
A Method for Progressive and Selective Transmission of Multi-Resolution Models

Danny S.P. To Rynson W.H. Lau

Department of Computer Science
City University of Hong Kong, Hong Kong

Mark Green

Department of Computer Science
University of Alberta, Canada

” {dannyto, “rynson}&s.c&u.edu~hk mark@cs.ualberta.ca

Abstract

Although there are many adaptive (or view-dependent)
multi-resolution methods developed, support for progressive
transmission and reconstruction has not been addressed. A
major reason for this is that most of these methods require
large portion of the hierarchical data structure to be avail-
able at the client before rendering starts, due to the neigh-
boring dependency constraints. In this paper, we present an
efficient multi-resolution method that allows progressive and
selective transmission of multi-resolution models. This is
achieved by reducing the neighboring dependency to a min-
imum. The new method allows visually important parts of
an object to be transmitted to the client at higher pTiOT-

ity than the less important parts and progressively recon-
structed there for display. We will present the new method
and discuss how it works in a client-server environment.
We will also show the data structure of the transmission
record and some performance results of the method.

1 Introduction

The popularity of the Internet has brought the develop-
ment of VRML and Java3D, which enable us to create
3D virtual environments over the Internet. These 3D dis-
tributed applications, however, increase the demand for ef-
ficient transmission of 3D models. Some distributed VR ap-
plications [7, 22, 231 even demand for real-time on-request
transmission of 3D models. They generally employ a stan-
dard client-server architecture, in which a central server
maintains a geometry database of the virtual environment
and distributes object models to clients upon requested.
Because these object models may be complex and are usu-
ally large in number, the network bandwidth often becomes
the bottleneck of the system.

There may be two approaches for encoding the object
models in order to reduce the amount of information needed
to be sent through the network. The first approach is by
applying either a geometry compression method or a level
of details (LoD) method to reduce the storage size of the
models. Most geometry compression methods consider the
geometry information shared by neighboring polygons and
reduce the amount of data needed to represent the poly-
gon mesh [6, 9, 241. LoD methods consider the fact that

Permission to make digital or hard copies of a11 or pan of this work fol
personal or classroom USC is granted without fte provided that copies
are not made or distributed Ibr profit or commercial advantage and that
topics bear this notice and the t%ll citatiorl on the first page. To copy
otherwise, to republish, to post on servws or to redistribute to lists,
reqttirfzs prior specific pemlission and!or a Ike.
VRST 99 London UK
Copyright ACM 1999 l-58113-141-O/99/12.,.$5.00

the details of an object become less visible as the object
moves away from the viewer and thus fewer polygons may
be used to represent a distant object. These methods can
potentially reduce the amount of data needed to be trans-
mitted by sending models of appropriate resolutions to the
clients [22]. There have been a lot of LoD methods pro-
posed [3, 10, 201. In general, this approach requires the
complete model to be sent to the client before the model
can be used.

The second approach is to encode the object models for
progressive transmission. This means that the models are
encoded in such a way that partially transmitted models
can be rendered and progressively refined as more informa-
tion is received. Hence, the client no longer needs to wait
for the whole model to be transmitted before rendering and
can thus provide a more immediate visual feedback to the
user. This approach has only recently been attracting a
lot ,of attention [8, 11, 191, and the progressive mesh [ll]
is among the first in this area. In this method, an object
model is decomposed into a base mesh and a sequence of
progressive records. The base mesh represents the mini-
mum resolution model of the object. A progressive record
stores information of a vertex split that may slightly in-
crease the resolution of the base mesh by introducing two
triangles into it. Hence, by applying the sequence of pro-
gressive records to the base mesh, the model will gradually
increase in resolution until it reaches the highest resolution
when all the records have been applied. The resolution
of the model can be decreased by reversing the above op-
eration. We have recently been developing a distributed
walkthrough system based on this approach by transmit-
ting object models in the form of progressive meshes in an
on-request manner [l, 21. Initial results show that the sys-
tem can provide a rapid response to the viewer’s motion in
an Internet environment.

