
A Market Model for Level of Detail Control
J.Howell, Y. Chrysanthou, A. Steed, M.Slater

University College London
Gower Street

London, WC1 E 6BT
+44 171 387 7050

(J.Howell / Y.Chrysanthou / A.Steed / M.Slater)@cs.ucl.ac.uk

ABSTRACT
In virtual reality simulations the speed of rendering is vitally
important. One of the techniques for controlling the frame rate is
the assignment of different levels of detail for each object within
a scene. The most well-known level of detail assignment
algorithms are the Funkhouser[l] algorithm and the algorithm
where the level of detail is assigned with respect to the distance
of the object from the viewer.
We propose an algorithm based on an analogy to a market system
where each object does not have an assigned level of detail but
has the ownership of a certain amount of time which it can use to
be rendered with. The optimization of the levels of detail then
becomes a simplistic trading process where objects with large
amounts of time that they dont need will trade with objects who
have need of extra time.
The new algorithm has been implemented to run on the DIVE[2]
virtual environment system. This system was then used to
perform experiments with the aim of comparing the performance
of the algorithm against the other two methods mentioned above.

Keywords
Level of detail, rendering, framerate, DIVE.

1. INTRODUCTION
In virtual reality simulations the speed of rendering is vitally
important especially in applications where realtime interaction
with the simulation is required [3]. One of the techniques that is
used for controlling the frame rate is that of having several
different geometrical representations for each object and then
assigning a level of detail to each object in such a way as to keep
the frame rate high whilst maximizing the visual quality of the
images that are rendered. The most well-known level of detail
assignment algorithms are the Funkhouser[l] algorithm and the
algorithm where the level of detail is assigned with respect to the
distance of the object from the viewer which we will call the

krmission to make digital or hard copies of all or part ofthis work for
Personal or classroom use is granted without foe provided that copies
are not made or distributed liw profit or commercial advantage and that
topics bear this notice and the full citation 011 the first page. ‘1‘0 copy
ot~wwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VRST 99 London UK
%-Wgh~ACM 1999 l-581 13-141-0/99/12...$5.00

distance method. The DIVE[2] virtual environment system
originally only had this distance method implemented to control
the scene complexity when rendering a scene. In order to
improve on this a version of the Funkhouser algorithm was
implemented in DlVE whereupon it became apparent, using
small scenes that could be solved recursively, that there was
room for improvement with the assignment of the level of detail
for each object. This lead to the concept of using a market model.

In the next section we briefly review some background work on
level-of-detail control, concentrating mainly on the Funkhouser
method. In Section 3 we present the principles of the new
method followed by some implementation specifics in Section 4.
The experiment to evaluate the new method and the results are
described in Sections 5 and 6 respectively.

2. PREVIOUS WORK
The representation of objects using different several levels of
detail (Zod) was first proposed by Clark [4] in 1976. Since then a
huge amount of research has gone into techniques for creating
lods and using them to reduce the complexity of the rendered
geometry [5, 61. However, most of the common lod methods are
static. They use certain unchanging thresholds, such as the
distance of object from the viewpoint or the projected area on the
screen, applied to each object individually, for deciding what lod
to use. They merely reduce the geometry rather than regulate it
since they make the complexity of rendering dependent on the
complexity of the visible part of the scene at each frame.

It wasn’t until much more recently that dynamic methods
(predictive [l] or adaptive [9]) appeared. Here the thresholds for
selecting the lods change at each frame depending on the amount
of visible geometry so that the frame rate remains within the
desired limits and ideally is constant.

Hierarchical methods were proposed by Maciel [7] and Mason
[8]. A hybrid approach using static techniques of distance and
load balancing is used by Iris Performer [9].

2.1 FUNKHOUSER’S ALGORITHM
The market model is a dynamic method so for comparison we
will use the most well known method from this category,
Funkhouser’s algorithm. In order to do that it is necessary to
briefly state how that particular algorithm works.

For each frame the initial level of detail for each object is the
level of detail that the object had for the previous frame (or the
lowest level of detail if the object was not rendered in the last
frame). Then in order to try to reach an optimal solution the

96

http://crossmark.crossref.org/dialog/?doi=10.1145%2F323663.323679&domain=pdf&date_stamp=1999-12-20

object that has the largest Bang-for-Buck’ [l,ll] will have its
level of detail increased. The total time taken for the frame will
now have increased. In order to get the time below the required
frame rate limit the object with the lowest Bang-for-Buck for its
next level of detail downwards will have its detail reduced by
one.

