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Abstract 

Although there are many adaptive (or view-dependent) 
multi-resolution methods developed, support for progressive 
transmission and reconstruction has not been addressed. A 
major reason for this is that most of these methods require 
large portion of the hierarchical data structure to be avail- 
able at the client before rendering starts, due to the neigh- 
boring dependency constraints. In this paper, we present an 
efficient multi-resolution method that allows progressive and 
selective transmission of multi-resolution models. This is 
achieved by reducing the neighboring dependency to a min- 
imum. The new method allows visually important parts of 
an object to be transmitted to the client at higher pTiOT- 

ity than the less important parts and progressively recon- 
structed there for display. We will present the new method 
and discuss how it works in a client-server environment. 
We will also show the data structure of the transmission 
record and some performance results of the method. 

1 Introduction 

The popularity of the Internet has brought the develop- 
ment of VRML and Java3D, which enable us to create 
3D virtual environments over the Internet. These 3D dis- 
tributed applications, however, increase the demand for ef- 
ficient transmission of 3D models. Some distributed VR ap- 
plications [7, 22, 231 even demand for real-time on-request 
transmission of 3D models. They generally employ a stan- 
dard client-server architecture, in which a central server 
maintains a geometry database of the virtual environment 
and distributes object models to clients upon requested. 
Because these object models may be complex and are usu- 
ally large in number, the network bandwidth often becomes 
the bottleneck of the system. 

There may be two approaches for encoding the object 
models in order to reduce the amount of information needed 
to be sent through the network. The first approach is by 
applying either a geometry compression method or a level 
of details (LoD) method to reduce the storage size of the 
models. Most geometry compression methods consider the 
geometry information shared by neighboring polygons and 
reduce the amount of data needed to represent the poly- 
gon mesh [6, 9, 241. LoD methods consider the fact that 
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the details of an object become less visible as the object 
moves away from the viewer and thus fewer polygons may 
be used to represent a distant object. These methods can 
potentially reduce the amount of data needed to be trans- 
mitted by sending models of appropriate resolutions to the 
clients [22]. There have been a lot of LoD methods pro- 
posed [3, 10, 201. In general, this approach requires the 
complete model to be sent to the client before the model 
can be used. 

The second approach is to encode the object models for 
progressive transmission. This means that the models are 
encoded in such a way that partially transmitted models 
can be rendered and progressively refined as more informa- 
tion is received. Hence, the client no longer needs to wait 
for the whole model to be transmitted before rendering and 
can thus provide a more immediate visual feedback to the 
user. This approach has only recently been attracting a 
lot ,of attention [8, 11, 191, and the progressive mesh [ll] 
is among the first in this area. In this method, an object 
model is decomposed into a base mesh and a sequence of 
progressive records. The base mesh represents the mini- 
mum resolution model of the object. A progressive record 
stores information of a vertex split that may slightly in- 
crease the resolution of the base mesh by introducing two 
triangles into it. Hence, by applying the sequence of pro- 
gressive records to the base mesh, the model will gradually 
increase in resolution until it reaches the highest resolution 
when all the records have been applied. The resolution 
of the model can be decreased by reversing the above op- 
eration. We have recently been developing a distributed 
walkthrough system based on this approach by transmit- 
ting object models in the form of progressive meshes in an 
on-request manner [l, 21. Initial results show that the sys- 
tem can provide a rapid response to the viewer’s motion in 
an Internet environment. 

To further enhance the performance of our distributed 
walkthrough system, we are currently investigating the pos- 
sibility of incorporating an adaptive (view-dependent) multi- 
resolution method for model transmission. In a distributed 
environment, when an object first appears in front of the 
viewer, different regions of the model should be selectively 
transmitted according to their visual importances. For ex- 
ample, regions of the model facing the viewer or intersect- 
ing with the viewer’s line of sight should be transmitted 
at higher resolution while the rest could be transmitted at 
lower resolution. However, for an adaptive multi-resolution 
method to be applicable in a distributed environment, it 
must also support progressive transmission. (Otherwise, we 
still need to wait for the complete model to be transmitted 
before rendering begins.) In other words, while the ob- 
ject model is being selectively transmitted from the server 
according the visual importance of different parts of the 
model, it is progressively reconstructed at the client. 