To further enhance the performance of our distributed
walkthrough system, we are currently investigating the pos-
sibility of incorporating an adaptive (view-dependent) multi-
resolution method for model transmission. In a distributed
environment, when an object first appears in front of the
viewer, different regions of the model should be selectively
transmitted according to their visual importances. For ex-
ample, regions of the model facing the viewer or intersect-
ing with the viewer’s line of sight should be transmitted
at higher resolution while the rest could be transmitted at
lower resolution. However, for an adaptive multi-resolution
method to be applicable in a distributed environment, it
must also support progressive transmission. (Otherwise, we
still need to wait for the complete model to be transmitted
before rendering begins.) In other words, while the ob-
ject model is being selectively transmitted from the server
according the visual importance of different parts of the
model, it is progressively reconstructed at the client.

In this paper, we present the adaptive multi-resolution
method that we have developed for model transmission.

88

http://crossmark.crossref.org/dialog/?doi=10.1145%2F323663.323678&domain=pdf&date_stamp=1999-12-20

The new method supports selective transmission of models
from the server on request, and progressive reconstruction
of them for rendering at the client. The rest of the paper is
organized as follows. Section 2 gives a brief survey on exist-
ing adaptive multi-resolution methods. Section 3 presents
an overview of our method. Section 4 discusses the con-
struction of the vertex trees. Section 5 shows how the ver-
tex trees can be selectively transmitted from the server and
progressively reconstructed at the client. Section 6 presents
some results and evaluates the new method. Finally, Sec-
tion 7 presents a conclusion of the paper and discusses some
possible future work.

2 Related Work

An adaptive multi-resolution method can optimize the reso-
lution of an object model for rendering by locally adjusting
the resolution of it according to some dynamic information
such as the user’s position and line of sight, and the moving
speed of the object. We refer to this dynamic information
as the view and animation parameters. The advantage of
dynamically optimizing the resolution of the model is more
obvious for large models. For example, if the user is flying
through a landscape modeled as a single surface, he/she
can only see a very small part of the landscape most of
the time. An adaptive multi-resolution method can then
be used to adjust the resolution of the landscape model in
such a way that the region where the user is looking at has
a high resolution while the rest has lower. This ability to
adjust the resolution of a model adaptively according to
the run-time view and animation parameters implies that
the method must be able to operate in real-time. Various
adaptive multi-resolution methods have been proposed and
the typical ones are discussed here.

A few methods have been developed for managing large
terrain models [7, 15, 181. Basically, these methods regu-
larly subdivide a large terrain surface. A hierarchical data
structure, usually in the form of a quadtree, is constructed
with the leaf nodes representing individual polygons, i.e.,
the highest resolution, and the root node representing the
whole terrain surface, i.e., the lowest resolution. Each suc-
cessive higher level of the tree from the leaf nodes represents
a four-time decrease in resolution With this hierarchical
data structure, the resolution of a local region can be ad-
justed simply by choosing the polygons from higher or lower
level nodes of the tree for rendering. Although this kind of
methods usually uses simple data structures and is very ef-
ficient, it requires the surface to be regularly subdivided.
While this may be fine with smooth landscape, excessive
amount of polygons may need to be created when the land-
scape contains a lot of crests and valleys. As such, this
kind of methods may not be suitable for modeling objects
of arbitrary topology. A similar kind of methods but for ar-
bitrary 3D object models is by subdividing the model into
regular 3D cells [16, 17, 211. The cells are then hierarchi-
cally combined to form an octree. The resolution of a local
region can be reduced by merging (or clustering) multiple
cells and vertices within the cells. Although the creation
of the octree may be time consuming [16], the run-time
performance of these methods is very high. The major lim-
itation of these methods, however, is that the geometry of
the model may not be preserved after the simplification.

Methods that preserve the geometry of the object model
are mainly based on edge decimation. Xia et al. [25] uses a
merge tree to store the edge collapses in a hierarchical man-
ner. To prevent mesh folding, during the construction of
the hierarchy, the sequence of edge collapses is constrained

to be non-overlapping. As a result, a dependency exists
among the nodes in the merge tree. An edge is allowed
to split or collapse only if certain neighboring vertices ex-
ist. Hoppe in [12] presents the view dependent progressive
mesh similar to [25] by using a vertex hierarchy. However,
they differ in that the sequence of edge collapses in [12] is
unconstrained and geometrically optimized with minimum
dependencies among the collapses. In addition, the hierar-
chy is constructed from the progressive mesh [ll] and thus
the model can be transmitted in this format. A more effi-
cient hierarchical approach designed specifically for terrain
models is presented in [13]. The method allows real-time
walkthrough of a large terrain model. Since neighboring
vertices may be forced to split in order to satisfy the pre-
conditions of a vertex split, other invisible parts of the hi-
erarchy may also need to be transmitted to the client.

