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Abstracting abstract machines is a systematic methodology for constructing sound static analyses for higher-
order languages, by deriving small-step abstract abstract machines (AAMs) that perform abstract interpretation
from abstract machines that perform concrete evaluation. Darais et al. apply the same underlying idea to
monadic definitional interpreters, and obtain monadic abstract definitional interpreters (ADIs) that perform
abstract interpretation in big-step style using monads. Yet, the relation between small-step abstract abstract
machines and big-step abstract definitional interpreters is not well studied.

In this paper, we explain their functional correspondence and demonstrate how to systematically transform
small-step abstract abstract machines into big-step abstract definitional interpreters. Building on known
semantic interderivation techniques from the concrete evaluation setting, the transformations include lin-
earization, lightweight fusion, disentanglement, refunctionalization, and the left inverse of the CPS transform.
Linearization expresses nondeterministic choice through first-order data types, after which refunctional-
ization transforms the first-order data types that represent continuations into higher-order functions. The
refunctionalized AAM is an abstract interpreter written in continuation-passing style (CPS) with two layers
of continuations, which can be converted back to direct style with delimited control operators. Based on
the known correspondence between delimited control and monads, we demonstrate that the explicit use of
monads in abstract definitional interpreters is optional.

All transformations properly handle the collecting semantics and nondeterminism of abstract interpreta-
tion. Remarkably, we reveal how precise call/return matching in control-flow analysis can be obtained by
refunctionalizing a small-step abstract abstract machine with proper caching.
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1 INTRODUCTION
Implementing, and in some cases defining, a programming language by building an interpreter for
it can be traced to the very early days of programming languages research [Landin 1966; McCarthy
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1960; Reynolds 1972]. Nowadays, even undergraduate students in computer science learn how to
implement their own programming languages by building an interpreter. However, implementing
a sound static analysis by building an abstract interpreter [Cousot and Cousot 1977] remained an
esoteric and difficult task until very recently.

Van Horn and Might [2010, 2012] proposed the abstracting abstract machines (AAM) methodology
which provides a recipe for constructing sound abstract interpreters for higher-order functional
languages from concrete abstract machines. Given a concrete small-step abstract machine that
models a store (e.g., the CESK machine, Krivine’s machine, etc.), if we allocate continuations in the
store and draw all allocated addresses (both for regular values and for continuations) from a finite
set, then we obtain an abstract interpreter with a finite state space, which can be used for performing
sound static analysis and is guaranteed to terminate. By using different address allocators [Gilray
et al. 2016a], one can further instantiate different polyvariant control-flow analyses.

Applying the same idea to monadic definitional interpreters, Darais et al. [2017] showed how to
build monadic abstract definitional interpreters (ADIs) in big-step style. One of the advantages of a
monadic interpreter is that it is modular and composable. By changing the underlying monads, the
definition of the interpreter is not modified, but we can recover different semantics, including the
concrete semantics and various abstract semantics such as context-sensitivity and abstract garbage
collection [Sergey et al. 2013].

Broadly speaking, abstract abstract machines and abstract definitional interpreters are different
forms of abstract interpreters. They are obtained by applying a combination of abstractions to their
concrete counterparts: abstract machines and definitional interpreters, respectively. An interesting
question, and the subject of this paper, is how one can derive one abstract semantic artifact given
the other. The main contribution of this paper is to explain the functional correspondence between
these abstract semantic artifacts, and to demonstrate the concrete syntactic transformation steps
necessary to transform an abstract abstract machine into its corresponding abstract definitional
interpreter. The reverse direction is comparatively easier, and can be obtained by following the
respective inverse steps in the opposite order. This contribution fills an intellectual gap in our
understanding of abstract semantic artifacts, and it also opens up further practical avenues for
constructing static analysis tools based on principled and well-understood techniques.

In the concrete world, the relationships between reduction semantics, abstract machines, defi-
nitional interpreters, and monadic interpreters have been intensively studied by Danvy and his
collaborators [Ager et al. 2003, 2004, 2005; Biernacka and Danvy 2009; Danvy 2006b, 2008, 2009;
Danvy and Nielsen 2001, 2004]. These concrete abstract machines implement structural operational
semantics in continuation-passing style, where the reduction contexts are defunctionalized con-
tinuations. One can derive definitional interpreters by refunctionalizing the reduction contexts of
abstract machines, and by defunctionalizing the higher-order functions, one may obtain abstract
machines in the reverse direction.

In the domain of abstract semantic artifacts, by contrast, the relationship between small-step
abstract abstract machines and big-step abstract definitional interpreters, as well as the question
of deriving one from the other, are not well studied. One of the fundamental differences between
concrete and abstract semantic artifacts is that a sound instance of the latter must consider facts
about all possible execution paths, and thus introduce a layer of nondeterminism. In addition to
ensuring termination, abstract semantic artifacts are usually equipped with a cache of reachable
states; the cache is iteratively updated in a monotonic way, guaranteed to reach the least fixed-point
eventually.

In addition, those abstract abstract machines with an unbounded stack naturally correspond
to abstract definitional interpreters. We show that refunctionalizing an AAM with an unbounded
stack (and utilizing the proper caching algorithm) leads to a pushdown control-flow analysis.
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Fig. 1. Functional correspondence between and transformations from AAMs to ADIs

Contributions and Outline. We begin by reviewing necessary background in Section 2, as well as
by introducing some of the basic code structures used throughout the paper. We then address the
main contribution of this paper: bridging the gap between small-step AAMs and big-step ADIs
by applying a series of well-known systematic transformations drawn from concrete semantic
artifacts. Those transformations are shown in Figure 1 and summarized here, with full descriptions
in their respective associated sections:

e Linearization: By expressing the nondeterministic choices as a first-order data type, we
linearize the execution of abstract abstract machines; the transition of machine states thus
becomes deterministic. Notably, this makes explicit another layer of control (Section 3).

o Lightweight fusion [Danvy and Millikin 2008a; Ohori and Sasano 2007]: We apply a fusion
transformation to the linearized AAM, which combines the single-step function step and the
driving function into one, but keeps all the machine state representations intact (Section 4).

¢ Disentanglement: We identify different first-order data types which represent different
layers of continuations, and disassemble their handlers into separate functions (Section 5).

e Refunctionalization [Danvy 2006b; Danvy and Millikin 2009]: We apply refunctionalization

to the disentangled AAM, which replaces the first-order data types representing continuations
with higher-order functions, and associates dispatching logic with proper higher-order
functions. We obtain an abstract interpreter written in continuation-passing style with an
additional layer of continuations due to nondeterminism.
For clarity, we first present a vanilla version of a refunctionalized AAM which simply converts
the stack structures to higher-order functions but keeps other parts unchanged. We then
adopt a caching algorithm [Darais et al. 2017] to guarantee the termination of abstract
interpretation. At the end of this section, we review the pushdown control-flow analysis
and examine how computable and precise call/return matching is obtained through these
transformations (Section 6).