In this paper, we present the adaptive multi-resolution 
method that we have developed for model transmission. 
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The new method supports selective transmission of models 
from the server on request, and progressive reconstruction 
of them for rendering at the client. The rest of the paper is 
organized as follows. Section 2 gives a brief survey on exist- 
ing adaptive multi-resolution methods. Section 3 presents 
an overview of our method. Section 4 discusses the con- 
struction of the vertex trees. Section 5 shows how the ver- 
tex trees can be selectively transmitted from the server and 
progressively reconstructed at the client. Section 6 presents 
some results and evaluates the new method. Finally, Sec- 
tion 7 presents a conclusion of the paper and discusses some 
possible future work. 

2 Related Work 

An adaptive multi-resolution method can optimize the reso- 
lution of an object model for rendering by locally adjusting 
the resolution of it according to some dynamic information 
such as the user’s position and line of sight, and the moving 
speed of the object. We refer to this dynamic information 
as the view and animation parameters. The advantage of 
dynamically optimizing the resolution of the model is more 
obvious for large models. For example, if the user is flying 
through a landscape modeled as a single surface, he/she 
can only see a very small part of the landscape most of 
the time. An adaptive multi-resolution method can then 
be used to adjust the resolution of the landscape model in 
such a way that the region where the user is looking at has 
a high resolution while the rest has lower. This ability to 
adjust the resolution of a model adaptively according to 
the run-time view and animation parameters implies that 
the method must be able to operate in real-time. Various 
adaptive multi-resolution methods have been proposed and 
the typical ones are discussed here. 

A few methods have been developed for managing large 
terrain models [7, 15, 181. Basically, these methods regu- 
larly subdivide a large terrain surface. A hierarchical data 
structure, usually in the form of a quadtree, is constructed 
with the leaf nodes representing individual polygons, i.e., 
the highest resolution, and the root node representing the 
whole terrain surface, i.e., the lowest resolution. Each suc- 
cessive higher level of the tree from the leaf nodes represents 
a four-time decrease in resolution With this hierarchical 
data structure, the resolution of a local region can be ad- 
justed simply by choosing the polygons from higher or lower 
level nodes of the tree for rendering. Although this kind of 
methods usually uses simple data structures and is very ef- 
ficient, it requires the surface to be regularly subdivided. 
While this may be fine with smooth landscape, excessive 
amount of polygons may need to be created when the land- 
scape contains a lot of crests and valleys. As such, this 
kind of methods may not be suitable for modeling objects 
of arbitrary topology. A similar kind of methods but for ar- 
bitrary 3D object models is by subdividing the model into 
regular 3D cells [16, 17, 211. The cells are then hierarchi- 
cally combined to form an octree. The resolution of a local 
region can be reduced by merging (or clustering) multiple 
cells and vertices within the cells. Although the creation 
of the octree may be time consuming [16], the run-time 
performance of these methods is very high. The major lim- 
itation of these methods, however, is that the geometry of 
the model may not be preserved after the simplification. 

Methods that preserve the geometry of the object model 
are mainly based on edge decimation. Xia et al. [25] uses a 
merge tree to store the edge collapses in a hierarchical man- 
ner. To prevent mesh folding, during the construction of 
the hierarchy, the sequence of edge collapses is constrained 

to be non-overlapping. As a result, a dependency exists 
among the nodes in the merge tree. An edge is allowed 
to split or collapse only if certain neighboring vertices ex- 
ist. Hoppe in [12] presents the view dependent progressive 
mesh similar to [25] by using a vertex hierarchy. However, 
they differ in that the sequence of edge collapses in [12] is 
unconstrained and geometrically optimized with minimum 
dependencies among the collapses. In addition, the hierar- 
chy is constructed from the progressive mesh [ll] and thus 
the model can be transmitted in this format. A more effi- 
cient hierarchical approach designed specifically for terrain 
models is presented in [13]. The method allows real-time 
walkthrough of a large terrain model. Since neighboring 
vertices may be forced to split in order to satisfy the pre- 
conditions of a vertex split, other invisible parts of the hi- 
erarchy may also need to be transmitted to the client. 

