
A Method for Sharing Interactive Deformations
in Collaborative 3D Modeling

Hiroaki NISHINO” Kouichi UTSUMIYA
Atsunori SAKAMOTO Kazuyuki YOSHIDA

Dept. of Computer Science and intelligent Systems.

Kazuyoshi KORIDA
Dept. of Communication,

Oita Pref. College of Arts and Culture

Oita University, Oita 870-1192, JAPAN

Tel : *+81-97-554-7876

Oita 870-0833, JAPAN

ABSTRACT

E-mail : *hn @csis.oita-u.ac.jp

This paper proposes a new approach to collaboratively designing
original products and crafted objects in a distributed virtual environ-
ment. Special attention is paid to concept formulation and image sub-
stantiation in the early design stage. A data management strategy and
its implementation method are shown to effectively share and visu-
alize a series of shape-forming and modeling operations performed
by experts on a network. A 3D object representation technique is
devised to manage frequently updated geometrical information by
exchanging only a small amount of data among participating sys-
tems. Additionally, we contrive a method for offloading some ex-
pensive functions usually performed on a server such as multi-reso-
lution data management and adaptive data transmission control. Cli-
ent systems are delegated to execute these functions and achieve
“interactivity vs. image quality” tradeoffs based on available resources
and operations in a flexible and parallel fashion.

Keywords : 3D object modeling, collaborative design, distrib-
uted virtual environment, computer graphics.

1. INTRODUCTION
A distributed virtual environment (DVE) is a technology that has the
potential to change traditional design and production methodologies.
The traditional methods divide a production process into subprocesses
in which only skilled persons are involved. The introduction of DVE
technology, however, enables various people such as designers and
developers in different fields, external consultants and even custom-
ers to be involv-l in collaborative design and production activities.
Even if they are geographically separated, DVE provides them with
opportunities to be aware of others’ presence and interact in a virtu-
ally shared space without any temporal or spatial restrictions. There
have been some high-level frameworks and application systems pro-
posed to make DVE a usable and practical technology such as FIVE
[171,NPSNET [lo], DIVE 161, MASSIVE-2 [5] and Shastra [11. There

Permission to make digital or hard copies ofall or part ofthis work fol
personal or classroom use is granted without fee provided that copies
arc not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. ‘1‘0 copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
VRST 99 London UK
Copyright ACM 1999 I-1X3113-141-0/99/12...$5.00

are, however, few trials in which to apply DVE technology, espe-
cially for the early conceptual design of new products such as the
creation of original object shapes and patterns.

This paper proposes a new approach to constructing a multi-user
collaborative environment, especially for conceptualizing and design-
ing new products and crafted objects. Attention is paid to Japanese
ceramics, a typical handicraft, as a target application for multi-user
collaboration. In traditional art and craft fields, professional crafis-
men tend to follow their conventional ways for hundreds of years
and to protect their design styles from others. It should, however, be
quite useful to share not only digitally-archived art works, but also
cultivated skills and experiences. Therefore, a framework for shar-
ing such undocumentable knowledge is developed. It provides a set
of services to visualize a series of experts’ modeling operations, in-
cluding which primitive shapes to use, how to combine and blend
them, and how to deform them to make a new object rather than just
sharing a finai form. Because many shapes and patterns are created
or modified in the course of the modeling process, these intermedi-
ate shapes need to be shared efficiently.

On the other hand, off-the-shelf 3D data exchange protocols like
VRML are inappropriate for sharing 3D geometric objects whose
shapes are rapidly deformed. They are ideal for sharing static objects
such as trees and buildings in a virtual space as well as objects like
3D avatars whose positions and orientations are updated while their
shapes do not drastically change. Therefore, we extended our intui-
tive 3D modeling environment [12][13] so as to be usable on a net-
work, enabling multiple participants to work on the same objects and
share all intermediate information during real-time collaboration. As
shown in figure 1, the system allows the designers to specify shapes
and deformation patterns by using their bimanual gestures captured
with a pair of instrumented gloves (Virtual Technologies’
CyberGlove). The designers can concentrate on the design tasks by
using intuitive hand gestures directly translatable into modeling op-
erations. The designated shapes and deformed objects are projected
onto a 200-inch large arch screen stereoscopically to give them a
sense of presence. To tolerate the variance of human gesticulation,
neural networks are utilized to learn and recognize the required ges-
tures for the modeling operations [14][151.