¢ Direct-style transformation [Danvy 1994]: We finally transform the refunctionalized AAM
back to a direct-style interpreter by using delimited control operators (Section 7).

These transformations are used throughout the paper, with the refunctionalization and defunc-
tionalization of abstract interpreters playing important roles for the stack model of the analyzed
language. By refunctionalization, the call structure of the analyzed language is blended into the
call structure of the defining language. This provides another perspective to explain why Darais
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et al.’s abstract definitional interpreter is able to inherit the pushdown control-flow property from
its defining language.
We discuss related work in Section 8, followed by concluding thoughts in Section 9.

2 BACKGROUND
2.1 A-Normal Form A-Calculus

Traditionally, continuation-passing style (CPS) is a popular intermediate representation for analyz-
ing functional programs because it exposes control transfer explicitly and simplifies analysis [Shivers
1988, 1991]. Here, we choose a direct-style A-calculus as our target where all “serious” expressions
(i-e., function calls) are let-bound. This style is variously known as administrative normal form
(ANF) [Flanagan et al. 1993], or monadic normal form [Danvy 2003; Moggi 1991]. The transforma-
tions we will show in the rest of this paper also work on abstract machines for plain direct-style
A-calculus languages. Although we only show the core calculus language, it can be easily extended
to support recursive bindings (such as letrec), conditionals, primitive types, and operations on
primitive types. These cases would be straightforward to implement without introducing new
transformations related to the concerns of this paper, so we elide them here.
To begin, we present the concrete syntax of a call-by-value A-calculus language in ANF.

x € Variables

ae € AExp ::= x | lam
lam € Lam ::= (lambda (x) e)
e € Exp ::=ae | (let ([x (ae ae)]) e)

In ANF, an expression is either an atomic expression or a let expression. A restriction exists
which states that all function applications (and only those) must be administered within a let
expression and then bound to a variable name under the current environment. Both the operator
and operand of function applications are atomic expressions. An atomic expression ae is either a
variable or a literal lambda term, either of which can be evaluated in a single step. We also assume
that all the variable names in the program are unique.

The abstract syntax is represented in Scala as follows. We assume that the source program
conforms to the ANF convention, and as such, do not enforce it in the term structure of Scala
constructs.

sealed trait Expr

case class Var(x: String) extends Expr

case class App(el: Expr, e2: Expr) extends Expr

case class Lam(x: String, body: Expr) extends Expr

case class Let(x: String, e: App, body: Expr) extends Expr

2.2 CESK Machine

2.2.1 Machine Components. The CESK machine is an abstract machine for describing the
semantics of and evaluating a A-calculus [Felleisen and Friedman 1987]. The CESK machine models
program execution as state transitions in a small-step fashion. As its name suggests, a machine state
has four components: 1) Control is the expression currently being evaluated. 2) Environment is a map
that contains the addresses of all variables in the lexical scope. 3) Store models the heap of a program
as a map from addresses to values. The address space consists of numbers (0-indexed). In our toy
language, the only category of value is a closure, i.e., a function paired with an environment. 4)
Continuation represents the program’s execution context. In this paper, we instantiate the execution
context as a call stack consisting of a list of frames.

The Scala representations for the components of the CESK machine are as follows:
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type Addr = Int; type Env = Map[String, Addr]; type Store = Map[Addr, Storable]
abstract class Storable; case class Clos(v: Lam, env: Env) extends Storable
case class Frame(x: String, e: Expr, env: Env); type Kont = List[Frame]

case class State(e: Expr, env: Env, store: Store, k: Kont)

It is worth noting that the continuation class Kont corresponds to a reduction context in a
reduction-based formulation of the semantics. An empty list represents an empty context, and
corresponds to halt. Otherwise, the head frame in the list represents the innermost context, and
the reduction result of this frame will be used to fill the “hole” of its following frame in the list. We
represent frames using the Frame class, which stores the information of a single call-site, i.e., the
information that can be used to resume the interrupted computation. A Frame constitutes a variable
name x to be bound later, and a control component to which the program may resume, as well as
its environment.

2.2.2  Single-Step Transition. Before describing how the machine evaluates expressions, we must
first define several helper functions. As mentioned in Section 2.1, atomic expressions are either
a variable or a literal lambda term. As such, the atomic expression evaluator atomicEval handles
these two cases and evaluates atomic expressions to closures in a straightforward way. The alloc
function generates a fresh address, and always allocates a unique integer in the domain of store.
The isAtomic function is used as a predicate to determine if the expression is atomic.

def atomicEval(e: Expr, env: Env, store: Store): Storable = e match {
case Var(x) = store(env(x))
case lam @ Lam(x, body) = Clos(lam, env)

}
def alloc(store: Store): Addr = store.keys.size + 1
def isAtomic(e: Expr): Boolean = e.isInstanceOf[Var] || e.isInstanceOf[Lam]

We can now faithfully describe the state transition function step, which when given a machine
state, determines its successor state. The function step is a partial function that only handles
non-final states, which must have a successor; the final case of a state is handled by function drive,
which will be explained in Section 2.2.3.

def step(s: State): State = s match {

case State(Let(x, App(f, ae), e), env, store, k) if isAtomic(ae) =
val Clos(Lam(v, body), env_c) = atomicEval(f, env, store)
val addr = alloc(store)
val new_env = env_c + (v — addr)
val new_store = store + (addr +— atomicEval(ae, env, store))
val frame = Frame(x, e, env)
State(body, new_env, new_store, frame::k)

case State(ae, env, store, k) if isAtomic(ae) =
val Frame(x, e, env_k)::ks = k
val addr = alloc(store)
val new_env = env_k + (x +— addr)
val new_store = store + (addr +— atomicEval(ae, env, store))
State(e, new_env, new_store, ks)

}

As shown and previously discussed, we examine the only two non-final cases which the state
may be:

e In the first case statement shown in the previous code, the control of the current state matches
as a Let expression, with its right-hand side a function application. By calling the atomicEval
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evaluator, we obtain the closure for which the callee f stands. The successor state’s control
then transfers to the body expression of the closure with an updated environment and store.
The new environment is extended from the closure’s environment and mapped from v to a
fresh address addr. The new store is extended with addr mapping to the value of ae, which
in turn is evaluated from atomicEval. Finally, a new frame frame is pushed onto the stack k,
where the frame contains the variable name x at the left-hand position of the Let, the body
expression of Let, and the lexical environment of the body expression.

