
INTRODUCTION TO THE SPECIAL ISSUE 

OF THE SIGPLAN NOTICES ON THE 

OBJEm-ORIENTED PROGRAMMING WORKSHOP 

Organized by IBM T. J. Watson Research Center and Brown Uniwsity 

held at 

IBM Yorktown Heights, June 9-13,1986 

Peter Wegner 

Brown University 

and 

Bruce Shriver 

IBM T. J. Watson Research Center 

Overview 

The objectives of the workshop were to bring together researchers in object-oriented programming, 
review current research in this area, and explore the role of object-oriented programming in the 
design and realization of complex systems. The 35 participants presented about 30 papers on iao- 
guages, concepts, applications and theory of object-oriented programming. In addition, there were 
five break-out sessions on the following topics: Multiparadigm programming; Object-oriented data- 
bases; Inheritance; Concurrency; and Type theory. 

The papers in this issue are a representative sample of about half the presented papers but have been 
restricted in length for this SIGPIan Notices presentation. We have, however, included a complete 
set of abstracts from the meeting at the end of the papers in this issue. We have grouped the papers 
in this issue into three categories: 

Object-oriented systems, including extensions to concurrency, knowledge representation, graphical 
programming, and actors (7 papers) 

Concepts, including type-based versus instance-based inheritance, integration with block-structure, 
and layered system description (8 papers) 

Theoretical issues, including integration with functiooal and logical programming, and type theory (3 
we=) 

Object-Oriented Systems 

Stroustrup in An Owrview of C++ describes the extension of C to include data abstraction, 
inheritance, and other features that support improved security and programming methodology. C++ 
provides improved type checking, a class construct for data abstraction, an inheritance mechanism 

SIGPLAN Notices v21 /IlO, October 1986 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F323648.323737&domain=pdf&date_stamp=1986-06-01


-2- 

by means of derived classes, virtual functions that permit definition of a common calling interface for 
functions later defined in subclasses, and a flexible information hiding mechanism. The extensions 
were constrained by a desire for compatibility with C and by efficiency considerations. Programs not 
using an extension do pay for it. This paper is practically important in that C+ + may well have more 
users than any other object-oriented language. It is also an important example illustrating how to take 
an insecure and permissive language like C and augment it with features that supports object-oriented 
programming without sacrificing efficiency, flexibility, or portability. 

CommonObjects is an extension of Common Lisp in the same sense that C++ is an extension of C. 
It is representative of a new generatioo of object-oriented languages that build on the experience of 
Smalltalk and Zetalirp. CommonLoops (Xerox) and Trellis/Owl (DEC) are two other such languages 
in this class that were presented at the meeting but are not included in the papers herein. 
CommonObjects provides stronger encapsulation for inherited types than these other languages, re- 
stricting access of a subtype to its supertypes to the same abstract interface as that presented to users. 
Snyder examines language design issues to realize such abstract interfaces. For example, multiple 
inheritance from two classes with similarly-named instance variables results in separate copies of such 
variables with abstract interfaces but only a single copy with non-abstract interfaces. This paper not 
only presents the features of CommonObjects but also a comparison with corresponding features in 
Common Loops, Trellis/Owl, and C+ + . 

Kahn indicates how Concurrent Prolog (CP), although not itself object-oriented, may serve as a target 
language for object-oriented source languages. The semantics of CP are described in a way that 
makes clear the relation to object-oriented concepts. Atomic formulae in CP are processes with a li- 
teral semantics close to that of actors. They are created for processing just a single message and then 
reduce to another process. If we think of the sequence of processes that handle a stream as a single 
process and the stream as a state variable shared among these processes, we get something similar to 
a traditional object. The transformation is similar to that which transforms tail recursion for a se- 
quence of recursive processes to iteration of a single process with shared state variables. The pre- 
processor Vulcan allows the user to specify programs in terms of the notation of object-oriented 
programming using classes and methods and translates such programs into programs in CP. 

d 
The 

source language for Vulcan is versatile, supporting concurrent objects, and message passing t at is 
more general than the call/return mechanisms of Smallfalk and Loops. This paper is significant both 
for its specific realization of a mapping from object-oriented to concurrent logic programming and 
for the insights that it gives concerning the nature of the mapping. 