Floriani et al. [5] proposes a method based on a Directed- 
Acyclic-Graph (DAG) called multi-triangulation (MT). Dur- 
ing the simplification or refinement process, a sequence of 
local operators is applied. Each of them modifies a small 
region of the mesh, called a fragment. The fragments are 
arranged into a partial order according to their dependen- 
cies and stored in the DAG. At run-time, the resolution of 
each fragment can be changed independently to produce an 
adaptive multi-resolution model. In [4], the MT is repre- 
sented as a simplicial complex in 3D space called hypertri- 
angulation. The third dimension of it represents the reso- 
lution of the fragment, and triangles of different fragments 
are welded together to form a model. Gueziec et al. [8] 
introduces a simpler DAG based method for progressive 
model transmission. Surfaces in the model are partitioned 
during the edge decimation process and independent sur- 
face patches can be transmitted in the same batch, thus 
allowing the model to be transmitted progressively to the 
client. However, since the DAG can only be constructed 
after the whole model is received, adaptive refinement of 
different parts of the model is only possible after the whole 
model is received by the client. 

All the methods discussed above can adaptively refine 
the resolution of an object model and most of them are very 
efficient. Due to the neighboring dependency constraints, 
they may require large portion or even complete model to 
be available at the client before rendering can begin. Sup- 
port for progressive and selective transmission has not been 
addressed. 

3 Method Overview 

Our adaptive multi-resolution method is based on edge dec- 
imation. During the preprocessing stage, we simplify the 
model by collapsing edges and at the same time construct- 
ing a set of hierarchies to represent the parent-child rela- 
tionship of the vertices. These hierarchies are referred to as 
the vertex trees and the root nodes of these trees form the v 
base mesh of the model. The structure of the vertex trees 
is similar to [12, 251. To reduce the cost of pointer usage, 
the vertex trees are linearized to set of one-dimensional ar- 
rays and stored at the server. At run-time, when the client 
requests for an object model, the server will transmit the 
base mesh nodes of the vertex trees first. Other nodes of 
the vertex trees will then be transmitted from top to bot- 
tom progressively; however, we may selectively transmit 
nodes from different vertex trees according to the view and 
animation parameters of the client at the time of the trans- 
mission For example, if a region of an object is inside the 
view frustum of the user, we may transmit more nodes from 
the corresponding vertex trees and less (or even none) from 
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others. 
For the server to determine the visible vertices efficiently 

at any time, a visible vertex list as shown in Figure 3 is cre- 
ated to link up all the visible vertices of the vertex trees. 
This list is updated as the view and animation parameters 
are changed. A similar visible vertex list is also maintained 
at the client. At the beginning, the list links up all nodes in 
the base mesh and these nodes will be transmitted to the 
client. We then gradually move the list down and transmit 
new nodes on the list, if they have not been transmitted, 
until the location of the list reflects a suitable resolution 
of the model with respect to the current view and anima- 
tion parameters. As the client receives tree nodes from the 
server, it reconstructs the vertex trees locally. The visible 
vertex list is adjusted and triangles are retrieved from the 
nodes in this list to form a triangle list for display. This 
triangle list represents an adaptive multi-resolution model 
of the object. 

To compare our method with existing methods such 
as [4, 5, 8, 12, 13, 251, our method does not need to perform 
the recursive dependency checking. In [4, 5, 81, dependency 
checking in the DAG is needed when retrieving the triangle 
fragments. In [12, 13, 251, recursive dependency checking of 
the hierarchy is needed to determine the dependency among 
vertices and hence, other parts of the hierarchy need to be 
presented at the client. In our method, we reduce the de- 
pendency among vertices to a minimum. We do this by 
storing the vertex fan of each vertex at its node to allow 
only a simple parent-child checking. This gives a greater 
flexibility in changing the resolution of the object surface. 
In addition, this minimal dependency between nodes allows 
us to transmit only the visible parts of the vertex trees to 
the client to reduce network bandwidth and storage space. 

Before we discuss in detail how we construct the ver- 
tex trees and transmit them from the server to the client, 
we need to introduce a few notations here. We define the 
Edge Fun, EFan(w), of vertex n as the set of edges adja- 
cent to v ordered in clockwise direction. The Vertex Fun, 
VFan(v), of vertex v is the set of lSt-ring neighboring ver- 
tices of 21 ordered in clockwise direction. The Rangle Fun, 
TFan(v), of vertex 2, is the set of triangles adjacent to 2, or- 
dered in clockwise direction. The Rangle Ring, T&Zing(e) 
of an edge e = (n;,~j) is the set of triangles adjacent to 
either vi or vj, i.e., TRing(e) = TFan(wi) U TFan(vj). 
Figure 1 shows examples of EFan(v), VFan(v), TFan(v) 
and TRing(e). 