If the control component is not a Let expression, then it must be an atomic expression, as

seen in the above code. In this scenario, we begin by extracting the top frame of all available
continuations. The variable x from the top frame will be bound to the result of evaluating the
atomic expression ae by updating the environment and store. Finally, the successor state is
expression e from the top frame, which is the body of a Let expression, with the updated
environment, store, and the rest of the stack ks.

2.2.3  Valuation. To run the program, we first use the inject function (below) to construct an
initial machine state given a closed expression e. The initial state contains an empty environment,
store, and stack.

def inject(e: Expr): State = State(e, Map(), Map(), Nil)

The drive function is then used to evaluate to a final state by iteratively applying step on
the current state until a state is reached which the control is an atomic expression and the stack
structure is empty. Naturally, we can then extract the value from the final state.

def drive(s: State): State = s match {
case State(ae, _, _, Nil) if isAtomic(ae) = s
case _ = drive(step(s))

}

def eval(e: Expr): State = drive(inject(e))

2.3 Abstracting Abstract Machines

Abstracting abstract machines (AAM) is a systematic methodology that derives sound abstract
interpreters for higher-order functional languages from concrete abstract machines [Van Horn and
Might 2010, 2012]. An abstract abstract machine implements a computable abstract semantics which
approximates the run-time behaviors of programs. Since the state space of concrete execution is
possibly infinite, the key insight of the AAM approach when analyzing programs is to allocate
both variable bindings and continuations on the store, and then bound the addresses space to be
finite. Since each component of the machine state is finite, the abstracted machine-state space is
also finite, and therefore computable.

In this section, we derive the respective abstract abstract machine from the concrete CESK
machine, and also show how to instantiate useful k-call-sensitive control-flow analysis.

2.3.1 Machine Components. Similar to the concrete CESK machine, the machine state of the
derived AAM has a control component, an environment, a store, a continuation, as well as a
timestamp. However, there are several notable differences between an AAM’s store and the CESK
machine’s store. In AAM, the store maps addresses to sets of values; it stores all possible values for
a particular address. As such, dereferencing addresses becomes nondeterministic. Also, the store
performs joining, rather than overwriting, when updating elements. Furthermore, the continuations
are likewise allocated on the store instead of formed into a linked list, and the continuation
component becomes an address that maps to a set of continuations in the store instead of directly
embedded in the state.
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For clarity, we divide the store into two separate stores: the binding store BStore, and the
continuation store KStore. The binding store maps binding addresses to sets of closure values,
whereas the continuation store maps continuation addresses to sets of continuations. We then
define a generic class Store[K, V] that performs joining when updating elements in a store (below).
By parameterizing Store[K,V] with [BAddr, Storable] and [KAddr, Cont], we obtain BStore and
KStore, respectively. We note that both the value store and the continuation store are updated
monotonically; they grow continuously and never shrink.

case class Store[K,V] (map: Map[K, Set[V]]) {
def apply(addr: K): Set[V] = map(addr)
def update(addr: K, d: Set[V]): Store[K,V] = {
val oldd = map.getOrElse(addr, Set())
Store[K, V](map ++ Map(addr — (d ++ oldd)))
}
def update(addr: K, sd: V): Store[K,V] = update(addr, Set(sd))
}
type BStore = Store[BAddr, Storable]; type KStore = Store[KAddr, Cont]

The co-domain of the binding store Storable is the same as previously defined for the CESK
machine. The co-domain of the continuation store Cont, on the other hand, is comprised of a Frame
object and a continuation address KAddr. To mimic the run-time call stack, KAddr plays the role of
representing the remaining stack frames. But since the continuation store may contain multiple
continuations, dereferencing of continuation addresses is also nondeterministic.

case class Frame(x: String, e: Expr, env: Env); case class Cont(frame: Frame, kaddr: KAddr)

As a consequence, the components of machine states are also changed: the store is divided into a
binding store and a continuation store; the continuation becomes an address that maps to a set of
continuations in KStore. By dereferencing this address in a continuation store, we can retrieve the
actual control-transfer destination. The definition of environment Env remains the same.

case class State(e: Expr, env: Env, bstore: BStore, kstore: KStore, k: KAddr, time: Time)

2.3.2  Allocating Addresses. Up to this point, we have described neither allocating of addresses
in stores, nor handling of time stamps Time. In abstract interpretation, however, these are key
ingredients to realize analyses with different sensitivities, as well as to perform a finite state space
analysis [Gilray et al. 2016a]. To effectively approximate the run-time behavior, we introduce
program contours time which are finite history of function calls till up to the current state [Shivers
1991]. The function tick is used to refresh the “time” and get a "new time”. We use a finite list of
expressions (which are drawn from the control component) to encode the calling context history,
and as we will see in Section 2.3.4, by applying different tick functions on the timestamp, we are
able to obtain a family of analyses.

type Time = List[Expr]

As previously mentioned, the space of states is finite when the space of addresses is finite. To
make this happen, addresses of variable bindings are parameterized by variable names and the
creation time of the binding, both of which are finite. Continuation addresses KAddr have two
variants: 1) Halt which corresponds to the empty stack, and 2) ContAddr which consists of the call
target expressions, also a finite set.

case class BAddr(x: String, time: Time)

abstract class KAddr

case object Halt extends KAddr

case class ContAddr(tgt: Expr) extends KAddr
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We introduce two helper functions, allocBind and allocKont, which will be used to allocate
binding addresses and continuation addresses.

def allocKont(tgtExpr: Expr): KAddr = ContAddr(tgtExpr)
def allocBind(x: String, time: Time): BAddr = BAddr(x, time)

Given that the space of addresses is finite, we can conclude that there are only finite numbers
of environments and stores because the numbers of variables and closures are also finite. This
property guarantees a finite space of reachable states, and we can always realize a terminating
analysis through Kleene’s fixed-point iteration.