In the real world, professional craftsmen design and produce their art
work in a serial routine. They can, however, acquire new modeling
strategies through the sharing of other participants’ feedback and dis-
parate design skills. Moreover, all participants in a group can share

116

Figure 1 : Gesture-based 3D object modeling system.

the design know-how of the craftsmen through the visualization of
their modeling operations, which are ordinarily performed in isola-
tion. They can also participate in design activities through wireless
communication links even if they have no wired links to the Internet.
Real-world assets like historic relics and exhibited objects in muse-
ums can be digitally archived by a portable 3D digitizer. Thus, these
things can be shared and utilized in a collaborative design space. The
outcomes of the design work can be sent to the rapid prototyping
system via the network to manufacture real models. A long-term goal
of our research is to organize a synthetic virtual environment, a so-
called seamless real-virtual production factov (SRVPF), which sup-
ports whole design and manufacturing activities on the network.

2. CHARACTERISTICS OF THE PROPOSED
METHOD
An essential problem with dynamic 3D object sharing in the DVE is
to realize adequate “image quality vs. interactive response” tradeoffs
without sacrificing scalability. As shown in figure 2, a typical ap-
proach adopted in many existing systems tends to depend on server’s
data management capabilities and network bandwidth to achieve the
goal. A majority of the 3D geometric data format shared and trans-
mitted on the network is polygon mesh. Because it tends to be large
in size, it is critical to reduce it for data transmission. There are some
proposals to change the resolution and size of the shared data ac-
cording to the network bandwidth and client’s performance [9][111.
Multiple data in different resolutions are generated beforehand, and
coarser data are transmitted for the narrow-band links and the slow
clients. This approach, therefore, causes a serious loss of quality for
the client who has a low-speed link or CPU. A participant’s sense of
presence is significantly affected by the low-quality image. The adap-
tive resolution control also increases a server’s responsibility to moni-
tor and administer the network load and the client performance on
the fly. While the LOD (level-of-detail) [7] and the progressive meshes
[8] are available for multi-resolution data management, they are too
costly to compute multiple resolutions for rapidly changing 3D ob-
jects.

Figure 3 shows our proposed data sharing method. The idea is to
offload a server’s burden by using clients more beneficially. Because
personal computers and graphics hardware have dramatically im-
proved cost performance ratio, they have the capability to compute
expensive 3D geometric and rendering algorithms for interactive ap-
plications. Therefore, we employed implicit surface representation
to share and visualize 3D objects. Because our proposed method can

Figure 2: Server-dependent data sharing method.
awatepaiy&amoddbsmdcm

nt CMetlt
Figure 3: Proposed data sharing method.

express various shapes by using a few dozen functional parameters,
only these parameters need to be shared among the clients on the
network. If a modeling operation is performed on a client, only modi-
fied parameter values need to be transmitted, not the whole set of
parameters. It is the client’s responsibility to convert the set of pa-
rameter values to a ready-to-visualize data format such as the poly-
gon mesh. Each client generates a 3D model in an appropriate reso-
lution according to its CPU and graphics power. It effectively uti-
lizes clients’ computing power in parallel, making the system scal-
able.

