gap buffer
is represented as a[0], . . . ,a[l − 1],a[r], . . . ,a[a.lenдth − 1].

3.1 Problem description
Algorithm 1 gives the implementation of four basic opera-
tions on gap buffers, namely: left and right for moving
the text cursor to the left and right, respectively; insert
1The source code is available at: https://github.com/utwente-fmt/vercors.
The examples in this paper have been verified with commit number b2c116b.
2A list of case studies and verified examples is available at: http://ctit-vm2.
ewi.utwente.nl.

https://github.com/utwente-fmt/vercors
http://ctit-vm2.ewi.utwente.nl
http://ctit-vm2.ewi.utwente.nl

An Exercise in Verifying Sequential Programs
with VerCors

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands

1 void left() {
2 if (l , 0) {
3 l := l − 1;
4 r := r − 1;
5 a[r] := a[l];
6 }
7 }
8 void right() {
9 if (r , a.lenдth − 1) {

10 a[l] := a[r];
11 l := l + 1;
12 r := r + 1;
13 }
14 }
15 void delete() {
16 if (l , 0) {
17 l := l − 1;
18 }
19 }

20 void insert(int c) {
21 if (l = r) {
22 grow();
23 }
24 a[l] := c;
25 l := l + 1;
26 }
27 void grow() {
28 int n := a.lenдth;
29 int[] b := new int[n + K];
30 for (i := 0 to l) {
31 b[i] := a[i];
32 }
33 for (i := r to n) {
34 b[i + K] := a[i];
35 }
36 r := r + K ;
37 a := b;
38 }

Algorithm 1: The basic operations on gap buffers.

for inserting a character at the position of the cursor; and
delete for deleting the character at the cursor’s position.
These four operations assume the array a to be global, as well
as the indices l and r . Moreover, while inserting a character
with insert it may happen that the gap is empty, i.e. that
l = r . In that scenario, the procedure grow is called on line
22, which enlarges the array a by creating a gap of size K .

The verification challenge is: verify in a modular way that
the gap buffer behaves as intended with respect to the op-
erations described in Algorithm 1. This intended behaviour
should be specified in terms of a continuous representation of
the buffers’ content, for example as a sequence of characters.

3.2 Approach
During the VerifyThis competition we worked this example
out in PVL, our prototype verification language. We chose
this language because it allowed us to work more efficiently,
given the time limit of 90 minutes. VerCors also allows pro-
gram verification in Java or C, and this example could have
been worked out in either of those languages as well.

Our general approach is to represent the buffer’s content
as a sequence xs of integers and to verify the following:
• After calling left, right and grow the buffer’s content
is still represented by xs .
• After calling delete the buffer’s content is represented
by xs[..l]+xs[l +1..], provided that a delete was possi-
ble, with l the cursor location after the call to delete3.

3The + operator has been overloaded to represent sequence concatenation,
and {c } is the singleton sequence containing c as its value.

resource Represents(seq<int> xs) ≜

Perm(l , 23) ∗∗Perm(r , 23) ∗∗Perm(a, 23) ∗∗a , null ∗∗ (1)
0 ≤ l ≤ r < a.lenдth ∗∗ |xs | = a.lenдth − (r − l) ∗∗ (2)
(∀∗i . 0 ≤ i < a.lenдth ⇒ Perm(a[i], 1)) ∗∗ (3)
(∀i . 0 ≤ i < l ⇒ a[i] = xs[i]) ∗∗ (4)
(∀i . r ≤ i < a.lenдth ⇒ a[i] = xs[i − (r − l)]); (5)

Figure 2. The definition of the Represents predicate.

• After calling insert the buffer’s content is represented
byxs[..l−1]+{c}+xs[l−1..], with c the inserted character
and l the cursor location after the call to insert.

The sequence slicing notations xs[n..] and xs[..n] are cur-
rently not natively supported by VerCors. Instead, we imple-
mented these using two auxiliary operations over sequences,
Skip(xs, i) and Take(xs, i), to skip and take the first i en-
tries of the given sequence xs , respectively. We additionally
needed to prove some lemmas to relate the length and con-
tents of xs to Skip(xs, i) and Take(xs, i) for any index i . The
slicing notations are however used in the remainder of this
section for presentational convenience.