2.3.3 Single-Step Transition. Since dereferencing an address becomes nondeterministic, our
atomicEval function (below) is also nondeterministic. Given an atomic expression e, atomicEval
returns a set of storable values (i.e., closures) to the caller. If the expression is simply a lambda term,
the returned set is a singleton.

def atomicEval(e: Expr, env: Env, bstore: BStore): Set[Storable] = e match {
case Var(x) = bstore(env(x))
case lam@Lam(x, body) = Set(Clos(lam, env))

}

The structure of function step is similar to the concrete CESK machine, except the nondetermin-
ism which makes step return a set of reachable successor states. We have two cases to consider
(code shown below):

o If the current control component is a Let, then the result of App(f, ae) will be bound to
variable x. In this case, we retrieve the set of closures that f may represent. For each closure
in the set, we perform nearly the same operations as in the concrete CESK machine, with an
important difference: the continuation is allocated on the store kstore, so a new continuation
address new_kaddr must be constructed and a new frame Frame(x, e, env) paired with the
current continuation address kaddr is merged into new_kaddr. Finally, a set of successor states
is generated.

e In the second case, an atomic expression ae sits on the control position of the state. Here, the
values of ae is being returned to its caller. In order to accomplish this, we dereference the
continuation address kaddr and obtain a set of continuations conts. For each continuation in
the set, we construct an environment based on the environment env_f of the frame, and bind
x to a newly created binding address baddr. We must also update the store with baddr and
the values that ae represents. In every generated state, the control becomes the expression e
in the frame, and as we can tell from the name, the continuation address f_kaddr also comes
from the frame.

def step(s: State): Set[State] = {
val new_time = s.tick
s match {
case State(Let(x, App(f, ae), e), env, bstore, kstore, kaddr, time) =
val closures = atomicEval(f, env, bstore)
for (Clos(Lam(v, body), env_c) <- closures) yield {
val baddr = allocBind(v, new_time)
val new_env = env_c + (v — baddr)
val new_bstore = bstore.update(baddr, atomicEval(ae, env, bstore))
val new_kaddr = allocKont(body)
val new_kstore = kstore.update(new_kaddr, Cont(Frame(x, e, env), kaddr))
State(body, new_env, new_bstore, new_kstore, new_kaddr, new_time)
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case State(ae, env, bstore, kstore, kaddr, time) if isAtomic(ae) =
for (Cont(Frame(x, e, env_f), f_kaddr) <- kstore(kaddr)) yield {
val baddr = allocBind(x, new_time)
val new_env = env_f + (x +— baddr)
val new_store = bstore.update(baddr, atomicEval(ae, env, bstore))
State(e, new_env, new_store, kstore, f_kaddr, new_time)

T}

2.3.4 k-Call-Sensitive Instantiation. In k-call-sensitive analysis, a history of the last k call sites is
used as a finite program contour. The history is represented as a list of expressions and embedded
in the allocated addresses.

Before transferring to successor states, we must use the tick function to refresh the timestamp,
and then use this new timestamp for successors when allocating addresses. The tick function
returns the k front-most expressions given the current state and its time history. We implement
tick as a public method of case class State.

def k: Int =0

case class State(e: Expr, env: Env, bstore: BStore, kstore: KStore, kaddr: KAddr, time: Time) {
def tick: Time = (e :: time).take(k)

}

If we instantiate k to be 0, the history degenerates to an empty list, and we obtain a monovariant
analysis (i.e., it does not differentiate values at different call sites). In this case, the address space
collapses to the space of variable names. Note that regarding the ambiguity in k-CFA[Gilray et al.
2016a], the code here actually implements call+return sensitivity.

2.3.5 Collecting Semantics. Similar to the CESK machine, to run (analyze) a program, we first
use the inject function to construct the initial state given to the program. Note that the initial
continuation store has a built-in mapping that maps the continuation address for Halt to an empty
set of continuations. We also provide an empty program contour as our initial time.

val mtTime = List(); val mtStore = Store[BAddr, Storable] (Map())
val mtEnv = Map[String, BAddr](); val mtKStore = Store[KAddr, Cont](Map(Halt — Set()))
def inject(e: Expr): State = State(e, mtEnv, mtStore, mtKStore, Halt, mtTime)

However, in contrast to the concrete CESK machine, the drive function performs collecting
semantics instead of valuation semantics. That is, for the purpose of analyzing programs, the
function drive collects all the intermediate machine states as the program is abstractly executing.
The following code shows a variant of the work-list algorithm to find the fixed-point of the set of
states. Function drive always applies function step to the head element hd of the work-list todo if
hd is unseen. It then inserts the result of step to the rest of work-list, and in the meantime adds hd
to the explored states set. If the work-list is empty, drive simply returns the set of reachable states
up to the current execution point.

def drive(todo: List[State], seen: Set[State]): Set[State] = todo match {
case Nil = seen
case hd::tl if seen.contains(hd) = drive(tl, seen)
case hd::tl = drive(step(hd).toList ++ t1, seen + hd)

}
def analyze(e: Expr): Set[State] = drive(List(inject(e)), Set())

Finally, a user may invoke the analyze function to obtain all reachable states for a given program.
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2.4 One Step Back: Unabstracted Stack

In this section, we describe a variant of AAM that allows the stack to be unbounded, which uses a
precise model of the call stack as in the concrete CESK machine. Instead of allocating continuations
in the store and embedding addresses of continuations in states, we intend to use a list of frames to
explicitly model the stack. By doing so, we recover the call structure as the same as at run-time
(so-called pushdown control-flow analysis), but since the stack is unbounded, the state space is
potentially infinite.

The pushdown AAM with an unbounded stack is also described by Van Horn and Might [2012].
We show it here is to maintain consistency of abstract semantics during transformations - since the
eventual abstract definitional interpreters simply inherit a precise control-flow from their defining
language, we also would like to start from a pushdown AAM that is also able to precisely match
calls and returns. For readers who are not familiar with pushdown analysis, we provide a detailed
discussion in Section 6.3.

In the definition of State, the continuation store and continuation address disappear; instead, a
list of frames represents the stack. An empty list denotes that we have reached the halt. The other
components remain unchanged as in the Section 2.3.

case class State(e: Expr, env: Env, bstore: BStore, konts: List[Frame], time: Time)

The state transition function step shown below is still nondeterministic, but only when derefer-
encing the callee f from the function application App(f, ae).

def step(s: State): Set[State] = {
val new_time = s.tick
s match {
case State(Let(x, App(f, ae), e), env, bstore, konts, time) if isAtomic(ae) =
for (Clos(Lam(v, body), env_c) <- atomicEval(f, env, bstore)) yield {
val frame = Frame(x, e, env)
val baddr = allocBind(v, new_time); val new_env = env_c + (v +— baddr)
val new_store = bstore.update(baddr, atomicEval(ae, env, bstore))
State(body, new_env, new_store, frame::konts, new_time)
}
case State(ae, env, bstore, konts, time) if isAtomic(ae) =
konts match {
case Nil = Set()
case Frame(x, e, env_f)::konts =
val baddr = allocBind(x, new_time); val new_env = env_f + (x + baddr)
val new_store = bstore.update(baddr, atomicEval(ae, env, bstore))
Set(State(e, new_env, new_store, konts, new_time))

11}

In the first case of pattern matching, we may have multiple possible closures for callee f. For each
closure in the set, a new frame is constructed and pushed onto the stack. The code for handling the
second case (atomic expressions) is the same as the concrete CESK machine.