3. DYNAMIC 3D OBJECT MODELER

3.1 Basic Modeling Functions
A modeler implemented in the system represents 3D primitive shapes
by introducing the superquadric function [2] whose distinctive fea-
ture is its small number of parameters for expressing various shapes
as shown in figure 4(a). The function is extended to make natural
deforming operations possible, such as those illustrated in figure 4(a).
Further complex shapes are computed and rendered as implicit sur-
faces by blending multiple primitive shapes. As depicted in figure
4(b), the blending yields smooth and interesting shapes that are diffl-

117

dli-lp;dd csdd aiioid - - ‘-

(c) coiilng operrtlm WI& sttps~old
Figure 4: Basic functions of 3D modeling system.

(e) cavity obfect exmpla

Table 1: Primitive parameter values of the bottle in figure 3.

trpe rx ry rz ‘a e1 9 %X=X %PY dSH a, ‘BE x, YO zo yaw pitchrow rfu

pl 0 03 0.3 1.0 0. 0.1 lb 0. 0. 0. 0. 0. 0. 0. 2t 0. 0. 0. 1.0
J-3 0 lb 1.0 1.35 0. 1.0 18 -0.35 -035 0. 0. 0. 0. 0. 0.75 0. 0. 0. 1.0
P' 0 125 1.25 1.4 0. 0.15 0.65 0.15 0.15 0. 0. 0. 0. 0. -2.12 0. 0. 0. 1.0

type: primitive type (0: ellipsoid, 1: torus) xs, y,, ~0: local ccntcr coordinate
dr,: local deformation strength (TPX, TPY: tapering; SH:shtaring; TW: twisting; BE: bending) ____
yaw, pitch, raw: rotation parameters rfu: reserved for future use

ap1.0 rl.5 lw?Lo
Figure 5: Blending operation with different field strength n.

cult to make by using polygon meshes. The deforming operations
are applicable to the blended objects as well.

Our previous modeler was only able to represent solid objects be-
cause it adopted the superellipsoid [2] as a sole primitive function.
The supertoroid primitive [2] is added to enable the modeler to ex-
press hollow and cavity shapes, and the coiling interface is imple-
mented to easily create these shapes as shown in figure 4(c). Whereas
figure 4(d) shows some solid shape examples, figure 4(e) illustrates
a vase and a plate made of supertoroid primitives. Because 3D object
creation is a difficult task, we also implement a function to generate
new shapes from existing ones by applying a 3D morphing tech-
nique. Figure 4(f) shows a series of 3D shapes generated in the
morphing between the two different objects.

Because of these enhancements, the modeler has the superior ability
to easily express natural and smooth shapes such as crafted objects.
In addition, it can express various kinds of art works and human bod-
ies. Consequently, it allows the designers to easily describe their im-
ages and conceptions by replacing them with primitive shbpes and
deforming operations, presenting them as virtual 3D mock-ups rather
than 2D sketches. The modeler cannot, however, be used for the pre-
cise recovery of complex objects and sophisticated product design.
Supporting these tasks requires the integration of other data repre-
sentation methods like parametric surfaces.

Table 2 : Blending parameter values of the bottle.

pF%Fsq

Dw: global deformation strength
(TPX, TFY :tapcxing;
SHrshcaring; TW: twisting;
BD:bcnding)

FS: field strength for global blend

3.2 Mathematical Expressions
The mathematical expressions of the deformable-superellipsoid PC
and -supertoroid P, are as follows:

P.(x, y, 2) = [{(? f “+ ($ $”)‘,I’,+ (q. >“” I”, (1)

P,(x,~J=[[{(~f’ez+(y2 j+-+]z’=~

+ (yeJ] e’.