Floriani et al. [5] proposes a method based on a Directed-
Acyclic-Graph (DAG) called multi-triangulation (MT). Dur-
ing the simplification or refinement process, a sequence of
local operators is applied. Each of them modifies a small
region of the mesh, called a fragment. The fragments are
arranged into a partial order according to their dependen-
cies and stored in the DAG. At run-time, the resolution of
each fragment can be changed independently to produce an
adaptive multi-resolution model. In [4], the MT is repre-
sented as a simplicial complex in 3D space called hypertri-
angulation. The third dimension of it represents the reso-
lution of the fragment, and triangles of different fragments
are welded together to form a model. Gueziec et al. [8]
introduces a simpler DAG based method for progressive
model transmission. Surfaces in the model are partitioned
during the edge decimation process and independent sur-
face patches can be transmitted in the same batch, thus
allowing the model to be transmitted progressively to the
client. However, since the DAG can only be constructed
after the whole model is received, adaptive refinement of
different parts of the model is only possible after the whole
model is received by the client.

All the methods discussed above can adaptively refine
the resolution of an object model and most of them are very
efficient. Due to the neighboring dependency constraints,
they may require large portion or even complete model to
be available at the client before rendering can begin. Sup-
port for progressive and selective transmission has not been
addressed.

3 Method Overview

Our adaptive multi-resolution method is based on edge dec-
imation. During the preprocessing stage, we simplify the
model by collapsing edges and at the same time construct-
ing a set of hierarchies to represent the parent-child rela-
tionship of the vertices. These hierarchies are referred to as
the vertex trees and the root nodes of these trees form the v
base mesh of the model. The structure of the vertex trees
is similar to [12, 251. To reduce the cost of pointer usage,
the vertex trees are linearized to set of one-dimensional ar-
rays and stored at the server. At run-time, when the client
requests for an object model, the server will transmit the
base mesh nodes of the vertex trees first. Other nodes of
the vertex trees will then be transmitted from top to bot-
tom progressively; however, we may selectively transmit
nodes from different vertex trees according to the view and
animation parameters of the client at the time of the trans-
mission For example, if a region of an object is inside the
view frustum of the user, we may transmit more nodes from
the corresponding vertex trees and less (or even none) from

89

others.
For the server to determine the visible vertices efficiently

at any time, a visible vertex list as shown in Figure 3 is cre-
ated to link up all the visible vertices of the vertex trees.
This list is updated as the view and animation parameters
are changed. A similar visible vertex list is also maintained
at the client. At the beginning, the list links up all nodes in
the base mesh and these nodes will be transmitted to the
client. We then gradually move the list down and transmit
new nodes on the list, if they have not been transmitted,
until the location of the list reflects a suitable resolution
of the model with respect to the current view and anima-
tion parameters. As the client receives tree nodes from the
server, it reconstructs the vertex trees locally. The visible
vertex list is adjusted and triangles are retrieved from the
nodes in this list to form a triangle list for display. This
triangle list represents an adaptive multi-resolution model
of the object.

To compare our method with existing methods such
as [4, 5, 8, 12, 13, 251, our method does not need to perform
the recursive dependency checking. In [4, 5, 81, dependency
checking in the DAG is needed when retrieving the triangle
fragments. In [12, 13, 251, recursive dependency checking of
the hierarchy is needed to determine the dependency among
vertices and hence, other parts of the hierarchy need to be
presented at the client. In our method, we reduce the de-
pendency among vertices to a minimum. We do this by
storing the vertex fan of each vertex at its node to allow
only a simple parent-child checking. This gives a greater
flexibility in changing the resolution of the object surface.
In addition, this minimal dependency between nodes allows
us to transmit only the visible parts of the vertex trees to
the client to reduce network bandwidth and storage space.