Note on Termination. Unfortunately, even though other components in the state are finite, this
version of AAM with an unbounded stack may still diverge when analyzing some programs. This is
because the unbounded stack can grow to an arbitrary depth which implies that the state space is
possibly infinite; the analysis may therefore not terminate for all programs if we simply enumerate
reachable states. To see this, consider a program that has two mutually recursive functions:

(letrec ([f1l (lambda (x) (let ([x1 (f2 x)]) x1))]
[f2 (lambda (y) (let ([yl (f1y)I) y1))1)
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(let ([z (f1 1)]) 2))

Function f1 and f2 mutually invoke each other, so the frames of f1 and f2 will be alternately
pushed onto the top of the current stack. However, no two existing stack components are identical
in the state space. One can decide the reachability of a state through Dyck state graph [Earl et al.
2010, 2012], but simply caching the explored states (i.e., seen) would not always make the analyzer
terminate.

3 LINEARIZATION

In the previous section, we show that by keeping an unabstracted stack in the state space, we
can recover the precise call/return match. Now we begin describing the transformations step by
step. Our base machine is the AAM with an unbounded stack; as we will later transform the stack
structure to higher-order functions representing continuations, it does not matter what kind of
AAM we start from. This is because it would not be possible to construct a new frame on the stack,
nor to allocate continuations in the store after refunctionalization. Thus, our choice to start from
an unbounded-stack AAM is motivated simply because it has an equivalent stack model to abstract
definitional interpreters (our final target).

The underlying semantics of AAM is fundamentally nondeterministic: there are possibly multiple
target closures when dereferencing an address, and we have to explore both branches if conditionals
exist in the analyzed language. But the reduction context (i.e., the Frame in our program) is not
nondeterministic, and the work-list implicitly handles the nondeterminism. Thus, if we simply
refunctionalize the frames to higher-order functions, it does not help us to move toward abstract
definitional interpreters.

In his paper Defunctionalized Interpreters for Programming Languages, Danvy observes that for
deterministic languages, a reduction semantics can be seen as a structural operational semantics in
continuation-passing style, where the reduction context is a defunctionalized continuation [Danvy
2008]. Therefore, refunctionalizing such a reduction semantics for a deterministic language yields
an interpreter in continuation-passing style. Nevertheless, doing so for nondeterministic languages
yields an interpreter with multiple layers of continuation [Danvy 2006b; Danvy and Millikin 2009],
where the additional layer of continuation represents the nondeterministic choices.

We apply this idea to AAM, and thus our first transformation step is to linearize all nondetermin-
istic choices. This step removes all nondeterminism from the step function. Likewise, the Frame
saves the information of the caller in concrete executions. We then introduce another layer of
control, and define a case class NDCont that saves the information at a fork point when we have
nondeterministic target closures. We also add a new field ndk of type NDCont to the definition of
state, which we now call NDState. For clarity of presentation in differentiating between the two
continuations, we elect to call the first a continuation, and the second a meta-continuation '.

case class NDCont(cls: List[Clos], argvs: Set[Storable], store: BStore, time: Time, frames: List[Frame])
case class NDState(e: Expr, env: Env, bstore: BStore, konts: List[Frame], time: Time, ndk: List[NDCont]) {
def toState: State = State(e, env, bstore, konts, time)
def tick: Time = ...

}

Here we also use first-order data types to explicitly represent the meta-continuation which con-
trols the nondeterminism. Each NDCont object contains a list of closures that are possible functions
to be invoked, a set of values that will be bound to the target function’s formal argument, and the
store, time, and frames at the fork point. In the definition of NDState, an auxiliary function toState

I These are also called success continuation and failure continuation [Danvy and Filinski 1990].

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 105. Publication date: September 2018.



105:12 Guannan Wei, James Decker, and Tiark Rompf

is added to convert itself to type State. step now becomes of type NDState = Option[NDState].
Returning a None value means reaching the halt.

def step(nds: NDState): Option[NDState] = {
val new_time = nds.tick; nds match { ... }

}
The following code shows the first case of matching an instance of NDState in the step function:

case NDState(Let(x, App(f, ae), e), env, bstore, konts, time, ndk) =
val closures = atomicEval(f, env, bstore).toList.asInstanceOf[List[Clos]]
val Clos(Lam(v, body), c_env) = closures.head
val frame = Frame(x, e, env); val new_frames = frame: :konts
val baddr = allocBind(v, new_time); val new_env = c_env + (v +— baddr)
val argvs = atomicEval(ae, env, bstore);
val new_store = bstore.update(baddr, argvs)
val new_ndk = NDCont(closures.tail, argvs, bstore, new_time, new_frames)::ndk
Some(NDState(body, new_env, new_store, new_frames, new_time, new_ndk))

By atomically evaluating f, we obtain a set of closures, with the transition being deterministic
in regards to the first element of the closure set. As such, we prepare a new environment, a new
store, and a new frame list only for the first closure in that set. A new meta-continuation new_ndk is
constructed, which contains the rest of closures, the values of evaluating ae, the store, the time, and
the new frame list. We use the store before updating, because different closures may form different
binding addresses baddr. We also use the new frames, because all the closures at this fork point
share the same stack structure and return point.

In the second case (shown below), we will see how NDCont deals with nondeterminism.

case NDState(ae, env, bstore, konts, time, ndk) if isAtomic(ae) =
konts match {
case Nil = ndk match {
case Nil = None /* Halt */
case NDCont(Nil, _, _, _, _)::ndk =
Some(NDState(ae, env, bstore, konts, time, ndk)) /* transfer to the front-most fork point */
case NDCont(cls, argvs, bstore, time, frames)::ndk =
val Clos(Lam(v, body), c_env) = cls.head
val baddr = allocBind(v, time); val new_env = c_env + (v +— baddr)
val new_store = bstore.update(baddr, argvs)
val new_ndk = NDCont(cls.tail, argvs, bstore, tile, frames)::ndk
/* resume the fork point with the next closure */
Some(NDState(body, new_env, new_store, frames, time, new_ndk))
}
case Frame(x, e, f_env)::konts =
val baddr = allocBind(x, new_time); val new_env = f_env + (X + baddr)
val new_store = bstore.update(baddr, atomicEval(ae, env, bstore))
Some(NDState(e, new_env, new_store, konts, new_time, ndk)) /* normal return */