This increase/decrease stepping is performed until the object that
has its level of detail increased is the same object who then has
its level of detail reduced again. The algorithm then terminates
for that frame. It is in essence an iterative “greedy” algorithm.
For more on optimization algorithms including “greedy’
algorithms see [lo].

One of the biggest problems with the algorithm comes with
choosing sufficiently accurate cost and benefit functions for the
Bang-for-Buck measure. As shown later by the experiment (the
results of which are shown in Table 2) both the version of the
Funkhouser algorithm and market model algorithms overrun the
time limit for rendering a single frame. If the cost function was
accurate then there would be no overrunning which shows the
cost function is not as accurate as it needs to be. The problem of
making the cost function more accurate is difficult to solve when
trying to profile a system as complex as a virtual environment
system.

The other major problem with choosing a suitable benefit
function is that Funkhouser does not in [1] or [ll] describe the
benefit function in enough detail to make it readily implemented
so that duplicating Funkhouser’s actual algorithm is not possible
with further information. The thesis [ll] defines the benefit
function as Benefit(O,L,R) = Size(O) * Accuracy(O,L,R) *
Importance(O) * Focus(O) * Motion(O) * Hysteresis(O,L,R),
where 0 is the object being rendered, L is the level of detail and
R is the rendering algorithm being used. The only term
mentioned in any detail in either [l] or [ll] is the accuracy term.
It is also unclear as to whether the choices that Funkhouser made
were the best choices as the terms are not backed up with
evidence of their appropriateness for the task at hand. Since each
different choice of benefit function alters the optimization
problem to be solved it should not matter greatly how complex
the benefit function chosen to test the algorithms is as long as the
limitation that the results only apply to that choice of function is
accepted.

3. THE MARKET MODEL CONCEPT
3.1 The Market model
The inspiration for the new level of detail control algorithm was
that of the concept of a trading market. The central idea was to
take the conventional way of having a central algorithm that
performs an optimisation algorithm to decide how much time to
give to each object and turn it around. Now, just like in a trading
market, each player (object) is given an initial allotment of
resources (time) to trade with. For each frame the assignment of
the levels of detail becomes a session of trading where each

’ The Bang-for-Buck for an object is the predicted perceptual
benefit of that object divided by the predicted cost of rendering
that object.

object will try to “buy” or “sell” the time it has depending on the
“need” it has for the time it currently owns.

At the beginning of each frame all the objects will calculate their
“need” which will be positive if they want more time (which
might occur when, for example, they have suddenly become
closer to the viewer) or negative if they have spare time which
they would like to “sell” to other objects (for example if they
have dropped out of view).

In pseudocode the algorithm is as follows:

Correct LOD’s with respect to their new positions (with
respect to their alloted times)

For all objects

Calculate market need for object

While not finished

Pick a trading pair

If no pair found then finished

If pair has object trading with itself then finished

Allow the pair to make a trade

Update LOD’s with respect to new times

Endwhile

Figure 1: Market model pseudocode

Simply put the objects which are not in view have surplus time
which they sell to objects that are in view. Those with the
greatest need (which to compare with Funkhouser’s “greedy’
approach is the benefit divided by cost) are first to try to buy the
time offered by the non-visible objects. It is possible for objects
with a large need to buy from objects with a smaller need if ail
the objects who are not in view have already sold all their time.

So far the algorithm does not take into account the possibility of
going bankrupt and trading is allowed to continue until all the
trading that can happen has been performed. In practice trading
mostly finishes with two objects trading the same segment of
time back and forth and this is taken as an end to trading. The
other end condition is when an object looking for a trade cannot
find anyone else to trade with. If trading is taking a long time for
any reason it would be possible to suspend trading using a time
limit added to the “while” condition of trading.

The algorithm also still only runs with only one trade allowed at
any one time. This makes trading is a serial operation and not a
parallel one. If more than one processor was available then
parallel trades could be allowed as long as some locking
mechanism was added to prevent the same time being traded
independently to two different objects at the same moment
(which would forbid the objects to perform “confidence tricks”).

It is also the case that the algorithm let’s the trading occur only
in the order where the object with the most need gets to trade
first. It would certainly be possible to let the trading happen in a
“random” order or choosing trading partners via a probability
distribution (which could take into account things such as an
analogy to customer loyalty) but it is not clear as to whether this
would make the model any more successful at finding the
optimal solution and, in the case of using probability

97

distributions, might lead to an algorithm that would be too slow
for a real-time simulation. It would be an extension to the current
work to ascertain what the effect of a probability distribution
might be and whether the source scene can be used to create a
distribution that would improve the results from the algorithm.