(a) (b6) (cl 

Figure 1: Examples of (a) EFan(v) = {ee, . . , ed}, 
(b) VFan(v) = (~10, .. , TJ~} and TFan(v) = 
{te,...,td}, and (c) TRing(e) = {te,...,ts}. 

4 Vertex Tree Construction 
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To simplify the model, we apply an edge decimation method 
similar to the one that we proposed recently [14]. We first 

determine the importance of each vertex in the model based 
on its local sharpness. A sharp vertex has a higher impor- 
tance value than a flat vertex. An edge importance value 
for each triangle edge in the model is then determined based 
on the importance values of its two vertices and the length 
of the edge. We then assign a node to each vertex and 
insert all the nodes into a hash table using the vertex im- 
portance value as the index. In the decimation process, the 
node list located at the first entry of the hash table, i.e., 
list of vertices with the lowest importance values, is first se- 
lected. For each node in the list, the edge fan is examined 
and the edge with the lowest edge importance value will 
be chosen to collapse. The vertex with a lower importance 
value, called the child vertex, will be merged to the other, 
called the parent vertex. An edge collapse is valid only if it 
would not result in mesh folding. 

Before an edge is collapsed, the vertex fan of each of 
the two vertices is determined. As the edge is collapsed, 
the child vertex is removed from the hash table and in- 
serted into the vertex tree to become left child node of the 
parent vertex. The parent node is duplicated to become 
the right child node. The two vertex fans are then stored 
in the corresponding child nodes. This vertex fan will later 
be used to determine the triangle fan of the vertex. The 
reason for storing the vertex fan instead of the triangle fan 
is that it is much cheaper in terms of memory cost to store 
the vertex fan. Because the local geometry is changed after 
the collapse, the importance values of the adjacent vertices 
need to be recalculated and the vertices are then reinserted 
into the hash table. This decimation process continues un- 
til all the collapsible vertices are removed from the hash 
table. At this point, several vertex trees will have been 
constructed. The root nodes of these vertex trees form the 
vertices of the lowest resolution model and hence the base 
mesh of the object model. 

To reconstruct the triangle model from the vertex trees, 
we need to select appropriate triangles from the triangle 
fans of nodes on the visible vertex list. Since the triangles 
from neighboring triangle fans may be at different resolu- 
tion levels, some of them may overlap each others. Using 
the edge collapsing sequence shown in Figure 2 as an ex- 
ample, Figure 3 shows the corresponding vertex trees and 
the triangle fans of the vertices. We may observe that 
TFan(vz) overlaps with TFan(w4). If both of them are vis- 
ible at the same time, triangles in TFan(v~) are at higher 
resolution levels and therefore preferred. In order to be able 
to efficiently determine which triangles are at higher reso- 
lution during run-time, we introduce two state variables 
here, the vertex state and the triangle state. A vertex state 
is assigned to each vertex in the model to indicate the reso- 
lution level of the vertex while a triangle state is assigned to 
each triangle in the model to indicate the resolution level of 
the triangle. Let S, and St denote the vertex state and the 
triangle state, respectively. All the state values are initially 
set to zero. When an edge e = (V,hild, wpare7Lt) is chosen to 
collapse, we first identify a triangle t from TRing(e) with 
the highest triangle state St,maz and then set the vertex 
states of the two vertices as follows: 

S uparent = SIJ,,;,, = 
{ k,maz 

if St,,,, = 0 
otherwise 

The triangle states of TRing(e) are then incremented by 
1. Figure 2 shows an edge collapsing sequence and the 
corresponding change in triangle states and vertex states. 