}

If the continuation konts is empty, then the machine has reached an end of the computation.
Otherwise, we should return the values of ae to its caller which is contained in the top frame of the
stack. However, since a meta-continuation ndk is introduced, we need to dispatch more cases when
konts is empty:

o If the meta-continuation ndk is also empty, then the machine has reached the end of all
computations. Besides, the control component ae now is an atomic value: None is returned.
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o If the target closures set of the front-most NDCont is empty (Nil in the code), then we have
computed all the closures at this fork point and should move to the next fork point. Since the
meta-continuation nkd is represented by a list, and we always append new elements to its
front, we resume to the next fork point by popping the front-most element and using the tail
of that list.

e Otherwise, we pop a closure from the set, and build a new environment and store for
evaluating the body expression of that closure. We use the same frame list and time which are
copied from the fork point rather than current one. The meta-continuation new_ndk is updated
by the removal of that popped closure, which guarantees the closure set will eventually shrink
to empty.

def drive(nds: NDState, seen: Set[State]): Set[State] = {
val s = nds.toState; val new_seen = if (seen.contains(s)) seen else seen + s
step(nds) match {
case None = new_seen; case Some(nnds) = drive(nnds, new_seen)

3

The drive function is also changed: there is no work-list anymore, as all the potentially unex-
plored states are embedded into the continuations. The termination of the analysis occurs when
the value None is returned from calling step. Otherwise, we extract the next state nnds and recurse
on function drive. The set of explored states is preserved as before.

At this point, we have obtained a linearized abstract abstract machine. Intuitively, if we imagine
that the classical AAM explores a graph of reachable states, then the linearized version of AAM
flattens the graph in depth-first order to a linear sequence of states. It has been observed that
“failure can be replaced by a list of successes” [Wadler 1985] and that “one programmer’s lazy-list
constructor is another programmer’s success and failure continuations” [Danvy 2006a]; the step
function in AAM is the list constructor used in a lazy way, and here we turn it into an explicit
data types representing continuation. The inverse transformation of this step is to apply Wadler’s
technique that converts the data types representing meta-continuations (failure continuations)
back to a lazy list representation, where the elements in the list are plain machine states.

4 LIGHTWEIGHT FUSION

We next apply a lightweight fusion transformation that combines the step and drive functions
into a single function. The fused function drive_step takes an NDState and a set of explored
states seen as arguments and returns a set of reachable states once it terminates. It is essentially
formed by merging the functionality of step into the drive function. Since each case in function
step is statically known, we can inline the pattern matching on the Option type and replace it
with returning new_seen when None is matched, or by calling drive_step recursively when Some is
matched.

def drive_step(nds: NDState, seen: Set[State]): Set[State] = {
val s = nds.toState; val new_time = nds.tick
val new_seen = if (seen.contains(s)) seen else seen + s
nds match {
case NDState(Let(x, App(f, ae), e), env, bstore, konts, time, ndkonts) = ...
drive step(NDState(body, new_env, new_store, new_frames, new_time, new_ndk), new_seen)
case NDState(ae, env, bstore, konts, time, ndkonts) if isAtomic(ae) = ...

T}

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 105. Publication date: September 2018.



105:14 Guannan Wei, James Decker, and Tiark Rompf

With this, we have a single function to perform both abstract evaluation and the collection of
intermediate states. Given inject(e) as the initial state and an empty set as the initial set of states
reached, we can define the entrance function analyze as follows:

def analyze(e: Expr): Set[State] = drive_step(inject(e), Set())

With fusion complete, our AAM appears similar to a “big-step” interpreter, although it still has
the machine state representation inside. The inverse transformation of this step would be splitting
the work-list algorithm apart to an individual function.

5 DISENTANGLEMENT

In the disentanglement transformation, we identify the first-order data types which represent
reduction contexts and lift the code blocks that dispatch these reduction contexts to be individual
functions. After disentanglement, we will obtain an abstract abstract machine in defunctionalized
form.

Since there are two layers of continuations, we disentangle them into three mutually recursive
functions: 1) drive_step, which plays the same role as before; 2) continue, which is invoked from
drive_step when encountering an atomic expression, and dispatches the reduction context of the
analyzed language; and 3) ndcontinue, which is invoked from continue when the normal stack is
empty, and dispatches the meta-continuation NDCont.

def drive_step(nds: NDState, seen: Set[State]): Set[State] = {
nds match {
case NDState(Let(x, App(f, ae), e), env, bstore, konts, time, ndk) = ...
drive step(NDState(body, new_env, new_store, new_frames, new_time, new_ndk), new_seen)

case NDState(ae, env, bstore, konts, time, ndk) if isAtomic(ae) = continue(nds, new_seen)

T}

The above code shows the skeleton of the drive_step. At the end of the first case of pattern
matching, we invoke drive_step recursively on the new NDState. % The code for the second case is
replaced entirely by a function call to continue. The shape of an interpreter in continuation-passing
style has emerged, even though the continue function is not higher-order for the moment.

def continue(nds: NDState, seen: Set[State]): Set[State] = {
val NDState(ae, env, bstore, konts, time, ndk) = nds; val new_time = nds.tick
konts match {
case Nil = ndcontinue(nds, seen)
case Frame(x, e, f_env)::konts =
val baddr = allocBind(x, new_time); val new_env = f_env + (X +— baddr)
val new_store = bstore.update(baddr, atomicEval(ae, env, bstore))
drive step(NDState(e, new_env, new_store, konts, new_time, ndk), seen)

T}

Function continue is identical to what we have seen for the second case in drive_step, except
that the dispatching logic for empty konts is lifted to a separate function ndcontinue. It matches
on the list representation of context: an empty list Nil represents the halt of a computation path,
whereas a cons : : means the top frame of the list holds the innermost context.

def ndcontinue(nds: NDState, seen: Set[State]): Set[State] = {
val NDState(ae, env, bstore, konts, time, ndk) = nds
ndk match {
case Nil = seen

2The code for constructing new environments, stores, and frames is elided for simplicity of presentation.
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case NDCont(Nil, _, _, _, _)::ndk =
/* drive_step() is equivalently replaced by ndcontinue() x/
ndcontinue(NDState(ae, env, bstore, konts, time, ndk), seen)

case NDCont(cls, argvs, bstore, time, frames)::ndk =
val Clos(Lam(v, body), c_env) = cls.head; val baddr = allocBind(v, time)
val new_env = c_env + (v — baddr); val new_store = bstore.update(baddr, argvs)
val new_ndk = NDCont(cls.tail, argvs, bstore, time, frames)::ndk
drive step(NDState(body, new_env, new_store, frames, time, new_ndk, seen))

P}

Function ndcontinue is identical to the foregoing dispatching logic of meta-continuations when
konts is empty, except that the first application of drive_step is reduced to ndcontinue (we can
safely do this because ae is atomic and knots is empty). When ndk is empty, the current set of
explored states seen is returned, after which the analysis terminates. Otherwise, a new NDState is
constructed depending on the status of the closures set.