3.2 Funkbower and Market compared
It is important at this point to explicitly state the differences
between the market model algorithm compared with the
Funkhouser method. Both methods can use the same benefit and
cost functions so they can be made equivalent in that respect.

It is perhaps easiest to compare the two algorithms by showing
that the Funkhouser algorithm can be reformulated as a type of
market model in its own right. The algorithm has the current
level of detail being the resource which the objects own and
trade. When they trade they have transactions that can be
grouped together as an increase in lod for one object (“buying”)
and the decreases needed to bring the time back under the
constraint (“selling”). The difference here is that one buying can
have multiple sellings associated with it. The market model,
however, uses time as the resource that the objects own and the
trading occurs in buy/sell pairs between objects.

In order to illustrate the difference this makes imagine a gridded
benefit surface for two objects (the grid density is reliant on the
number of levels of detail for the object associated with that
particular axis) and a scenario part way through a run of rendered
frames. Both algorithms have a solution from the previous frame.
The Funkhouser solution can be visualized as a grid point on the
surface whereas the market model has a point that does not need
to lie on the grid that only becomes approximated to a grid point
when levels of detail need to be assigned at rendering time.

As the viewpoint moves for the next frame the benefit surface
changes shape and the algorithms now try to reach an optimal
solution for this new frame. The Funkhouser method will start
from the old grid position and optimize from that point. The
market model will first adjust the lod’s for the objects given the
time that they have with respect to the new cost (which will have
changed because of the alteration in the viewpoint). The market
model will then optimize from that point.

The other major difference is that the Funkhouser algorithm
viewed as a market formulation only allows trades that are full
levels of detail whereas them market model trades in time (and
so can effectively trade in partial levels of detail). This can be
visualized as the Funkhouser method having to jump from
gridpoint to gridpoint whereas the market model can move over
the surface without being restricted to the grid at all.

To summarize the market model allows the start point of
optimization to be time dependent not lod dependent and the
optimization path up the surface need not be constrained to only
the gridpoints on the surface.

The analogy of the market model also leads to the possibility that
probability distributions based on market forces might be
applicable in providing biases for choosing the optimal path “up”
the benefit surface. These distributions could be added to the
Funkhouser algorithm as well as the market model.

4. INTEGRATION INTO DIVE
In order to test and compare the algorithms, the “greedy”
algorithm portion of the Funkhouser[l] algorithm and the market
model algorithm were implemented as part of the renderer of the
DIVE virtual environment system. Within DIVE the level of
detail is currently chosen using the distance of the object from
the viewer to determine what level to assign.

It was found when implementing the Funkhouser algorithm that
there were some decisions that needed to be made above and
beyond the definition of the algorithm in Funkhouser’s thesis
[ll]. In particular there seemed to be no indication of whether
objects could be dropped from the scene in order to increase the
level of detail for those remaining objects. In order to prevent
objects from “popping” on and off it was decided to implement
the algorithm in such a way as objects could not be dropped from
a scene in such a way.

Another problem that was encountered was that of trying to
choose the cost and benefit functions that the Funkhouser and
market algorithms rely upon. The cost function was implemented
as being a direct proportion to the number of polygons for the
representation of the object. This was done by running the
renderer to see how long, on average, each different
representation for the sphere took to render. The difficulty in
choosing the cost function is exemplified by the erratic timings
for the object when stationary. The problem becomes one of how
much processing should be spent trying to accurately predict the
rendering time. It was decided that the rough approximation used
would suffice for comparison purposes between the algorithms.

The benefit function was chosen as being comprised of a term
that was an approximation of the screen area taken by the object
along with a scaling term which would be proportional to the
current level of detail. The screen size was approximated by
calculation the area that the bounding box for that object would
project onto. The short-falling of this is that all the levels of
detail would share the same bounding box meaning that there
would be no benefit in increasing to a higher level of detail. A
simple function was therefore used to scale the benefit with
respect to the current level of detail after calculating the screen
area that the bounding box would project onto. The function took
the level of detail (lod) and scaled it with respect to the number
of levels of detail available to that object (i.e. scaled lod is the
current lod divided by the number of levels of detail that the
object has defined for it) and then it would use that new scaled
lod in the function below:

factor = 1+ (1
-scaled -lodj2

10
It could be argued that because the benefit and cost functions are
not the same as those used by Funkhouser that the comparison
using the chosen benefit and cost functions are not “fair”. Firstly
it is important to note that Funkhouser’s thesis [ll] does not
describe in detail many of the terms he puts into the benefit
function that he uses and without that knowledge there is no way
to duplicate his algorithm exactly. It is also true that with each
different choice of cost and benefit function the surface upon
which we are trying to pick an optimal point will change shape.
This leads to the obvious conclusion that any comparison made