Before we discuss in detail how we construct the ver-
tex trees and transmit them from the server to the client,
we need to introduce a few notations here. We define the
Edge Fun, EFan(w), of vertex n as the set of edges adja-
cent to v ordered in clockwise direction. The Vertex Fun,
VFan(v), of vertex v is the set of lSt-ring neighboring ver-
tices of 21 ordered in clockwise direction. The Rangle Fun,
TFan(v), of vertex 2, is the set of triangles adjacent to 2, or-
dered in clockwise direction. The Rangle Ring, T&Zing(e)
of an edge e = (n;,~j) is the set of triangles adjacent to
either vi or vj, i.e., TRing(e) = TFan(wi) U TFan(vj).
Figure 1 shows examples of EFan(v), VFan(v), TFan(v)
and TRing(e).

(a) (b6) (cl

Figure 1: Examples of (a) EFan(v) = {ee, . . , ed},
(b) VFan(v) = (~10, .. , TJ~} and TFan(v) =
{te,...,td}, and (c) TRing(e) = {te,...,ts}.

4 Vertex Tree Construction

90

To simplify the model, we apply an edge decimation method
similar to the one that we proposed recently [14]. We first

determine the importance of each vertex in the model based
on its local sharpness. A sharp vertex has a higher impor-
tance value than a flat vertex. An edge importance value
for each triangle edge in the model is then determined based
on the importance values of its two vertices and the length
of the edge. We then assign a node to each vertex and
insert all the nodes into a hash table using the vertex im-
portance value as the index. In the decimation process, the
node list located at the first entry of the hash table, i.e.,
list of vertices with the lowest importance values, is first se-
lected. For each node in the list, the edge fan is examined
and the edge with the lowest edge importance value will
be chosen to collapse. The vertex with a lower importance
value, called the child vertex, will be merged to the other,
called the parent vertex. An edge collapse is valid only if it
would not result in mesh folding.

Before an edge is collapsed, the vertex fan of each of
the two vertices is determined. As the edge is collapsed,
the child vertex is removed from the hash table and in-
serted into the vertex tree to become left child node of the
parent vertex. The parent node is duplicated to become
the right child node. The two vertex fans are then stored
in the corresponding child nodes. This vertex fan will later
be used to determine the triangle fan of the vertex. The
reason for storing the vertex fan instead of the triangle fan
is that it is much cheaper in terms of memory cost to store
the vertex fan. Because the local geometry is changed after
the collapse, the importance values of the adjacent vertices
need to be recalculated and the vertices are then reinserted
into the hash table. This decimation process continues un-
til all the collapsible vertices are removed from the hash
table. At this point, several vertex trees will have been
constructed. The root nodes of these vertex trees form the
vertices of the lowest resolution model and hence the base
mesh of the object model.

To reconstruct the triangle model from the vertex trees,
we need to select appropriate triangles from the triangle
fans of nodes on the visible vertex list. Since the triangles
from neighboring triangle fans may be at different resolu-
tion levels, some of them may overlap each others. Using
the edge collapsing sequence shown in Figure 2 as an ex-
ample, Figure 3 shows the corresponding vertex trees and
the triangle fans of the vertices. We may observe that
TFan(vz) overlaps with TFan(w4). If both of them are vis-
ible at the same time, triangles in TFan(v~) are at higher
resolution levels and therefore preferred. In order to be able
to efficiently determine which triangles are at higher reso-
lution during run-time, we introduce two state variables
here, the vertex state and the triangle state. A vertex state
is assigned to each vertex in the model to indicate the reso-
lution level of the vertex while a triangle state is assigned to
each triangle in the model to indicate the resolution level of
the triangle. Let S, and St denote the vertex state and the
triangle state, respectively. All the state values are initially
set to zero. When an edge e = (V,hild, wpare7Lt) is chosen to
collapse, we first identify a triangle t from TRing(e) with
the highest triangle state St,maz and then set the vertex
states of the two vertices as follows:

S uparent = SIJ,,;,, =
{ k,maz

if St,,,, = 0
otherwise

The triangle states of TRing(e) are then incremented by
1. Figure 2 shows an edge collapsing sequence and the
corresponding change in triangle states and vertex states.

{vi, 213, wr} in VFan(w4) and vertices {Q, or} in VFan(w6,)
are not currently visible and therefore not available at the
client because they are located below the visible vertex list.
Hence, we need to trace up the corresponding vertex trees
and replacing these vertices with their first visible parents,
i.e., {~i,2)3, ~7) by (~2, WO, vat}. The task of tracing up the

I 2

Gpu @- 6

vertex trees for visible vertices is performed by the server.
Before a node record is sent, the server checks each vertex
of its vertex fan. If an invisible vertex is found, the first
transmitted parent of this vertex is identified and its ID is
also sent to the client.