Y

(2)

where r,, ry, and r, are the scale parameters to control the size of the
primitives; r0 is the torus radius; e,, e2 are the squareness parameters
to control the shape. The shearing among the deforming operations
as shown in figure 4(a) can be realized by the following function to
transform a vertex (x, y, z) in equation 1 and 2 into a new vertex (x’,
Y’, 23.

x’=-+x(22 0) or x’=x(z<O), y’=y, z’=z r (3) i

where k,, is the parameter to amplify the shearing operation. The
equations of other deformations can be found in [12]. Each primitive
has nineteen parameters in total such as those described in table 1. It
defines a bottle shape made of three primitives as shown in figure 3.
Then, a complex object blended by m primitives is defined as fol-
lows:

118

0 : blend nodes 0: delormaff on nodes 6) : prlmitlve nodes

Figure 6: Tree-structured representation of 3D object.

I

BP,,..., PJ=l.O-(P;+P;+ +P,gT (4)

where n is used to control the smoothness of the blending operation.
Figure 5 indicates the effect of this parameter. The blending opera-
tion is defined by six parameters as described in table 2. The morphing
between two blended objects B, and B, is defined as follows:

B mno,pl=t-B, + (I--t)*B,, Ogtdl. (5)

4. EXTENSION INTO SHARED ENVIRON-
MENT

4.1 Shared Object Data Structure
To make the 3D modeler operable in a distributed collaborative envi-
ronment, a mechanism for efficiently sharing, maintaining and up-
dating a set of parameter expressions among the participating sys-
tems is required. Additionally, functions to display some parts or pre-
vious shapes of an object are necessary to allow the participants to
focus their attention on a specific portion of the object and review
the modeling process. As shown in figure 6, a tree-stmctured object
representation method is developed and implemented to satisfy these
requirements. The figure illustrates a modeling process of the vase
as shown in figure 4(e). The leaves of the tree correspond to the primi-
tive shapes used to form the vase. Each leaf holds a set of primitive
parameters as shown in table 1. The local deformations applied on
each primitive such as tapering, bending and rotation are recorded in
a unary node. It holds the up-to-date parameter values corresponding
to these operations. A blend of rz primitives is defined as an n-ary
node. It keeps a set of blending parameters as mentioned in table 2.

Figure 7 shows the internal data structure of the tree. It begins with a
link to all primitives and grows toward the root of the tree. The whole
modeling process can be visualized by traversing this data structure
and converting a functional expression into a polygon mesh. Each
primitive may be made invisible or be returned to its previous shape
by turning the conversion off for that node. To realize a high-speed
conversion engine, the implicit polygonization algorithm proposed

shred obJcd heada

I

O: blend noda 01: d&Won nodem P, : prk&ivc nodes

Figure 7: Internal data structure of the tree in figure 6.

by Bloomenthal[3] was chosen among several methods because of
its performance. It can produce a polygonal surface to approximate
the implicitly defined object faster than the other methods. We made
some extensions for adaptive visualization which are described later.

4.2 3D Object Sharing Method
To constitute a collaborative modeling environment on the network,
a system shown in figure 8 is designed and implemented. All clients
have their own replicas of the 3D modeler and tree structure to do the
conversion in parallel. Additionally, the system can easily support a
heterogeneous distributed environment, and it can customize the fbnc-
tions based on the available resources for each client.

Because all clients have copies, how to resolve simultaneous updates
on shared 3D data is a critical issue. A system like Shastra allows
multiple participants to simultaneously modify different parts of an
object [11. It, however, demands a complex mutual exclusion mecha-
nism which easily degrades the performance in heavily loaded envi-
ronments. In addition, simultaneous modification seems to be useful
at the detail design stage because overall specifications and struc-
tural relationships between the parts of the object are clearly defined.
It might be easy to divide a design task into subtasks done in parallel.
It would not, however, be suitable for the early design stage because
the entire structure is not fixed nor ready for subdivision. A more
relaxed sharing strategy to allow a single performer at a time seems
natural. Therefore, shared object modification is controlled by an
update right (UR) managed by the server. The participants compete
for the UR before doing their desired deformations. A series of de-
forming operations performed by the UR holder is called “modeling
unit.” The UR is effective until the holder releases it.

Figure 8 shows a data sharing procedure implemented on the basis of
the above design policy.