98

between level of detail algorithms is only valid in comparing the
algorithms with respect to the choice of benefit and cost
functions along with the scene (number of objects and numbers
of levels of detail for each and their positions) and the path taken
through that scene. Any change in the functions or the scene and
the path taken through it could lead to a different algorithm being
the best.

5. THE EXPERIMENT
In order to test the market method for level of detail assignment
against the Funkhouser and distance algorithms an experiment
was run. The renderer was set to run each of the algorithms by
moving the viewpoint for the renderer along a predetermined
path between 10 points-These points were chosen to make sure
that the path would view all sides of the scene and have sections
where no objects would be visible and some sections where all
the objects would be visible.

The scene used was composed of 32 spheres in a matrix
formation of 4x4x2 (X by Z by Y). Each of the spheres was 2m
in size and the translation between each sphere in any axis
direction was Sm. The spheres themselves were comprised of 5
different levels of detail each of which would have a different
colour to allow easy identification of the current level of detail
for an object. The table below shows the numbers of polygons for
each representation and also the c&our that the representation
was given along with the distance beyond which that particular
level of detail would be used (for the distance method only).

Level of Detail Number of Distance Colour

Polygons (4
256 16.4

216 29.3

191 55.1

85 106.8

12 209.5

Red

Orange

Yellow

Green

Blue

Table 1: Sphere details

The five levels of detail for the sphere object and the distances at
which they should be used were created using a program called
Lodestar [12].

The time to render each frame and the time to perform the level
of detail assignment algorithm was recorded. To show that all the
level of detail control algorithms were an improvement over no
level of detail control another run was made where all the objects
were assigned their highest level of detail.

The test would be to see whether the algorithms could keep a
steady frame rate and what the visual quality of the scenes would
be. Even though the scene was simplistic and only used objects
of one type it was hoped that the path through the spheres would
still give a wide variety in the number of objects viewed. This
included times where no objects could be seen and times when
lots of objects would appear at once (see Figure 2). Obviously
further work would be needed to compare the algorithms for
different size scenes with different types of objects to produce a
result more representative for an “average” scene.

Frame Number

Figure 2: The number of objects throughout the rendering sequence

99

Algorithm No. overrun Total overrun Average Max. overrun Total algorithm Benefit
frames time (sets) overrun (sets) time (sets) time (sets) total

Highest 775 31.98 0.0413 0.095 0.00 16776

Distance 679 17.35 0.0256 0.081 0.65 16770

Funkhouser 41 0.25 0.0061 0.042 1.00 14016

Market model 116 0.73 0.0063 0.040 2.30 16753

Table 2: Experimental results

6. RESULTS seconds whilst both of the other algorithms reduce the time

The four different level of detail control choices were run for the
predefined route. The rendering for that route produced a
sequence of 3246 frames with each frame being given 0.1
seconds to render in. This meant that the experiment was almost
five and a half minutes of rendering.

The number of objects on the screen during this time is shown in
Figure 2. Out of the 3246 frames 1197 frames had no objects to
be rendered.

overrun to under 1 second.

The tabie clearly shows that the Funkhouser algorithm and the
market model algorithm are both far superior level of detail
allocation algorithms compared to using the distance method. It
is of course possible that the choices for the distances that the
Lodestar program chose for the different levels of detail were not
optimal but it is beyond the scope of this paper to judge and
profile Lodestar.

As can be seen from the shape of Figure 2 the numbers of objects
tends to rise sharply then drop off more slowly but this is
probably because of the peculiar shape of the scene. The average
number of objects in view over the 3246 frames is 8.5 which is
about 25% of the objects in the scene.