3.3 Solution
Algorithm 2 shows the annotated version of the gap buffer
implementation, with the annotated specifications displayed
in purple. The presented annotations are somewhat simpli-
fied for the sake of brevity; the full version can be seen and
verified using the online interface of VerCors.

Recall that VerCors uses separation logic with permission
accounting as its logical foundation, to enable reasoning
over concurrent software. Therefore, annotations expressing
ownership are required in addition to the annotations that
express functional correctness. Ownership is specified via
predicates of the form Perm(s,π), with s a shared-memory
location (e.g. a class field) and π a fractional permission in the
range (0..1]. Any ownership predicate with π = 1 expresses
write access for the location s ; whereas π < 1 expresses read
access to s . Soundness of the underlying logic ensures that
the total sum of permissions for any shared-memory location
does not exceed 1, implying race freedom andmemory safety.

In addition to these ownership predicates, the ∗∗ connec-
tive is used in the annotated program, which is the separat-
ing conjunction from separation logic. A formula of the form
P ∗∗Q expresses disjointness of the ownership expressed by
P and Q , read as “P and separately Q”. The separating con-
junction allows ownership predicates to be split and merged:

Perm(s,π1 + π2) ⇔ Perm(s,π1) ∗∗ Perm(s,π2)

We define and use an auxiliary predicate Represents(xs)
to specify the intended behaviour of the gap buffer using a
sequence xs that represents the buffer’s content. Figure 2
shows the definition of Represents. Notably, line (1) asserts

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands S.J.C. Joosten, W. Oortwijn, M. Safari, and M. Huisman

1 given seq<int> xs;
2 context Perm(l , 13) ∗∗Perm(r , 13);
3 context Represents(xs);
4 void left() {
5 if (l , 0) {
6 unfold Represents(xs);
7 l := l − 1;
8 r := r − 1;
9 a[r] := a[l];

10 fold Represents(xs);
11 }
12 }
13 given seq<int> xs;
14 context Perm(l , 13);
15 requires Represents(xs);
16 ensures 0 = old(l) ⇒ Represents(xs);
17 ensures 0 < old(l) ⇒ Represents(xs[..l] + xs[l+1..]);
18 void delete() {
19 if (l , 0) {
20 unfold Represents(xs);
21 l := l − 1;
22 fold Represents(xs[..l] + xs[l+1..]);
23 }
24 }

25 given seq<int> xs;
26 context Perm(l , 14) ∗∗Perm(r , 13) ∗∗K > 0;
27 context Represents(xs);
28 ensures l < r ;
29 void grow(intK) {
30 // omitted for brevity
31 }
32 given seq<int> xs;
33 context Perm(l , 13) ∗∗Perm(r , 13) ∗∗K > 0;
34 requires Represents(xs);
35 ensures Represents(xs[..l−1] + {c} + xs[l−1..]);
36 void insert(int c, int K) {
37 if (l = r) {
38 grow(K) with { xs := xs };
39 unfold Represents(xs);
40 }
41 else {
42 unfold Represents(xs);
43 }
44 a[l] := c;
45 l := l + 1;
46 fold Represents(xs[..l−1] + {c} + xs[l−1..]);
47 }

Algorithm 2: The annotated operations of the gap buffer. The contract for right is the same as for left and is therefore
omitted. An annotation of the form context P is an abbreviation for requires P ; ensures P .

read access for l , r and a, so that the remaining definition
of Represents may read from these locations. The fractions
2
3 are somewhat arbitrary; the key point is that we did not
express write permissions, so that we can be sure that a does
not change and the contracts in Algorithm 2 may also still
read from l and r (e.g. at lines 16, 17, and 28). Line (3) asserts
write permission for every element of the array a using a
∀∗ quantifier, which is the iterated separating conjunction.
Finally, lines (4) and (5) assert that a is properly abstracted
by the integer sequence xs .
The predicate Represents(xs) is used in Algorithm 2 to

specify the functional behaviour of the gap buffer, and is
folded and unfolded in every operation to provide access
to its contents. The sequence xs is specified using a given
annotation, stating that xs is a ghost parameter—an extra
argument only for the sake of specification. Ghost parame-
ters should be instantiated when calling the corresponding
method, e.g. on line 38. Also note that we slightly altered the
implementations of grow and insert by making the gap size
K a parameter, to simplify verification. The implementation
of grow is omitted for brevity; the annotations mostly consist
of loop invariants for the two for-loops, asserting that a is
correctly copied into the new array b. The detailed, fully

annotated PVL version of this example can be found in the
list of verified examples we maintain online.