(1) First, all participants login to get connections to the shared envi-
ronment as labeled II in figure 8 (8-u for short). The latest object
data are returned with an ACK response from the server to the
requesting client (8-b).

119

.a-. .- .._. .-

Figure 8 : 3D data sharing mechanism and procedure.

(2) Next, participants wanting to execute modeling tasks compete
for the UR of a target object through the server (8-c). If only one
client is requesting the UR, then the server immediately returns
an ACK with the latest object data and login information (8-d).
Otherwise, one client is selected based on predefined priorities
or time stamp. If there are several objects in the area, each object
can be updated simultaneously.

(3) Then, the winning client has the sole right to perform any mod-
eling operations. All of his/her operations are directly broadcast
to all clients. The data packet only includes the updated param-
eters to keep the network traffic low. Each client initiates the
polygonization to visualize the modified shape in an appropriate
resolution (8-e).

(4) Finally, the UR holder notifies the server of the release with the
updated data (8-a.

As concerns the data transmission between the server and clients, it
depends on the contexts whether reliability is more important than
speed. For example, the data exchanged in the above procedures (l),
(2) and (4) are handled by the TCP protocol because they need reli-
ability. On the other hand, the update information broadcast in pro-
cedure (3) is treated differently according to the characteristics and
the requirements of the collaboration environment as follows:

* use multicast for many unspecified participants joining from re-
mote locations,

* select UDP for the collaboration on a LAN, or
l choose TCP for reliable data transfer.

The latest data are transferred from an old to a new UR holder through
the server by TCP to avoid any data’loss. Accordingly, the server
always holds up-to-date information on the latest modeling unit, back-
ing it up for failure recovery and new participants’ arrival. Scalability
is another critical issue to realize a successful DVE system on the
Internet. Hence, hierarchical client-server architecture is employed

cl I“’

Figure 9 : Client system structure.

to support a large-scale virtual environment as shown in figure 8.
Each participant selects a session where the design of his/her target
object is in progress. While the session is similar to the “cell” in
NPSNET [lo] and the “group” in MASSIVE-2 [5] which have a cor-
responding physical structure like a multicast group, it additionally
offers a way to define a party aiming at a specific design task. The
server grants the IJR to its directly administered participants to make
the UR management a simple yet efficient procedure. The partici-
pants residing in other sessions are only allowed to look at the latest
data. They can move the session by logging out from the current one
and reconnecting to the new one. The world server is responsible for
the whole system configuration.

4.3 Update Notification and Visualization
The modeling operations performed by a UR holder need to be shared
as precisely as possible to faithfully reproduce and efficiently ex-
ploit participants’ skills to create 3D shapes. To satisfy this require-
ment, update information is sent whenever a modeler’s atomic op-
eration, such as a single deforming action or a primitive addition or
deletion, is executed. While a primitive addition is notified by broad-
casting nineteen parameters, a primitive deformation can be an-
nounced by at most three parameters (i.e. three for size, location or
orientation change, and one for deformation).

Figure 9 shows the client system structure. The rendering manager
reiterates a drawing function to output the latest data. It checks whether
any update information has arrived in every rendering cycle and re-
news the tree with the received parameters if necessary. Then, it ini-
tiates the implicit polygonizer to compute and visualize the updated
geometry. Figure 10 illustrates the polygonization method. It enfolds
the object with uniform-sized cells intersecting with the object’s sur-
face, computing the functions on every cell vertices. Then, it checks
cell edge polarity to detect the transverse edges. The transverse edge
is an edge that has comers of differing polarity, like the edge vivk in
the figure. Because output resolution and computation time can be

120

intersection

OB(Vi) > 0 l B(Vi) < 0
Figure 10: Cell polygonization mechanism.

adjusted by changing cell size, the following enhancements are in-
corporated into the modeler to support adaptive polygonization ac-
cording to each client’s performance and modeling operations:

* One function is to adjust the cell size to complete the polygonization
within the specified time. It guarantees fixed response time to get
the result during interactive deformations.