In order to compare the respective algorithms’ performances the
time taken to render each frame, as well as how much time the
algorithm took to select the levels of detail was recorded along
with the total “benefit” for that frame. Table 2 shows the results
from the runs with each algorithm

As can be seen from the table the amount of time that the
renderer would overrun, if the highest level of detail was used
for all the objects all the time, would be almost 32 seconds.
Using the distance algorithm would reduce this to just over 17

In comparing the Funkhouser algorithm with the market model it
is hard to make a judgement as to which is more successful at
assigning levels of detail. The total benefit from the market
model is much higher than that of the Funkhouser results but it is
at the expense of a greater overrun in time. It is clear that the
market model is more sensitive to the inaccuracies of the cost
function as neither algorithm should overrun on any of the frames
if the cost function had been an accurate predictor of rendering
time.

Figure 3 shows the rendering times of each of the four algorithms
over the whole period of the experiment. The Funkhouser and
market model both perform much better than either of the other
two methods but it is not clear from this run which is superior
when comparing them to each other.

0.2
0.18
0.16

(no.14
go.12
s 0.1

E 0.08
i= 0.06

0.04
0.02

0

1001 2001 3001

Frame number

-Highest

Funkhouser

Figure 3: Rendering times for the whole experiment

100

Figure 4: Highest levels of detail

Figure 5: Distance algorithm

Figure 6: Funkhouser algorithm

Figure 7: Market model algorithm

Another way to compare the two algorithms is to see the variance
that the overrunning times have. If the variance is low then the
overrun time could be taken into account by just reducing the
allotted amount of frame-time given to each frame. The standard
deviation for the two algorithms (taking only those points over
the 0.1 time allotted to each frame) is 0.0103 for the Funkhouser
algorithm and 0.0086 for the market model.

Perhaps the best way to interpret the results is to actually look at
an example of a frame rendered in the experiment. The four
images (Figures 4 to 7) show each of the four different choices of
level of detail assignment at exactly the same frame in the
walkthrough route of the rendering. The first image shows the
frame with all the objects at their highest level of detail. The
next image shows the result of assigning the levels of detail with
respect to the object’s distance from the viewpoint. The third
image shows the result of using the Funkhouser algorithm with
the fourth image showing the results of the market model
algorithm.

As can be seen the market model frame has a much more even
spread of time allocated to the objects although the only big
noticeable difference in quality comes with the spheres at the
back of the frame which in the Funkhouser rendered frame have
blue spheres (which are so simply represented that they fail to
even look spherical at all).

Other visual results include the “popping” of objects from one
level of detail to another. In all of the algorithms there was a
problem with objects that were new to the frame “popping” but
this is due to the placing of the level of detail control algorithm
within the graphics pipeline. The trouble is caused by the
pipeline using the renderer’s last frame to determine the
visibility for the level of detail control algorithms. This means
that objects can appear for one frame (with the level of detail
they were last assigned before they “dropped” from being
rendered) before the level of detail control algorithm knows
about them. The renderer will therefore take one frame before
new objects appear at a level of detail that is actually chosen by
the algorithm for that current frame.

More seriously there are cases in the Funkhouser and market
models where objects that have the same benefit and cost as each

101

other can, for a few frames, “pop” between levels of detail. This
was avoided by Funkhouser in his thesis[ll] by using a term in
the benefit measure that gave extra benefit for objects that stayed
at the same level of detail the same for several frames. This was
not implemented for this experiment but that will not affect the
implications of the results obtained within this paper.

7. CONCLUSIONS AND FUTURE WORK
In this paper a new level of detail control algorithm has been
suggested. The algorithm has been based on the principals of a
trading market and has been implemented to work within the
DIVE virtual environment system. The algorithm works using a
finite number of levels of detail but could be extended to work
with “continuous” levels of detail such as progressive mesh
techniques [13], (141. There could well be difficulties in
calibrating the benefit functions for objects with so many
different possible visible representations. Certainly further work
would be needed to see whether the market method could be
realistically applied to systems that allow a “continuous” level of
detail to be created for objects.

A version of the Funkhouser algorithm has also been
implemented within the DIVE system but the benefit and cost
functions used were not as complex as those used by Funkhouser
himself [ll]. It was also suggested that the Funkhouser algorithm
itself could be viewed as a type of market model.

An experiment was run to show the potential of the new
algorithm which compared favorably with the Funkhouser
algorithm. The experiment that was run used a fairly unrealistic
scene but this was primarily due to the shortage of readily
available virtual reality objects that have multiple levels of
detail. It does, however, suggest that the market model displays
some useful behaviors under practical conditions, such as having
a low variance when overrunning frame time limits. it also
appears to give a good trade-off between time overrun and the
total benefit obtained.