There are three types of node records for transmission.
One is for the nodes in the base mesh called base node.
The other two are for the left and right child nodes called

Figure 2: An edge collapse sequence and the corre-
sponding change in triangle states and vertex states.

left node and right node, respectively. The major difference
between these three types of node records is that the right
node does not include the vertex coordinate as it is avail-
able from its parent node. In addition, the left node needs
to include a vertex ID to identify its parent node. The
data structures of these three types of nodes are shown as
follows:

// the right child node

class RightNode <
public:

unsigned short VID;
struct I

I/ Vertex ID

unsigned short close:l; // if VFan forms closed loop

unsigned short VFanLen:7; // length of vertex fan

1 VFanInfo;
.

unsigned short *VFan; // array for vertex fan

Figure 3: Triangle fans obtained from the vertex
fans stored in the nodes of the vertex trees.

5 Model Transmission

3;

// the base node (inherit from RightNode)

class BaseNode::public RightNode i

public:
myFloat Vx, Vy, Xz; // vertex coord (Ibytes each)

unsigned char Vstate; // vertex state

3;

When a model is transmitted in the form of a progressive
mesh, the base mesh of the model is transmitted first fol-
lowed by the sequence of progressive records. The order
of these progressive records is predetermined according to
the geometric importance of the vertices/edges. With the
new adaptive multi-resolution method, the order of trans-
mitting the tree nodes can be determined during run-time
according to both the geometric importance and the visual
importance of the vertices. The visual importance of a ver-
tex is determined from the view and animation parameters.

At run-time, the server is responsible for selecting ap-
propriate nodes for transmission to the client, while the
client is responsible for constructing the vertex trees from
the information supplied by the server and determining the
appropriate triangles for display. We will discuss this in
detail in the following subsections. For simplicity, we use
Figures 2 and 3 as an example in our discussion.

5.1 The Server Process

At the beginning of transmitting a model, the visible ver-
tex list contains only the base mesh, i.e., (~0, ~2, 216,Vg)
of Figure 3. The information stored in each node of the
base mesh is packaged into a node record for transmission
to the client. The visible vertex list will then be moved
down the trees gradually so that more nodes will be trans-
mitted to the client. Suppose that both us and ?& are
found to be visible and their local resolutions need to be
increased. The visible vertex list will move down one level
at nodes 06 and 2)8, and the updated visible vertex list be-
comes (~0, ~2, 2r4,11s', ~5, 2181). We may find that vertices

// the left child node (inherit from BaseNode)

class CLeftNode::public BaseNode I

public:
unsigned short PID; // Parent Vertex ID

unsigned char Vstate; // vertex state

3;

5.2 The Client Process

At the client, the vertex trees are being reconstructed as
the node records are received. A visible vertex list is main-
tained to indicate the current visible vertices. This list is
constantly being updated as more nodes are received at the
client to reflect the change in the model resolution, which
is determined by calculating a triangle budget value. This
value is based on some view and animation parameters,
such as object distance from the viewer, object moving ve-
locity and current system frame rate. To render the model,
the client traverses each node on the list and retrieves trian-
gles from it to form a triangle list for display. This triangle
list represents an adaptive multi-resolution model of the
object. However, the problem here is how to efficiently se-
lect suitable triangles from each of the nodes on the list for
display. We handle this in the following three steps:

l As mentioned earlier, when triangles from neighbor-
ing triangle fans overlap each others, we select those
at higher resolution levels for display. To do this, for
each triangle in ?‘FcL~(IJ) of vertex V, we compare the
vertex state S, of v with the other two vertex states
of the triangle. The triangle is inserted to the triangle
list only if S, is the lowest among the vertex states of
all three vertices.

91

l Some triangles in the triangle fans may be degener-
ated. We would detect and remove them by checking
whether there are duplicated vertex IDS in each tri-
angle.

l To reduce the time needed to create the triangle list,
we re-use the triangle list produced from the previous
frame. When a triangle is inserted to the list, location
of it in the list is stored at its corresponding node.
This allows rapid modification of the triangles in the
list. We also note down the number of times each
vertex appears in the inserted triangles. If a vertex
appears only once, it must be a feature vertex if and
only if it has a zero vertex state; if it has a non-zero
vertex state, it must be a dangling vertex and the
corresponding triangle is considered as invalid.