* Another is to compute the result at the predefined number of poly-
gons. This function is useful for shape evaluation by generating
high-quality images .

The modeler always is watching the polygonization time and the
number of generated polygons to make the above adjustments. When
these measures exceed the thresholds, the modeler changes the cell
size until they return to the allowable limit. Because a polygonization
is only activated when the tree is updated, client’s local operations,
such as viewpoint movements, are quickly handled. The parameters
are delivered to the modeler via a shared memory region to prevent
the rendering from being disturbed by the data transmission.

5. PROTOTYPE SYSTEM AND INITIAL EX-
PERIMENTS
A prototype system is implemented in the hardware environment as
shown in figure 11. All software components are written in C, C++
and OpenGL. A single server environment is constructed to evaluate
the proposed method. Common services such as gesture and voice
input handling, GUI interface for desktop systems, stereoscopic pro-
jection, and asynchronous data transmission are implemented as a
library to be shared among VR applications [161.

When the actual collaborative session is organized, deciding the set
of optimal response time and evaluation quality as explained in 4.3
are the most critical tasks. Two model shapes, a vase and a bottle, are
used to discuss how these values are determined. The graphs in tig-
ure 12 show the relationships between polygonization time and the
number of generated polygons measured on three different machines
(Onyx2,02 and Indy). Both graphs indicate the linearity. Because
more than 90% of the polygonization time is spent on computing the
functions, the time varies in proportion to the number of cell verti-
ces. Hence, it is easy to find the time needed to generate a specific
number of polygons and vise versa. In the case of the vase, the
polygonization time for interactive deformations is determined as
fol1ows:

(1) Take a few sample data on each machine to plot the graph as
shown in figure 12(a).

-(2) Decide the lowest number of polygons to preserve output image

Figure 11 : Prototype system organization.

quality usable for the modeling operations. Here, 2,500 satisfies
this criterion.

(3) Obtain the polygonization time to generate this number on the
slowest machine (Indy). This is found from the graph to be 1.8
set, and 2.0 set is chosen as the final value by adding some
variations.

According to tigure 12(a), Onyx2,02 and Indy can generate 8000,
3400 and 2800 polygons within the 2.0 set processing time, respec-
tively. Because the delay on the update broadcast can be ignored in
our high-speed LAN environment, the output always appears on all
machines 2.0 set after any deformation. This fixed response time
can be preserved in a geographically separated environment by us-
ing communication channels with fixed delays such as the satellite
link. It is achieved by subtracting the delay time from receiver’s
polygonization time beforehand. The evaluation quality also is de-
termined by considering the time vs. quality tradeoff. For example,
highest quality (i.e. 30,000 polygons) may be selected for all ma-
chines without consulting performance. Or, coarser quality (e.g.
15,000 polygons) may be chosen for medium to low-end machines.
The time and quality for the bottle are decided in the same fashion as
shown in figure 12(b). Since the polygonization time is proportional
to the amount of functional computation, it varies with the number of
primitive shapes and complexity of the function to represent the
shapes. Therefore, automating the above procedure to identify the
appropriate values for various objects is one possible future enhance-
ment.

The real models as shown in figure 13(b) are made of the corre-
sponding virtual objects in 13(a) for the purpose of assisting objec-
tive value judgement of the created shapes. A 3D solid laser plotter,
the SLP-3000 manufactured by Denken Corporation, was used to
produce these models. Although they took ten to twenty hours, it is
beneficial to have these tangible entities for collaborative modeling.