The implementation is currently under revision to perform some
necessary alterations as well as test other conditions. The market
transactions will be made between random pairs of objects with a
probability distribution based on the market needs they have. It is
also necessary to extend to code to handle scenes where there are
more objects in the hierarchy than the renderer can even traverse
in one frame (let alone render). A version of code to limit the
number of objects that are sent to the IendereT has been
implemented on a rendering simulator but not in the DIVE
renderer as yet.

8. ACKNOWLEDGMENTS
Thanks must go to the Digital VCE whose funding has made this
work possible.

REFERENCES
[l] Thomas A. Funkhouser and Carlo H. Sequin. Adaptive

Display Algorithm for Interactive Frame Rates During
Visualization of Complex Virtual Environments. In ACM
Computer Graphics Proceedings Annual Conference Series,
volume 27, August 1993, pages 247-254.

PI

131

[41

c51

[61

[71

PI

PI

Emmanuel F&on and M&en Stenius. DIVE: A Scaleable
Network Architecture for Distributed Virtual Environments.
Distributed Systems Engineering Journal, Vol. 5, No. 3,
1998, pages 91-100.

G. J. F. Smets and K. J. Overbeeke. Trade-off Between
Resolution and Interactivity in Spatial Task Performance.
IEEE Computer Graphics and Applications, September
1995, pages 46-51.

J. Clark. Hierarchical Geometric Models for Visible Surface
Algorithms. Communications of theACM, 19 (IO): 547-554,
1976.

E. Puppoand R. Scopigno. Simplification, LOD and
Multiresolution: Principles and Applications. Eurographics
‘97, Tutorial T4, Budapest, Hungary, September 97.

P. S. Heckbert and M. Garland. Multiresolution Modeling
for Fat Rendering. In Proceedings of Graphics Interface
‘94, pages 43-50, 1994.

P. W. Maciel and P. Shirley. Visual Navigation of Large
Environments Using Textured Clusters. In 1995 Symposium
on Interactive 3D Graphics, pages 95-102, April 1995.

A E. Mason and E. H. Blake. Automatic Hierarchical Level
of Detail Optimization in Computer Animation. Computer
Graphics Forum, Vol. 16, 1997, pages 191-199.

J. Rohlf and J. Helman. Iris Performer: A High Performance
Multiprocessing Toolkit for Real-time 3D Graphics.
SIGGRAPH 94, pages 381-394, July 1994.

[lo] Silvano Martello and Paolo Toth. Knapsack Problems:
Algorithms and Computer Implementations. John Wiley and
Sons Ltd, 1990.

[ll] Tom Funkhouser. Database and Display Algorithms for
Interactive Visualization of Architectural Models.
University of California at Berkeley, EECS Computer
Science Division, September 1993.

[12] Dieter Schmalstieg. LODESTAR: An Octree-Based Level of
Detail Generator for VRML. In the Proceedings of W.
97.

[13] Hugues Hoppe. View-Dependent Refinement of Progressive
Meshes. SIGGRAPH 97, pages 189-198, August 1997.

[14] David Luebke and Carl Erikson. View-Dependent
Simplification of Arbitrary Polygonal Environments.
SIGGRAPH 97, pages 199-208, August 1997.

102

APPENDIX
A more detailed pseudocode version of the market model
algorithm:

For all objects //adjust lod of objects to max within their time

While time for current-lod > alloted time

Reduce lod

While time for current-lod < alloted time

Increase lod

Endfor

For all objects // set the market need of each object

If object is if highest lod

Set market-need to 0

Else

Set market-need to Bang-for-Buck

If object not visible

Set market-need to -1 .O*alloted time

Else if without enough time for lowest lod

Set market-need to a very large number

Endfor

While not finished // do the trading

maxneed, minneed = need for first object in array

For all objects//find objects with max/min need

If need for current object > maxneed

maxneed = current need

If need for current object < minneed and there’s

spare time to render object at current lod

minneed = current need

Endfor

// find how much time is required and on offer

required = time to increase object with maxneed to

its next lod

offer = spare time that the object with minneed has without

dropping an lod

If offer is 0 // no time left to offer so finish

Finished trading

Else if offer > required // object can take all it needs

Trade ‘required’ time

Else /I object can only take what is on offer

Trade ‘offer’ time

// update the market needs and lad’s for the 2 objects

Update market need for the two objects that have traded

Correct lad’s for the two objects using their new times

Endwhile

103