6 Results and Discussions

We have implemented the new method using C++ and
Open Inventor. The server module communicates with the
client module using TCP/IP. We tested the two modules on
two SGI Octane workstations, each with a 195MHz RlOOOO
CPU and 256MB RAM, using several large polygonal mod-
els. Figures 4, 5, 6 and 7 demonstrate some results using
the Terrain, Teeth, and Crater Lake models. In these fig-
ures, the rectangular box represents the view region of the
user. Figure 4(a) shows the original Terrain model with
114,974 triangles. Figures 4(b), 4(c) and 4(d) show the
adaptive refinement of it with 607, 8,321 and 18,900 trian-
gles, respectively. Progressive and selective transmission of
the same terrain model is shown in Figure 5. A similar set
of results using the teeth model is shown in Figure 6. We
can also make use of the progressive and selective transmis-
sion nature of the new method to transmit only sections of
an object which are inside the view region. Figure 7 shows
an adaptive refined Crater Lake model with and without
view clipping. When view clipping is used, a node is trans-
mitted, or considered as visible, only if at least one of the
vertices from its vertex fan is inside the view region and
the normal vector of the node is facing the viewer. (The
inside test on each vertex of the vertex fan at run-time can
be very expensive. To simplify this testing, we precompute
the longest edge of the edge fan as the radius of the bound-
ing sphere for the node. During run-time, if the bounding
sphere is found to overlap with the view region, the inside
test is true.)

Table 1 shows the performance of preprocessing differ-
ent models. The vertex tree construction time includes the
calculation of importance values, edge decimation, and the
construction of the vertex trees. This construction time is
proportional to the total number of triangles in the model.
Table 2 shows the size of the vertex trees in uncompressed
representation, the time for progressive transmission of the
vertex trees and the time for reconstructing them at the
client. The size of the vertex trees is comparable with the
progressive mesh Ill]. Assume that the average size of the
vertex fan in each node is 6. As shown in Section 5.1, the
average size of a base node record is 22 bytes and that of
a child node record (average between a right child node
and a left child node) is 20 bytes. In our experiments, the
average sizes are 24 bytes and 21 bytes, respectively. The
difference is mainly due to the byte packing performed by
the operating system. We experimented the transmission
of the vertex trees from the server to the client through a
lOMbits Ethernet during the day time. Columns 4 and 5 of
the table show the time needed to transmit the base nodes
and the rest of the vertex trees, respectively. Note that

Model Number of Vertex tree
triangles construction time

Terrain 114,974 60.39s
Bunny 69,451 35.70s
Teeth 58,328 31.32s
Crater Lake 9,620 0.09s

Table 1: Preprocessing performance of our method.

the figures shown are the time needed to transmit the com-
plete model. In many walkthrough environments, only part
of the model will ever be seen, and only the corresponding
part of the vertex trees need to be transmitted using our
method.

If we assume that the bandwidth available to us in the
experiments was 2Mbits and that the Internet bandwidth
is one-tenth of this, i.e., O.SMbits, the time needed to trans-
mit the vertex trees through the Internet will be roughly 10
times longer than the figures shown in the table. Since we
can visualize the model as soon as the base mesh is avail-
able at the client, this transmission performance can pro-
vide a reasonably fast response to the viewer’s movement
even over the Internet. In addition, after the base mesh is
transmitted, almost all the nodes subsequently transmit-
ted help refine the visible region of the model. We have
tested the client process on a SGI O2 workstation, with a
200MHz R5000 CPU and 128MB RAM. A walkthrough of
the terrain shown in Figure 4(a) is performed and the av-
erage frame rate has increased from 2.47fps to 7fps. Note
also that in our experiments, each node was sent as an in-
dividual package through the network. The transmission
time can be further reduced if we transmit the nodes in
batch as discussed in [8]. We would also expect a reduction
in transmission time by integrating a geometric compres-
sion technique such as [6, 241. Finally, column 6 of Table 2
shows the time for constructing the complete vertex trees
at the client side.