{vi, 213, wr} in VFan(w4) and vertices {Q, or} in VFan(w6,) 
are not currently visible and therefore not available at the 
client because they are located below the visible vertex list. 
Hence, we need to trace up the corresponding vertex trees 
and replacing these vertices with their first visible parents, 
i.e., {~i,2)3, ~7) by (~2, WO, vat}. The task of tracing up the 
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vertex trees for visible vertices is performed by the server. 
Before a node record is sent, the server checks each vertex 
of its vertex fan. If an invisible vertex is found, the first 
transmitted parent of this vertex is identified and its ID is 
also sent to the client. 

There are three types of node records for transmission. 
One is for the nodes in the base mesh called base node. 
The other two are for the left and right child nodes called 

Figure 2: An edge collapse sequence and the corre- 
sponding change in triangle states and vertex states. 

left node and right node, respectively. The major difference 
between these three types of node records is that the right 
node does not include the vertex coordinate as it is avail- 
able from its parent node. In addition, the left node needs 
to include a vertex ID to identify its parent node. The 
data structures of these three types of nodes are shown as 
follows: 

// the right child node 

class RightNode < 
public: 

unsigned short VID; 
struct I 

I/ Vertex ID 

unsigned short close:l; // if VFan forms closed loop 

unsigned short VFanLen:7; // length of vertex fan 

1 VFanInfo; 
. 

unsigned short *VFan; // array for vertex fan 

Figure 3: Triangle fans obtained from the vertex 
fans stored in the nodes of the vertex trees. 

5 Model Transmission 

3; 

// the base node (inherit from RightNode) 

class BaseNode::public RightNode i 

public: 
myFloat Vx, Vy, Xz; // vertex coord (Ibytes each) 

unsigned char Vstate; // vertex state 

3; 

When a model is transmitted in the form of a progressive 
mesh, the base mesh of the model is transmitted first fol- 
lowed by the sequence of progressive records. The order 
of these progressive records is predetermined according to 
the geometric importance of the vertices/edges. With the 
new adaptive multi-resolution method, the order of trans- 
mitting the tree nodes can be determined during run-time 
according to both the geometric importance and the visual 
importance of the vertices. The visual importance of a ver- 
tex is determined from the view and animation parameters. 

At run-time, the server is responsible for selecting ap- 
propriate nodes for transmission to the client, while the 
client is responsible for constructing the vertex trees from 
the information supplied by the server and determining the 
appropriate triangles for display. We will discuss this in 
detail in the following subsections. For simplicity, we use 
Figures 2 and 3 as an example in our discussion. 

5.1 The Server Process 

At the beginning of transmitting a model, the visible ver- 
tex list contains only the base mesh, i.e., (~0, ~2, 216,Vg) 
of Figure 3. The information stored in each node of the 
base mesh is packaged into a node record for transmission 
to the client. The visible vertex list will then be moved 
down the trees gradually so that more nodes will be trans- 
mitted to the client. Suppose that both us and ?& are 
found to be visible and their local resolutions need to be 
increased. The visible vertex list will move down one level 
at nodes 06 and 2)8, and the updated visible vertex list be- 
comes (~0, ~2, 2r4,11s', ~5, 2181). We may find that vertices 

// the left child node (inherit from BaseNode) 

class CLeftNode::public BaseNode I 

public: 
unsigned short PID; // Parent Vertex ID 

unsigned char Vstate; // vertex state 

3; 

5.2 The Client Process 

At the client, the vertex trees are being reconstructed as 
the node records are received. A visible vertex list is main- 
tained to indicate the current visible vertices. This list is 
constantly being updated as more nodes are received at the 
client to reflect the change in the model resolution, which 
is determined by calculating a triangle budget value. This 
value is based on some view and animation parameters, 
such as object distance from the viewer, object moving ve- 
locity and current system frame rate. To render the model, 
the client traverses each node on the list and retrieves trian- 
gles from it to form a triangle list for display. This triangle 
list represents an adaptive multi-resolution model of the 
object. However, the problem here is how to efficiently se- 
lect suitable triangles from each of the nodes on the list for 
display. We handle this in the following three steps: 

l As mentioned earlier, when triangles from neighbor- 
ing triangle fans overlap each others, we select those 
at higher resolution levels for display. To do this, for 
each triangle in ?‘FcL~(IJ) of vertex V, we compare the 
vertex state S, of v with the other two vertex states 
of the triangle. The triangle is inserted to the triangle 
list only if S, is the lowest among the vertex states of 
all three vertices. 
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l Some triangles in the triangle fans may be degener- 
ated. We would detect and remove them by checking 
whether there are duplicated vertex IDS in each tri- 
angle. 

l To reduce the time needed to create the triangle list, 
we re-use the triangle list produced from the previous 
frame. When a triangle is inserted to the list, location 
of it in the list is stored at its corresponding node. 
This allows rapid modification of the triangles in the 
list. We also note down the number of times each 
vertex appears in the inserted triangles. If a vertex 
appears only once, it must be a feature vertex if and 
only if it has a zero vertex state; if it has a non-zero 
vertex state, it must be a dangling vertex and the 
corresponding triangle is considered as invalid. 