4 Challenge Two: Colored Tiles
The second problem is to verify a program, which produces
a single number as output. The program computes in how
many ways one can put 50 black and red tiles in a row,
satisfying the requirement that no sequence of red tiles is
shorter than 3. Rather than enumerating each such sequence,
the program to be verified computes a number efficiently
through two nested loops. The aim of this challenge is to
verify that this result corresponds to the actual number of
sequences of length 50. This problem is based on Project
Euler problem 114 (which simply asks for the number).

4.1 Problem description
For this paper, we use the following language: We will refer
to a particular sequence of tiles as a tiling (for instance, black-
black is a tiling of length 2). A tiling is valid if it does not
contain a sequence of red tiles shorter than 3.

In our encoding, we use ‘true’ for red, and ‘false’ for black,
and refer to true and red interchangeably. Tilings are encoded

An Exercise in Verifying Sequential Programs
with VerCors

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands

as sequences of booleans. Validity of a tiling is defined as:

valid(s,n) = (s .lenдth = n) ∧

∀i . 0 ≤ i < n ∧ s[i] ⇒

((i ≥ 2 ∧ s[i − 2] ∧ s[i − 1]) ∨
(1 ≤ i < n − 1 ∧ s[i − 1] ∧ s[i + 1]) ∨
(i ≤ n − 2 ∧ s[i + 1] ∧ s[i + 2])
)

The program to be verified is given as Algorithm 3.

4.2 Approach
The full solution is roughly 200 lines and too large for inclu-
sion here. We instead give a high-level description of what
went into the proof.

We verify the program by creating a valid tiling sequence
res[i] to correspond to each number count[i]. Correctness
of the result then follows from these properties:
• res[j].lenдth = count[j] for j between 0 and 50 (inclu-
sive).
• Every tiling in res[j] is a valid sequence of length j.
• res[i][y] = res[i][z] implies y = z. This states that
every tiling in res[i] is unique.
• Every valid tiling of length j is contained in res[j].

During the VerifyThis competition we completed verification
of the first two properties given above, again by using PVL
as programming language, within the 90 minutes that were
given for the challenge.

For this case study, we have verified the first three proper-
ties. This shows that the calculated value is an upper bound.
We attempted to prove the last property by showing that an
arbitrary valid tiling of length n would be contained in res[j],
but this turned out to be very involved and is out of scope
of this paper. As each value res[j] is a sequence of tilings,
our encoding means that res is a sequence of sequences of
sequences of booleans.

1 int count[51]; ▷ count[i] is the number of valid rows of size i
2 count[0] := 1; ▷ One tiling of length zero
3 count[1] := 1; ▷ One length 1 tiling with only black
4 count[2] := 1; ▷ One length 2 tiling with only black
5 count[3] := 2; ▷ Tiling of length 3 is all black or all red
6 for (n := 4 to 50) {
7 count[n] := count[n − 1]; ▷ Row starts with a black tile
8 for (k = 3 to n − 1)
9 ▷ Start with k red, then 1 black, then a previous sequence

10 {
11 count[n] := count[n] + count[n − k − 1];
12 }
13 count[n] := count[n] + 1; ▷ Or is red entirely
14 }

Algorithm 3: The colored tiles program.

1 last := { }; ▷ Initialise as empty sequence of tilings
2 loop_invariant last .lenдth = j;
3 loop_invariant 0 ≤ j ≤ res[n − 1].lenдth;
4 loop_invariant ∀y . 0 ≤ y < j ⇒ valid(last[y],n);
5 loop_invariant ∀y . 0 ≤ y < j ⇒ last[y][0] = false;
6 loop_invariant ∀y . 0 ≤ y < j ⇒ (last[y] =
{false} + res[n − 1][y]); ▷ Allows proving has_false later

7 loop_invariant unique(last);
8 for (j := 0 to res[n − 1].lenдth) {
9 uniqueness_implies_unequal(res[n − 1], j, {false});

10 last := last + {{false} + res[n − 1][j]};
11 }

Algorithm 4: A ghost loop as part of the solution.