Tokoro and fshikawa examine the integration of object-oriented, concurrent, knowledge- 
representation features in OrientSI/K, Objects consist of a behavior part that specifies a collection 
of methods, a knowledge-based part that has Prolog-style rewrite rules, and a monitor part that con- 
trols the concurrent behavior of the object. The behavior part supports inheritance for methods. The 
monitor part includes facilities for event-based (demon) invocation, for protection by checking au- 
thorization of incoming messages, and for supervising a variety of message-handling protocols. A 
version of Orient84/K has been running on the VAX-l 1 and Sun-2 systems since 1984. This project 
represents a significant contribution to the integration of object-oriented, concurrent, and logic pro- 
gramming concepts in a single system. 

GARDEN is an object-oriented language-independent graphical programming environment that 
supports programming in terms of pictures and multiple views. Object-orientation provides a basis 
for graphical display and for Lhe support of operations on display objects. GARDEN is strongly-typed 
with multiple inheritance, light-weight processes, and database support for graphical objects. Evalu- 
ation of objects is performed by a simple execution algorithm based on the idea that the evaluation 
strategy for an object is stored in the object itself. The object-oriented database supports trans- 
actions, two-phase locking, garbage collection for temporary objects, and editors for constructing 
graphical views. A preliminary version has been implemented on the Sun, Apollo, and MicroVAX 
computers. Reiss explores a different aspect of object-oriented programming from the previously 



-3- 

discussed papers. Graphical representation and multiple views may well be a dominant feature of 
next-generation object-oriented systems. 

Actor languages emphasize message passing and communication while object-oriented languages 
emphasize conceptual organization of information about application domains by classification and 
inheritance. Agha defines actors in terms of their ability to communicate with other actors, to create 
new actors, and to specify a replacement which will accept the next communication to that actor. 
The Act programming language is defined and is illustrated by a detailed presentation of a factorial 
program with emphasis on how a high degree of evaluation concurrency may be realized. This paper 
contributes to an understanding of the pure message passing paradigm represented by actors. 

The actor model may either be combined with inheritance to realize object-oriented programming or 
may serve as the target language of a compiler or preprocessor that maps languages with inheritance 
into an actor language where the inheritance is realized in terms of more primitive concepts. de Jong 
takes the object-oriented language Scripter with synchronous message passing and maps it into the 
actor formalism with asynchronous message passing. These goals are similar to those of the previously 
described preprocessor for CP but the source and target languages are different. Another difference 
is the concern with optimization; both time optimization by minimizing the number of message sends 
and space optimization by minimizing the number of customers. The replacement of tail recursion 
associated with a sequence of incarnations of an actor by sharing of a single actor plays a key role in 
the mapping and optimization process just as for CP. This paper contributes further to the under- 
standing of the relation between object-oriented and purely functional message passing systems of 
computation. 

Concepts in Object-Oriented Programming 
All of the papers discussed so far are based on prototype implementations. The remaining papers are 
concerned with concepts not related to any particular implementation. 

Generalized objects are so called because they support direct inheritance at the level of objects 
without any associated concept of type. This allows us to separate the notion of inheritance from that 
of typ and to examine its properties independently. When a generalized object with direct 
inheritance receives a request message for execution of an operation it executes it directly if it is locally 
defined; otherwise it sends an inherits message to an object that depends on the requestor and the 
operation requested. Inherits messages may be treated differently from request messages since they 
are passive requests for copies of a code body that do not modify any shared variables. Thus objects 
can handle an arbitrary number of inherits messages concurrently but only a single request message. 
Concurrent objects can implement inherits messages as asynchronous calls while request messages 
are implemented as synchronous (remote procedure) calls. Types can in principle be reintroduced 
as special kinds of objects that are repositories for methods. However, doing away with the dis- 
tinction between types and instances is analogous to doing away with the distinction between sets and 
elements in mathematics. Nguyen and Hailpern contribute to the clear formulation of issues that arise 
when we replace type inheritance by direct object inheritance. 

Strom examines object and process paradigms and concludes that the process model better supports 
very large systems where global perspective is inappropriate. Object-oriented systems consist of ob- 
jects with local state and interfaces of operations that communicate by passing messages. They im- 
pose a global class structure on objects by inheritance hierarchies. The process model is similar in its 
support of interacting objects with state and abstract interfaces but differs in that global system 
structure is replaced by dynamically reconfigurable local structure. Processes may have different 
interfaces to different clients. Port interfaces consists of “plugs” associated with an outputporf that 
are dynamically connected to sockets of compatible type associated with an input port. The unit of 
resource sharing is the object in the object model and is the port (rather than the process) in the 
process model. Types are associated with objects in the object model but with port variables (rather 
than with processes) in the process model. A given port type may be implemented in different ways 



in different processes. For example a type which provides resources for personal transportation may 
be implemented as a car in a process which also has a car maintenance port or as a horse in a process 
which also has a hay port. Whereas object-oriented inheritance models structural relations among 
classes of objects by types, thereby making it static, the process model models such structural re- 
lations dynamically by port interconnections among objects, and reduces the scope of the concept of 
type. In some respects this is similar to the generalized object model where inheritance is dissociated 
from type and associated directly with objects. This paper contributes to an understanding of the role 
of types, of structuring mechanisms, and of local versus global perspectives in systems for program- 
ming in the large. 