A problem with our proposed method is the substantial deterioration
of image quality caused by minimizing the polygonization time. This
is because fixed cell size is used to speed up processing, and subtle
shapes tend to be lost by enlarging the cell size. There are, however,
some solutions to sustain quality such as changing the cell size ac-
cording to the surface curvature of the polygonized object [181. The
application of such methods needs to be considered by paying atten-
tion to performance degradation. Additionally, the influence of a few
seconds delay and the serialized deformations enforced on the col-

121

Nwmbwd~rr 0 so00 loo00 lsooo aootm 15000
Nabdlubpr

(a) vase data (b) bottle data
Figure 12: Polygonization time vs. rendering quality.

(a) source data (3D models designed by modeler)
Figure 13: Real models made by solid laser plotter.

(b) real models

laborative modeling needs to be examined from a cognitive science
viewpoint.

6. COMPARISONS WITH TRADITIONAL
METHOD
This section compares the proposed method with traditional server-
dependent data sharing to verify the effectiveness of our method. As
illustrated in figure 14, the traditional approach notifies the server of
an update event. Then, the server updates the shared data via the
object manager and broadcasts the updated data to all clients. Fur-
thermore, the server generates some low-resolution data to deliver to
the narrow-band communication links and the low-speed systems.
While the server carries out all heavy operations like geometric com-
putation and rendering, the clients receive the ready-to-visualize poly-
gon data. This approach assumes that centralized processing by the
server is an advantageous strategy over the distributed execution by
the dients. This, however, becomes an abnormal situation due to rapid
performance improvement in personal computers. The proposed
method allows the clients to manage shared data and generate output
with optimal resolutions in parallel without burdening the network
and the server as depicted in figure 15. Centralized processing re-
quired in the traditional method is replaced by clients’ parallel com-
putation.

To estimate the overhead of server’s centralized processing, an ex-
periment to measure the sustained performance of multi-resolution
data generation was conducted by using the vase data. Figure 16 shows
the results measured on Onyx2. A high-performance tool for 3D ge-
ometry compression, the so-called q&m [4], was used to make the
three resolution levels determined for the interactive deformations in
the previous section (8000,3400, and 2800 polygons). The horizon-

tal axis indicates the source data resolutions used for the experiment
and the vertical axis shows the time to compress them. While the
results vary with the source and the output resolutions, compression
of a single resolution takes more than a second. Because this over-
head linearly increases in proportion to the number of compressed
data files needed to be produced by the server, it becomes a bottle-
neck. The proposed method, however, allows each client to produce
an optimal resolution according to its available resources. Thus it
can flexibly cope with the variance.

Table 3 lists the packet size transmitted on the network for the vase
and the bottle. It compares the total quantities of parameters to repre-
sent these shapes in the proposed method with the ones of corre-
sponding VRML tiles commonly used for sharing 3D data in the
traditional method. The latter ones are made from the results acquired
by the 2 set (vase) and 1 set (bottle) interactive deformations on
three machines as described in the previous section (e.g. a vase shape
with 8000 polygons on Onyx2). The geometrical and topological re-
sults are converted into the VRML polygonal expression. The pro-
posed method compresses exchanged data into that smaller than 1
percent of the VRML files. While the transmission of the parameters
causes no perceivable delays, the VRML file transfer causes 350 msec
to one set delays in the experiment. In addition to server’s overhead
mentioned above, these delays seriously degrade system performance.
Because the update notification is usually achieved by transmitting
nineteen parameters (at most) of a target primitive in our proposed
method, the effect on the data compression is much bigger than the
ratio denoted in table 3.

7. CONCLUDING REMARKS
A new approach to constructing a collaborative design environment

122

1 client 1 1 client / 1 client]

Figure 14: Server-dependent management strategy.

Figure 16: Multi-resolution data generation time.

has been described, and a method for efficiently sharing the process
of making concrete 3D shapes from designer’s vague images on the
network was developed. Rapidly changing 3D shapes are efficiently
shared and smoothly visualized by exchanging only a small amount
of data among the clients. Additionally, a data sharing strategy based
on the tree-structured 3D object representation significantly offloads
a server’s burden and allows the clients to produce the appropriate
output resolutions in proportion to their machine performance. The
effectiveness of these ideas was verified through our initial experi-
ments performed on the prototype system.