Updates to elements in sequences are not supported in
PVL. Therefore, we created the variable last that contains
the tilings per loop. At the end of the loop, last is added as
final element to res . Throughout loop iteration n, count[n] =
last .lenдth. To maintain this property, a loop is added at each
position where count increases.

An example of such a loop is given in Algorithm 4. This is
taken from the solution, with details for dealing with permis-
sions omitted, even though they are needed by VerCors for
ensuring that the program is race-free. This loop is meant
as ghost code: code that is needed for verification only, and
does not change any of the other variables. However, PVL
does not distinguish between what is ghost code and what is
not4. We indicate ghost code by using a blue color. For line 7,
the ghost-code loop adds, in each of count[n − 1] iterations,
a tiling that starts with a non-red tile, followed by a pre-
vious tiling. The other assignments to count[n] are treated
similarly.

The loop also demonstrates the use of a shorthand lemma
uniqueness_implies_unequal(res,y,p), meaning:

unique(res) ∧ 0 ≤ j < res .lenдth ⇒

(∀y . 0 ≤ y < j ⇒ ¬(p + res[y] = p + res[j]))

We are able to add this property by manually making a ‘ghost
method call’: a method with an empty function body, that is
only there so VerCors can automatically establish its post-
condition. We will see an example of establishing such a
property later.
At the end of Algorithm 4, we can again establish that

res[j].lenдth = count[j]. This is a loop invariant on all
non-ghost loops. The outer loop maintains that this prop-
erty holds for 0 ≤ i < n. For the inner loop, we maintain
last = count[n]. For the ghost-code loops, the invariant looks
slightly different as we take into account that last is in the
process of being incremented.

To establish that elements in res[j] are unique, we assert
that the element we add to last is not contained in last al-
ready. However, this fact was not discovered automatically
4VerCors does, but only for Java and C.

ISSTA Companion/ECOOP Companion’18 ,
July 16–21, 2018, Amsterdam, Netherlands S.J.C. Joosten, W. Oortwijn, M. Safari, and M. Huisman

by VerCors: we needed to use two main arguments. First,
we reason about the prefix of all elements in last : In line 7,
only sequences that start with a black node are added. In
the next loop, sequences have a black node within the first k
elements. At each of these points, including the last, the first
occurrence of a black tile is later than that of the sequences
present in last . We reason about this by defining has_false:

has_false(s,k) = ∃y . 0 ≤ y ≤ k ∧ ¬s[y]
Our second argument is used within the ghost-loops: By
adding any prefix of red and black tiles to two tilings, we do
not change whether or not those tilings are different.
To add an argument in a program, we again use ghost

code. This time, the ghost code has the form of a method call.
For instance, we needed to make the argument that if the
l ’th element is black in some tiling, then the first k elements
of that tiling contain a black tile somewhere, provided that
l ≤ k . VerCors can prove this automatically, but needs help
to show the same statement holds when quantifying over
a sequence. We turn this into a lemma by specifying the
contract for our ghost method as given in Algorithm 5.
1 requires 0 ≤ l ≤ k ;
2 requires ∀z . 0 ≤ z < last .lenдth ⇒ ¬last[z][l];
3 ensures ∀z . 0 ≤ z < last .lenдth ⇒ has_false(last[z],k);
4 void lemma_has_false(last ,k, l) {
5 parallel_block (z := 0 to last .lenдth)
6 requires ¬last[z][l];
7 ensures has_false(last[z],k); {
8 ▷ Proof determined automatically by VerCors
9 }
10 }
Algorithm 5: Defining a lemma by writing a method.

As we can see in Algorithm 5 we conveniently use the
syntax of a parallel block to work inside the quantifier. This
is an interesting point where we can use a feature of the tool
that is intended to reason about concurrent programs and ap-
ply it to prove quantified statements in sequential programs.
We actually used this technique to prove other lemmas such
as uniqueness_implies_unequal(res,y,p) as well.