6 Results and Discussions 

We have implemented the new method using C++ and 
Open Inventor. The server module communicates with the 
client module using TCP/IP. We tested the two modules on 
two SGI Octane workstations, each with a 195MHz RlOOOO 
CPU and 256MB RAM, using several large polygonal mod- 
els. Figures 4, 5, 6 and 7 demonstrate some results using 
the Terrain, Teeth, and Crater Lake models. In these fig- 
ures, the rectangular box represents the view region of the 
user. Figure 4(a) shows the original Terrain model with 
114,974 triangles. Figures 4(b), 4(c) and 4(d) show the 
adaptive refinement of it with 607, 8,321 and 18,900 trian- 
gles, respectively. Progressive and selective transmission of 
the same terrain model is shown in Figure 5. A similar set 
of results using the teeth model is shown in Figure 6. We 
can also make use of the progressive and selective transmis- 
sion nature of the new method to transmit only sections of 
an object which are inside the view region. Figure 7 shows 
an adaptive refined Crater Lake model with and without 
view clipping. When view clipping is used, a node is trans- 
mitted, or considered as visible, only if at least one of the 
vertices from its vertex fan is inside the view region and 
the normal vector of the node is facing the viewer. (The 
inside test on each vertex of the vertex fan at run-time can 
be very expensive. To simplify this testing, we precompute 
the longest edge of the edge fan as the radius of the bound- 
ing sphere for the node. During run-time, if the bounding 
sphere is found to overlap with the view region, the inside 
test is true.) 

Table 1 shows the performance of preprocessing differ- 
ent models. The vertex tree construction time includes the 
calculation of importance values, edge decimation, and the 
construction of the vertex trees. This construction time is 
proportional to the total number of triangles in the model. 
Table 2 shows the size of the vertex trees in uncompressed 
representation, the time for progressive transmission of the 
vertex trees and the time for reconstructing them at the 
client. The size of the vertex trees is comparable with the 
progressive mesh Ill]. Assume that the average size of the 
vertex fan in each node is 6. As shown in Section 5.1, the 
average size of a base node record is 22 bytes and that of 
a child node record (average between a right child node 
and a left child node) is 20 bytes. In our experiments, the 
average sizes are 24 bytes and 21 bytes, respectively. The 
difference is mainly due to the byte packing performed by 
the operating system. We experimented the transmission 
of the vertex trees from the server to the client through a 
lOMbits Ethernet during the day time. Columns 4 and 5 of 
the table show the time needed to transmit the base nodes 
and the rest of the vertex trees, respectively. Note that 

Model Number of Vertex tree 
triangles construction time 

Terrain 114,974 60.39s 
Bunny 69,451 35.70s 
Teeth 58,328 31.32s 
Crater Lake 9,620 0.09s 

Table 1: Preprocessing performance of our method. 

the figures shown are the time needed to transmit the com- 
plete model. In many walkthrough environments, only part 
of the model will ever be seen, and only the corresponding 
part of the vertex trees need to be transmitted using our 
method. 

If we assume that the bandwidth available to us in the 
experiments was 2Mbits and that the Internet bandwidth 
is one-tenth of this, i.e., O.SMbits, the time needed to trans- 
mit the vertex trees through the Internet will be roughly 10 
times longer than the figures shown in the table. Since we 
can visualize the model as soon as the base mesh is avail- 
able at the client, this transmission performance can pro- 
vide a reasonably fast response to the viewer’s movement 
even over the Internet. In addition, after the base mesh is 
transmitted, almost all the nodes subsequently transmit- 
ted help refine the visible region of the model. We have 
tested the client process on a SGI O2 workstation, with a 
200MHz R5000 CPU and 128MB RAM. A walkthrough of 
the terrain shown in Figure 4(a) is performed and the av- 
erage frame rate has increased from 2.47fps to 7fps. Note 
also that in our experiments, each node was sent as an in- 
dividual package through the network. The transmission 
time can be further reduced if we transmit the nodes in 
batch as discussed in [8]. We would also expect a reduction 
in transmission time by integrating a geometric compres- 
sion technique such as [6, 241. Finally, column 6 of Table 2 
shows the time for constructing the complete vertex trees 
at the client side. 