Conducting further experiments on a wide area network, including
wireless links, is imperative. We are currently preparing a satellite
link to incorporate into the system. The deveIopment of tinctions to
digitally archive and share real-world assets in collaborative design
work is another important challenge.

8. REFERENCES
{I] Anupam,V. and Bajaj,C.L. : Shastra: Multimedia collaborative

design environment, IEEE Multimedia, 1(2):39-49, 1994.
[2] Barr,A.H. : Superquadrics and angle-preserving transformations,

IEEE Computer Graphics and Applications, I(1): 1 l-23, 198 1.
[3] Bloomenthal,J. : An implicit surface Polygonizer, Graphics

Gems IV, AP Professional, pp.324-349, 1994.
[4] Garland, M. et al. : Surface Simplification Using Quadric Error

Metrics, Proc. ACM SIGGRAPHP7, pp.209-216, 1997.
[5] Greenhalgh,C. and Benford,S.: Supporting rich and dynamic

communication in large-scale collaborative virtual environment,
Presence, 8(1): 14-35, 1999.

[71

PI

PI

PO1

[ill

WI

r131

[I41

1151

1161

P71

t14

1 client 1 / dient 1 1 client 1

@update @update @update
Figure 15: Client-weighted mrnagemeot strategy.

Table 3: Data size comparison.
hll valuea in bvtel

4l2238 425f83
171$21 179,899
140361 141,796

Hagsand,O. : Interactive multiuser VEs in the DIVE system,
IEEE Multimedia, 3(1):30-39, 1996.
Heckbert, P. and Garland, M.: Survey of Polygonal Surface Sim-
plification Algorithms, ACM SIGGRAPH’97 Course Notes,
http://www.cs.cmu.edu/-ph/mcourse97.html.
Hoppe, H.: Progressive Meshes, Proc. ACM SIGGRAPH’96,
pp.99-108, 1996.
Kado,D. et al. : Communication mechanism for shared virtual
space with consideration for realtimeness and reliability, Tech.
Report of IEICE, MVE98-89, 1999.
Macedonia,M+R. et al.: NPSNET: A network software archi-
tecture for large scale virtual environments, Presence, 3(4):265-
287, 1994.
Nakamura,N. et al. : An intemet 3-D multi-user system: Ladakh,
Trans. of the IEICE, J81-D-11(5):982-991, 1998.
Nishino,H., Utsumiya,K., and Korida,K. : 3D object modeling
using spatial and pictographic gestures, Proc. of the ACM VRST
1998, pp.51-58, 1998.
Nishino,H., Korida,K., and Utsumiya,K. : Deformable 3D shape
representation using bimanual gestures, Trans. of IPSJ,
40(2):698-701, 1999.
Nishino,H., Utsumiya,K., Kuraoka,D., Yoshioka,K., and
Korida,K. : Interactive two-handed gesture interface in 3D vir-
tual environments, Proc. of the ACM VRST 1997, pp. l-8,1997.
Nishino,H., Korida,K., and Utsumiya,K. : An interactive two-
handed gesture interface with on-line learning facility, Trans.
of the IEICE, J8 l-D-11(5):897-905, 1998.
Nishino,H., Mori,Y., Utsumiya,K., Yohida,K., and Korida,K. :
A collaborative design framework in a distributed virtual envi-
ronment, Proc. of PDPTA’99, Vol.1, pp.348-354, 1999.
Slater,M. and Wilbur,%: A framework for immersive virtual
environments (FIVE): Speculations on the role of presence in
virtual environments, Presence, 6(6):603-616, 1997.
Velho, L.: Simple and Efficient Polygonization of Implicit Sur-
faces, Journal of Graphics Tools, 1(1):5-24, 1996.

123