5 Conclusion
This paper demonstrates that VerCors is well capable of
reasoning about sequential programs, even though VerCors
specialises in reasoning about parallelism and concurrency.
The program logic of VerCors is based on concurrent sepa-
ration logic and enforces ownership to be handled explicitly,
giving some overhead. We plan to reduce this overhead in
future work, by investigating ways to automatically infer
the ownership annotations.
The slicing notations, xs[..l] and xs[l ..], were needed in

the first case study. It would have saved a lot of time if they
were built-in. We currently have a bachelor student working
on building in support for this and related constructions.

On the other hand, there were also examples on how rea-
soning with VerCors was especially convenient: the parallel-
block construct meant that we could reason inside quantified
statements easily. We believe that other tools might become
easier to work with if they would support a similar operation
in their (ghost) language. The convenience of parallel blocks
inspired us to want to treat loops similarly in VerCors.

The case study has helped us identify which parts of Ver-
Cors are convenient strong points. This includes the use of
parallel blocks, and of resources. It also identified concrete
things to improve in VerCors: automatic ownership anno-
tations for sequential code, supporting a more convenient
way of dealing with loops, and adding slicing notations.

Acknowledgements
This work is supported by NWO grant 639.023.710 for the
Mercedes project and by the NWO TOP grant 612.001.403
for the VerDi project.

References
[1] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle,

Peter H. Schmitt, and Mattias Ulbrich. 2016. Deductive Software Verifi-
cation – The KeY Book. Lecture Notes in Computer Science, Vol. 10001.
Springer International Publishing.

[2] A. Amighi, S. Blom, and M. Huisman. 2014. Resource Protection Using
Atomics - Patterns and Verification. In APLAS. 255–274.

[3] A. Amighi, S. Blom, and M. Huisman. 2016. VerCors: A Layered
Approach to Practical Verification of Concurrent Software. In PDP.
495–503.

[4] A. Amighi, C. Haack, M. Huisman, and C. Hurlin. 2015. Permission-
based separation logic for multithreaded Java programs. LMCS 11, 1
(2015).

[5] Afshin Amighi, Marieke Huisman, Stefan Blom, Saddek Bensalem, and
Simon Bliudze. 2018. Verification of Shared-Reading Synchronisers. In
1st International Workshop on Methods and Tools for Rigorous System
Design 2018.

[6] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. 2017. The VerCors
Tool Set: Verification of Parallel and Concurrent Software. In iFM
(LNCS), Vol. 10510. Springer, 102 – 110.

[7] Gidon Ernst, Jörg Pfähler, Gerhard Schellhorn, Dominik Haneberg,
and Wolfgang Reif. 2015. KIV: overview and VerifyThis competi-
tion. STTT 17, 6 (01 Nov 2015), 677–694. https://doi.org/10.1007/
s10009-014-0308-3

[8] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where
Programs Meet Provers. In ESOP (LNCS), Matthias Felleisen and
Philippa Gardner (Eds.), Vol. 7792. Springer, 125–128.

[9] Marieke Huisman, Vladimir Klebanov, and Rosemary Monahan (Eds.).
2015. VerifyThis 2012 - A Program Verification Competition (STTT).
Vol. 17. Issue 6.

[10] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F.
Piessens. 2011. VeriFast: A powerful, sound, predictable, fast verifier
for C and Java. In NFM.

[11] P.Müller,M. Schwerhoff, andA.J. Summers. 2016. Viper - AVerification
Infrastructure for Permission-Based Reasoning. In VMCAI.

[12] W. Oortwijn, S. Blom, D. Gurov, M. Huisman, and M. Zaharieva-
Stojanovski. 2017. An Abstraction Technique for Describing Con-
current Program Behaviour. In VSTTE (LNCS), Vol. 10712. 191 – 209.

[13] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikar-
pova. 2015. AutoProof: Auto-active Functional Verification of Object-
oriented Programs. In TACAS (LNCS). Springer.

https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10009-014-0308-3

	Abstract
	1 Introduction
	2 The VerCors Toolset
	2.1 Workflow
	2.2 Obtaining and using VerCors

	3 Challenge One: Gap Buffer
	3.1 Problem description
	3.2 Approach
	3.3 Solution

	4 Challenge Two: Colored Tiles
	4.1 Problem description
	4.2 Approach

	5 Conclusion
	References