The purpose of disentanglement is to reveal the defunctionalized form of our AAM. Functions
continue and ndcontinue that dispatch different data types representing continuations are disentan-
gled from drive_step. The inverse transformation of this step would be simply inlining ndcontinue
into continue, and then inlining continue into drive_step.

6 REFUNCTIONALIZATION

Refunctionalization transforms first-order data types representing evaluation contexts to higher-
order functions, and associates the dispatching logic of continuations with proper higher-order
functions. After this transformation, we will obtain an abstract interpreter written in extended
continuation-passing style [Danvy and Filinski 1990]. This transformation can be also regarded as
expressing the control flow of the defined language through control flow of the defining language.
In this section, we first present a direct refunctionalization of the continuations. Next, we adopt
a caching algorithm to obtain a computable analysis [Darais et al. 2017], and further prepare the
interpreter for transformation to direct-style at a later point.

6.1 First Try

First of all, as we are getting close to achieving abstract definitional interpreters, the name of
drive_step is updated to aeval (for abstract eval). Since there will be no first-order data types
representing model of stacks, we introduce a configuration class Config as a state-like definition by
eliminating konts and ndk from the definition of states. Accordingly, the abstract interpreter now
returns Set[Config].

case class Config(e: Expr, env: Env, store: BStore, time: Time) { ... }
By looking at the definition of the first-order function continue from the last section, we may

find it calls the meta-continuation ndcontinue inside of its body. This observation leads us to define
the types of higher-order functions representing continuations and meta-continuations:

type Cont = (Config, Set[Config], MCont) = Set[Config]
type MCont = (Config, Set[Config]) = Set[Config]

The continuation Cont is a higher-order function which takes a configuration, a set of explored
configurations, as well as a meta-continuation as its arguments, while the meta-continuation MCont
only takes a configuration and a set of explored configurations as arguments. Now, the skeleton of
function aeval looks as follows:

def aeval(config: Config, seen: Set[Config], continue: Cont, mcontinue: MCont): Set[Config] = {
val Config(e, env, store, time) = config; val new_time = config.tick
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val new_seen = if (seen.contains(config)) seen else seen + config
e match {
case Let(x, App(f, ae), e) =
val closures = atomicEval(f, env, store).tolList.asInstanceOf[List[Clos]]
val Clos(Lam(v, body), c_env) = closures.head
val baddr = allocBind(v, new_time); val new_env = c_env + (v — baddr)
val argvs = atomicEval(ae, env, store); val new_store = store.update(baddr, argvs)
val new_cont: Cont = ...
val new_mcont: MCont = ...
aeval(Config(body, new_env, new_store, new_time), new_seen, new_cont, new_mcont)
case ae if isAtomic(ae) = continue(config, new_seen, mcontinue)

}

The continuation and meta-continuation are added as arguments to aeval. Before jumping
into the details of refunctionalizing the stack structure and constructing new_cont and new_mcont,
we have two important observations in the disentangled AAM where the continuations were
represented by data types: 1) When constructing the new_ndk, we observe that it explicitly uses
new_frames as one argument of its top NDCont object. The higher-order version of these continuations
follows the same pattern. 2) In the meta-continuation dispatching function ndcontinue, the size
of the closures set is decreasing every time while the other parts of meta-continuation are kept.
This means in the higher-order version, we also need an ability to update the top frame of meta-
continuation and keep the rest as the same.

Let us first look into new_cont. The body of new_cont is similar to the first-order dispatching
function continue. The invocation of aeval uses the latest meta-continuation m instead of the outer
mcontinue. Note that the new environment new_env is updated based on the outer environment;
the atomic evaluation uses the latest environment env_.

val new_cont: Cont = { case (config @ Config(ae, env_, store, time), seen, m) =
val new_time = config.tick
val baddr = allocBind(x, new_time); val new_env = env + (X +— baddr)
val new_store = store.update(baddr, atomicEval(ae, env_, store))
aeval(Config(e, new_env, new_store, new_time), seen, continue, m) }

To address the circularity of the meta-continuations, we define an auxiliary function makeMCont
to construct new_mcont, which takes a list of closures as the argument and returns the meta-
continuation. Function makeMCont is a recursive function where the recursive invocation happens
when constructing the meta-continuation based on the rest of closures set. Now we can dynamically
generate the meta-continuation inside of a meta-continuation. Meanwhile, the new_cont we defined
above is used here, simply because of different closures actually share the same continuation.
The case where the empty closures set occurs is also interesting. At this case, the outer meta-
continuation mcontinue is returned. This becomes clear thinking inductively; our base case is such
that the closures set contains only one closure. makeMCont is thus invoked with an empty set, and
should therefore be just the current meta-continuation mcontinue.

def makeMCont(cls: List[Clos]): MCont =
if (cls.isEmpty) mcontinue else { (config, seen) =
val Clos(Lam(v, body), c_env) = cls.head; val baddr = allocBind(v, new_time)
val new_env = c_env + (v +— baddr); val new_store = store.update(baddr, argvs)
aeval(Config(body, new_env, new_store, new_time), seen, new_cont, makeMCont(cls.tail)) }
val new_mcont: MCont = makeMCont(closures.tail)
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We present one final, though very important, note regarding the initial continuation and meta-
continuation. The initial continuation will be invoked when one computation path reaches its
end, so we invoke the meta-continuation m to continue exploring other paths. The initial meta-
continuation will be invoked when all computation paths reach their ends, so we terminate with
the explored configurations seen. They correspond to the cases where konts is empty and konts
and ndk are both empty, respectively.

def analyze(e: Expr): Set[Config] =

aeval(inject(e), Set(), (c, seen, m) = m(c, seen), (c, seen) = seen)

We have now completely refunctionalized an abstract abstract machine; the two layers of contin-
uations are represented by higher-order functions. The inverse transformation of this step is known
as defunctionalization, which converts the higher-order functions representing continuations to
first-order data types [Danvy 2008; Danvy and Nielsen 2001].

6.2 Simplification and Caching Fixed-Points

In this section, based on the refunctionalized AAM, we further present several other transformations
toward a big-step abstract definitional interpreter:

o The function aeval is simplified by introducing and using a nondeterministic operator nd
which makes aeval only uses one layer of continuation.

e The components of the configuration are lifted as arguments of the evaluation function.

e The refunctionalized AAM collects all possible configurations, but our final target is an
abstract definitional interpreter that cares about final evaluation results. As such, starting
from this section, our abstract semantic artifact returns a set of final values instead of collected
configurations.

e The configurations still play an important role in caching, where a cache is a mapping from
configurations to sets of final values. The caching algorithm ensures termination of the
analysis, as well as performs a sound over-approximation of all possible values and reachable
paths.