Hendler examines the role of mtiins in flavors-style object-oriented systems. Mixins are packages 
of functionality that cannot be instantiated by themselves but can enrich or enhance an existing fla- 
vor. A clearer differentiation between flavol-s (types) and mixins (enhancements) is proposed that 
allows the functionality of mixins to be added only to instances and not to types. Thus if Person is a 
flavor and male is a flavor that inherits from Person and Doctor and Lawyer are mixins then Male- 
Doctor does not exist as a flavor. Instances of male doctors can be created by creating instances of 
Male which inherit the mixin Doctor. This allows us to model changes in the status of an object such 
as a person receiving a PhD or an MD without necessarily changing the type of the object. It provides 
a factorization of attributes of an object into static ones associated with its type and dynamic ones 
associated with enhancement. This factorization may also be viewed as a refinement of the notion 
of generalized objects which partitions attributes of objects into those inherited through the type 
mechanism and those inherited directly at the level of instances. This paper complements and extends 
both the generalized object model and the process model in its approach to dynamically changing the 
attributes and functionality of objects. 

Borgida defines an Information System to be a computer system for modelling the real world and 
recommends that modelling languages for Information Systems should be object-oriented. He then 
makes the case for exception instances and exception subclasses as a mechanism for extending the 
versatility of object types to unanticipated new situations. His example of building as a subclass of 
reul estate which is initially defined for US buildings and must later be adapted for the rare case of 
foreign real estate with unusual currency and addresses is a good one. Thus a Canadian house could 
be treated as an exception instance or, if warranted by a sufficient number of instances, as an instance 
of the exception subclass Canadian Houses, which is not behaviorally compatible with the parent class 
real estate because of redefined currency and address fields. An implementation in terms of tradi- 
tional programming language exception handling mechanisms is proposed. Exception instances are 
an extension of abstract data types that provide flexibility in handling instances with exceptional at- 
tributes. Exception classes similarly extend object-oriented inheritance. This paper may also be 
viewed as an approach to injecting dynamic structure into static type inheritance hierarchies. 
Hendler’s dynamic inheritance of mixins at the level of instances is potentially a mechanism for ex- 
ception instances. Borgida’s approach differs from Hendler’s paper in considering dynamics at the 
level of both instances and types and in usin g exceptions rather than enhancement as the motivating 
reason for introducing dynamic flexibility into type and instance definition schemes. 

Zdonik develops a technique for maintaining the consistency of objects in an object-oriented data- 
base with changing types, He presents a solution that reduces the recoding and conversion that is 
necessary when a type definition is changed. He distinguishes between reader’s and writer’s problems 
in accessing the properties of an object created under one version of a type from a program and 
written using a different version of that type. A program that reads a property value from an object 
may receive a value that it is not prepared to handle. A program that writes a property value to an 
object may write a value that the object is not prepared to handle. In order to resolve these problem, 
versions of a type are grouped into ve,ersion sets and a version sef interface is defined which is the union 
of all operations, properties, and constraints of versions in the set. Version handlers are defined for 
each version of each type which specify the action to be performed when illegal (inconsistent) actions 
are encountered. A version handler is a special exception handler. This approach does not auto- 



‘-5- 

matically handle type inconsistencies but instead provides a system hook and a method for program- 
mer’s to reintroduce consistency when types are changed. 

Nygaard’s paper succinctly summarizes the evolution of the his thoughts since the development of 
Simula. He defines informatics as spanning the information aspects of phenomena in nature and so- 
ciety. Processes are important objects of study in informatics and have the three qualities of 
substance, measurable properties, and transformations. Substance includes objects, files, records, var- 
iables etc. The measurable properties of substance are primarily the values of variables and struc- 
tures. Transformations may modify both the measurable properties and substance of a process. 
These notions are a basis for defining the concepts of state, attribute, reference, quantity, and pattern. 
The notion of a system is defined both in general and in the context of object-oriented programming. 
Declarations for types, classes, and procedures may be unified by pattern declarations, as in the Beta 
programming language. Five different kinds of hierarchies are distinguished; namely action, value, 
substance, structure, and program execution hierarchies. Three perspectives on programming are 
identified; namely function oriented, object oriented, and constraint oriented, and Nygaard suggests 
that all three should be supported in any new general-purpose programming language. Many of these 
ideas are concretely reflected in the programming language Beta, being developed jointly with 
Madsen. 