As a summary, the method we propose here has the
following advantages:

l Due to the minimal dependency between vertices, our
method allows multi-resolution models to be trans-
mitted selectively and progressively according to the
view and animation parameters. This is important
in particular for transmitting large models such as a
large terrain surface. If a terrain surface is encoded in
the form of a progressive mesh [ll], for example, most
of the progressive records being transmitted may be
irrelevant to what the viewer is seeing. Not only the
bandwidth may be wasted, but also that the viewer
may have to accept a lower visual quality for a longer
period of time during the transmission of the surface
model.

l Since only the visible part of the model may need to
be transmitted, the new method can save the client’s
memory space if the viewer only visits small sections
of a large model. The invisible sections may never
need to be transmitted.

l The Internet is unreliable in transmitting informa-
tion, and packages may be lost during the transmis-
sion. When using the progressive mesh method, if
a progressive record is lost during the transmission,
subsequent records received cannot be used until the
lost record is retransmitted. This causes a round-
trip delay, i.e., the client notifies the server of the lost

92

Model Vertex trees Size Progressive Transmission vertex trees
Time Reconstruction Time

Base Nodes Child Nodes Base Nodes Child Nodes

Terrain 7.6KB 2,459KB 0.02s 8.1s 1,74s
Bunny 16.3KB 1,377KB 0.01s 5.36s 0.97s
Teeth 36.4KB 1,113KB 0.03s 4.80s 0.92s

Crater Lake 19.2KB 163.7KB 0.00s 0.61s 0.10s

Table 2: Run-time performance of our method.

record and then the server retransmits the lost record.
In our method, since edge collapses are independent
of each others, the lost of a node during transmission
will not affect subsequent nodes received.

7 Conclusions and Future Work

In this paper, we have presented a framework that allows
progressive and selective transmission of adaptive multi-
resolution models according to the view and animation pa-
rameters such as the user’s view region and line of sight.
The mechanism for transmitting the models has been dis-
cussed. The ability of performing adaptive multi-resolution
modeling with partially transmitted models will be useful
in the visualization of large and detailed geometric models
or in the walkthrough of a distributed virtual environment
over a low speed network. We have also presented the pre-
processing and run-time performances of the new method.

Based on our adaptive method, we are currently work-
ing on a real-time multi-resolution modeling technique for
textured and animated objects. We are also integrating the
new method into our virtual walkthrough system [l, 21 for
transmitting large models. Compression has not been con-
sidered in the current implementation, and it would be an
advantage to incorporate a geometric compression method
to reduce both storage and transmission time.

Acknowledgements

This work is supported in part by the CityU Direct Allo-
cation Grant, number 7100003-540.

References

[l] J. Chim, M. Green, R.W.H. Lau, H.V. Leong, A. Si, and A. Si.
On Caching and Prefetching of Virtual Objects in Distributed
Virtual Environments. In ACM Multimedia, September 1998.

[2] J. Chim, R.W.H. Lau, A. Si, H.V. Leong, D. To, M. Green, and
M.L. Lam. Multi-Resolution Model Transmission in Distributed
Virtual Environments. In ACM Symposium on Virtual Reality
Software and Technology, November 1998.

[3] P. Cignoni, C. Montani, and R. Scopigno. A Comparison
of Mesh Simplification Algorithms. Computers B Graphics,
22(1):37-54, 1998.

[4] P. Cignoni, E. Puppo, and R. Scopigno. Representation and
Visualization of Terrain Surfaces at Variable Resolution. The
Visual computer, 13:199-217, 1997.

[5] L. D. Floriani, P. Magillo, and E. Puppo. Efficient Implemen-
tation of Multi-Triangulation. In Proceedings of IEEE Visual-
ization ‘98, October 1998.

[6] M. Dewing. Geometry Compression. In ACM Computer
Graphics (SIGGRAPHj95), pages 13-20, August 1995.

[7] J. Falby, M. Zyda, D. Pratt, and R. Mackey. NPSNET: Hierar-
chical Data Structures for Real-Time Three-Dimensional Visual
Simulation. Computers d Graphics, 17(1):65-69, 1993.

[8] A. Gueziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial
Maps for Progressive Tansmission of Polygonal Surfaces. In
Proceedings of Symposium on VRML g8, pages 25-31, 1998.

[9] S. Gumhold and Strafler. Real time Compression of Trian-
gle Mesh Connectivity. In ACM Computer Graphics (SIG-
GRAPH’98), pages 133-140, July 1998.