As a summary, the method we propose here has the 
following advantages: 

l Due to the minimal dependency between vertices, our 
method allows multi-resolution models to be trans- 
mitted selectively and progressively according to the 
view and animation parameters. This is important 
in particular for transmitting large models such as a 
large terrain surface. If a terrain surface is encoded in 
the form of a progressive mesh [ll], for example, most 
of the progressive records being transmitted may be 
irrelevant to what the viewer is seeing. Not only the 
bandwidth may be wasted, but also that the viewer 
may have to accept a lower visual quality for a longer 
period of time during the transmission of the surface 
model. 

l Since only the visible part of the model may need to 
be transmitted, the new method can save the client’s 
memory space if the viewer only visits small sections 
of a large model. The invisible sections may never 
need to be transmitted. 

l The Internet is unreliable in transmitting informa- 
tion, and packages may be lost during the transmis- 
sion. When using the progressive mesh method, if 
a progressive record is lost during the transmission, 
subsequent records received cannot be used until the 
lost record is retransmitted. This causes a round- 
trip delay, i.e., the client notifies the server of the lost 
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Model Vertex trees Size Progressive Transmission vertex trees 
Time Reconstruction Time 

Base Nodes Child Nodes Base Nodes Child Nodes 

Terrain 7.6KB 2,459KB 0.02s 8.1s 1,74s 
Bunny 16.3KB 1,377KB 0.01s 5.36s 0.97s 
Teeth 36.4KB 1,113KB 0.03s 4.80s 0.92s 

Crater Lake 19.2KB 163.7KB 0.00s 0.61s 0.10s 

Table 2: Run-time performance of our method. 

record and then the server retransmits the lost record. 
In our method, since edge collapses are independent 
of each others, the lost of a node during transmission 
will not affect subsequent nodes received. 

7 Conclusions and Future Work 

In this paper, we have presented a framework that allows 
progressive and selective transmission of adaptive multi- 
resolution models according to the view and animation pa- 
rameters such as the user’s view region and line of sight. 
The mechanism for transmitting the models has been dis- 
cussed. The ability of performing adaptive multi-resolution 
modeling with partially transmitted models will be useful 
in the visualization of large and detailed geometric models 
or in the walkthrough of a distributed virtual environment 
over a low speed network. We have also presented the pre- 
processing and run-time performances of the new method. 

Based on our adaptive method, we are currently work- 
ing on a real-time multi-resolution modeling technique for 
textured and animated objects. We are also integrating the 
new method into our virtual walkthrough system [l, 21 for 
transmitting large models. Compression has not been con- 
sidered in the current implementation, and it would be an 
advantage to incorporate a geometric compression method 
to reduce both storage and transmission time. 
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(a) 114,974 triangles (b) 607 triangles 

(c) 8,321 triangles (d) 18,900 triangles 

Figure 4: Adaptive refinement of a terrain model: (a) the original model, (b), (c) and 
(d) adaptively refined at different resolutions. 

(a) 6$31 hngles (7.64 %) (b) 16.177 triangles (18.42%) (c) 48,943 triangles (44~88%} 

Figure 5: Progressive and selective transmission of the terrain model shown in Figure 4. 
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(b) 5,137 triangles 

(a) 58,328 triangles 

(Cl 8,750 triangles Cd) 14,689 triangles 

Figure 6: Adaptive refinement of a teeth model: (a) the original model, (b), (c) and (d) 
adaptively refined at different resolutions. 

(a) 9,620 triangles (b) 4,353 triangles (c) 2,768 triangles 

Figure 7: Adaptive refinement of a crater model with and without view clipping: (a) the 
original model, (b) without view clipping, and (c) with view clipping. 
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