Madsen contrasts Simula and Beta, which combine object-orientation and block structure with 
Smalltalk which does not and argues for the importance of block structure as a mechanism for pro- 
viding locality of scope in object-oriented languages. This is illustrated with a number of examples, 
including tokens defined relative to a grammar, removing operator-operand asymmetry in Simula and 
Smalltalk, defining mutually-dependent classes, defining prototypes for classes of similar instances, 
and simulation of Smalltalk metaclasses. This paper contributes to the understanding of interactions 
between object-orientation and the related but orthogonal notion of block structure. 

Ossher considers the specification, documentation, and representation of large, layered programs by 
a grid method which factors different kinds of structure along orthogonal dimensions. Layered pro- 
grams arise when there are multiple layers of abstraction, multiple layers of security, and multiple 
views. Interactions within a layer are generally more frequent than between layers. The structure 
corresponding to different kinds of layering can be partitioned along different dimensions of a grid. 
The approach is illustrated for a simple data abstraction example where interactions among layers of 
abstraction are separated from interactions among object hierarchies. It has been used for larger 
programs including the analysis and documentation of Scribe. The paper contributes to an under- 
standing of the relation among different kinds of program structure and of mechanisms for factoring 
different kinds of structure into different components. 

Theory and Models 
Goguen and Meseguer describe a language for integrating functional and object-oriented program- 
ming called FOOPS. They illustrate FOOPS with a bank account example and present an operational 
and logical semantics for FOOPS. FOOPS, like OBJZ, supports the definition of abstract data types 
that can inherit other types in three successively more permissive protection modes called protecting, 
extending, and using. Protecting allows the behavior of the imported type to be used without mod- 
ification. Extending allows the behavior of the imported type to be extended provided the elements 
of the imported type retain their identity and their behavior is not compromised. Using allows the 
behavior of the imported type to be both extended and compromised by a many to one mapping. The 
paper contributes to an understanding of the relation between functional, logical, and object-oriented 
programming and to the specification of object-oriented concepts in terms of an algebraic operational 
notation such as OBJ2. 

Bruce and Wegner examine the consequences of defining the notion of subtype as a binary relation 
between algebras. They develop a wakest notion of subtype that includes Int is a subtype of Real, 
Int(l..lU) is a subrype of Int and Student ti a subQpe of Person. These three relations are respectively 



-6- 

called lsomorphic Copy, Subsef, and Object-Oriented. Particular notions of subset are special cases 
of this general relation. Object-Oriented is of particular interest and is defined in terms of bounded 
quantification in the second order polymorphic lambda calculus. This paper contributes to our 
understanding of the modelling of object-oriented types by algebras and the lambda calculus. 

Wegner defines object-oriented systems in terms of their classification rather than their communi- 
cation characteristics because they are prescriptive in their classification requirements and permissive 
in their message passing requirements. Type inheritance extends the notion of classification from flat 
to tree-structured hierarchies in much the same way that Darwin extended Linnaean classification 
methods aimed at identification to evolutionary classification methods aimed at explanation. 
Object-oriented type systems determine a calculus of classes weaker than calculi for computing with 
values that can be modelled either algebraically or by methods of the second order lambda calculus. 
The paper examines the relation between algebra and calculi, the object-oriented notion of type, 
limitations on object-oriented specification, global versus local system perspectives, and realist versus 
intuition& models of type. It tries to blend the qualitative characterization of object-oriented pro- 
gramming as a classification paradigm with technical understanding mathematical models that 
underlie object-oriented systems. 

Collectively, these papers provide a snapshot of current research in object-oriented programming that 
touches on many interesting research issues. In preparing this overview we discovered interesting 
relations among papers, such as the fact that compiling from an object-oriented language into CP and 
actors are quite similar in their objective, and that three seemingty different papers were concerned 
with different aspects of whether inheritance should be at the level of types or instances. 

Object-oriented programming clearly holds promise as a framework for programming in the large that 
can be extended to concurrency, databases, and knowledge bases. This workshop and this collection 
of papers contribute to an understanding of what needs to be done to turn this promise into a reality. 