[lo] P. Heckbert and M. Garland. Survey of Polygonal Surface Sim-
plification Algorithms. In ACM SIGGRAPH’97 Course Notes,
August 1997. Available at http://www.cs.cmu.edu/Nph.

[ll] H. Hoppe. Progressive Meshes. In ACM Computer Graphics
(SIGGRAPH’96), pages 99-108, August 1996.

[12] H. Hoppe. View-Depndent Refinement of Progressive Meshes.
In ACM ComputeT Graphics (SIGGRAPH’97), pages 189-
198, August 1997.

[13] H Hoppe. Smooth View-Dependent Level-of-Detail Control and
its Application to Terrain Rendering. In Proceedings of IEEE
Visualization ‘98, pages 35-42, October 1998.

[14] R.W.H. Lau, M. Green, D. To, and J. Wong. Real-Time
Continuous Multi-Resolution Method for Models of Arbitrary
Topology. Presence: Teleoperators and Virtual Environments,
pages 22-35, February 1998.

[15] P. Lindstrom, D. Keller, W. Ribarsky, L. Hodges, N. Faust,
and G. A. Turner. Real-Time Continuous Level of Detail Ren-
dering of Height Fields. In ACM Computer Gmphics (SIG-
GRAPH’96), pages 109-118, August 1996.

[16] K. L. Low and T. S. Tan. Model Simplification using Vertex
Clustering. In Proceedings of ACM Symposium on Interactive
3D Graphics, pages 75-81, April 1997.

[17] D. Luebke and C. Erikson. View-Dependent Simplification of
Arbitrary Polygonal Environments. In ACM Computer Graph-
ics (SIGGRAPH ‘97), pages 199-208, August 1997.

[18] R. Pajarola. Large Scale Terrain Visualization using the Re-
stricted Quadtree Triangulation. In Proceedings of IEEE Vi-
sualization ‘98, October 1998.

[19] J. PopoviC and H. Hoppe. Progressive Simplicial Complexes. In
ACM Computer Graphics (SIGGRAPH’97), pages 209-216,
August 1997.

[20] E. Puppo and R. Scopigno. Simplification, LOD and Multires-
olution Principles and Applications. In Eurographics ‘97 Tu-
torial Notes, page 104. Eurographics, 1997.

[Zl] J. Rossignac and P. Barrel. Multi-Resolution 3D Approxima-
tions for Rendering. In Modeling in Computer Graphics, pages
455-465. Springer-Verlag, 1993.

[22] D. Schmalstieg and M. Gervautz. Demand-Driven Geometry
Transmission for Distributed Virtual Environments. In PTO-
ceedings of Eurographics ‘96, pages 421-432, 1996.

[23] G. Singh, L. Serra, W. Png, and H. Ng. BrickNet: A Software
Toolkit for Network-Based VirtuaI Worlds. Presence: Teleop-
eratow and Virtual Environments, 3(1):19-34, 1994.

[24] G. Taubin, A. Gueiec, W. Horn, and Lazarus. Progressive For-
est Split Compression. In ACM Computer Graphics (SIG-
GRAPH’98), pages 123-132, July 1998.

[25] J.C. Xia, J. El-Sana, and A. Varshney. Adaptive Real-Time
Level-of-detail-based Rendering for Polygonal Models. IEEE
Transaction on Visualization and Computer Graphics, 3:171-
183. 1997.

93

(a) 114,974 triangles (b) 607 triangles

(c) 8,321 triangles (d) 18,900 triangles

Figure 4: Adaptive refinement of a terrain model: (a) the original model, (b), (c) and
(d) adaptively refined at different resolutions.

(a) 6$31 hngles (7.64 %) (b) 16.177 triangles (18.42%) (c) 48,943 triangles (44~88%}

Figure 5: Progressive and selective transmission of the terrain model shown in Figure 4.

94

(b) 5,137 triangles

(a) 58,328 triangles

(Cl 8,750 triangles Cd) 14,689 triangles

Figure 6: Adaptive refinement of a teeth model: (a) the original model, (b), (c) and (d)
adaptively refined at different resolutions.

(a) 9,620 triangles (b) 4,353 triangles (c) 2,768 triangles

Figure 7: Adaptive refinement of a crater model with and without view clipping: (a) the
original model, (b) without view clipping, and (c) with view clipping.

95