We begin discussing these changes separately, and finally see how they work together.

6.2.1 Nondeterminism Abstraction. We observe that in the refunctionalized AAM, makeMCont
is invoked with the tail part of the closure set, and actually repeats the code that creates the new
environment and store for the body expression of a closure. Based on this observation, we present
a nondeterministic operator that abstracts this pattern:

type Ans = Set[Config]
def nd[T](ts: Iterable[T], acc: Ans, k: (T, Ans) = Ans): Ans =
if (ts.isEmpty) acc else nd(ts.tail, acc ++ k(ts.head, acc), k)

As a matter of convenience, we name the return type of the abstract interpreter to be Ans, which
is Set[Config] for the moment. Given a collection of elements of type T, an initial accumulator of
type Ans, and a function k that works on elements of type T, nd chooses an element in the collection
and applies k to it iteratively, and accumulates the values that returned from k when recurring
on the rest of the collection. Eventually, nd returns the accumulated value acc when there is no
element in the collection. The latest accumulated value acc is exposed to k when applied.

Now we may refactor the function aeval to one layer of continuation by using the nd operator.
The use of two layers of continuations will be unchained to two functions, in that each of them has
one continuation.

type Cont = (Config, Ans) = Ans

def aeval(config: Config, seen: Ans, continue: Cont): Ans = { ... e match {
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case Let(x, App(f, ae), e) =
val closures = atomicEval(f, env, store).tolList.asInstanceOf[List[Clos]]
nd[Storable] (closures, new_seen, { case (Clos(Lam(v, body), c_env), seen) =
val baddr = allocBind(v, new_time); val new_env = c_env + (v +— baddr)
val argvs = atomicEval(ae, env, store); val new_store = store.update(baddr, argvs)
aeval(Config(body, new_env, new_store, new_time), seen, { case (config, seen) =
val Config(ae, env_, store, time) = config; val new_time = config.tick
val baddr = allocBind(x, new_time); val new_env = env + (X +> baddr)
val new_store = store.update(baddr, atomicEval(ae, env_, store))
aeval(Config(e, new_env, new_store, new_time), seen, continue) }) })
case ae if isAtomic(ae) = continue(config, new_seen) } }

The circular meta-continuation is abstracted by the nd operator, and only one continuation
remains at the level of aeval. When encountering a set of possible closures, we apply nd on the set
with the latest explored configurations and an anonymous function that works on each closure.
The beginning part (before calling aeval) of this anonymous function is essentially abstracted from
makeMCont, which constructs new environment and store for the closure being evaluated. Then
we apply aeval on the body expression of the closure with a continuation, which is inlined from
new_cont and will apply aeval to e with the current continuation of the let expression.

As we can see, by using the nd operator, the evaluation function can be simplified to a single-layer
continuation-passing style. The only continuation of aeval plays the same role as the one in a
concrete CPS interpreter.

6.2.2 Values. Up to now, the abstract interpreter still collects and returns a set of configurations.
But our target, the abstract definitional interpreters, should return a set of final values instead of
collected configurations; the intermediate values are simply discarded. To properly represent final
values, we introduce the case class VS which contains a set of storable values, a timestamp, and a
store.

case class VS(vals: Set[Storable], time: Time, store: BStore)

An instance of VS represents the computational result of one path in the nondeterministic
evaluation. The reason that we include a store is that there might be a case in which two paths
have the same values but different accumulated side effects (e.g., memory allocations). Since the
whole computation is potentially nondeterministic, the type of the final result values is a collection
Set[VS].

6.2.3 Cache-Passing Style. Recall that the latent assumption of the work-list algorithm in classi-
cal AAM is that if we have seen a state s, it means we also have seen all the successors of state s.
The caching algorithm we adopt here replays the same assumption, but in a big-step manner: if we
have seen the configuration c, then it means we also have seen the values that are evaluated from
the configuration c. Here we will apply the fixed-point caching algorithm as described from Darais
et al.’s ADI paper [Darais et al. 2017]. The case class Cache and its operations are defined as follow:

case class Cache(in: Store[Config, VS], out: Store[Config, VS]) {

def inGet(config: Config): Set[VS] = in.getOrElse(config, Set())

def outGet(config: Config): Set[VS] = out.getOrElse(config, Set())

def outContains(config: Config): Boolean = out.contains(config)

def outUpdate(config: Config, vss: Set[VS]): Cache = Cache(in, out.update(config, vss))
}

The Cache contains two maps in and out which are both mappings from configurations to sets
of VS. The in cache contains mappings from the previous iteration of evaluation, and the out cache
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contains mappings after the current iteration of evaluation. Once we have evaluated a term to some
values, we update the out cache. In the next iteration, we will use the out cache from the previous
iteration as the in cache. The iteration terminates when the out cache is identical to the in cache.

We can now transform our abstract interpreter into cache-passing style. We begin by redefining
the return type Ans as a case class which contains a VS set and a cache. Ans also implements its
own accumulating operation ++ which defines as a union of Set[VS]s and a join of caches. The join
operation of caches is defined as joining its two store components.

case class Ans(vss: Set[VS], cache: Cache) {
def ++(ans: Ans): Ans = Ans(vss ++ ans.vss, cache.join(ans.cache)) }

Accordingly, the nd operator is slightly changed to cache-passing style. The argument of type
Ans in the continuation k is replaced by an argument of type Cache; every time when we apply k,
the latest cache acc.cache is provided.

def nd[T](ts: Iterable[T], acc: Ans, k: (T, Cache) = Ans): Ans =
if (ts.isEmpty) acc else nd(ts.tail, acc ++ k(ts.head, acc.cache), k)

As previously mentioned, the components of configurations are lifted as arguments to aeval.
Given the cache and the simplified one-layer continuation, the shape of function aeval now looks
as follows:

def aeval(e: Expr, env: Env, store: BStore, time: Time, cache: Cache, continue: Cont): Ans = {
val config = Config(e, env, store, time); val new_time = config.tick
if (cache.outContains(config)) continue(Ans(cache.outGet(config), cache))
else {
val new_cache = cache.outUpdate(config, cache.inGet(config))
ematch { ... } } }

Upon entering aeval, we first determine whether the out cache contains some values for the
current configuration, and (if present) use them immediately by calling continue. This corresponds
to small-step AAM with a work-list: when we have seen a state, we can simply discard the state
and continue working through the rest of the work-list.

If, however, we have not hit the out cache, we retrieve the values from the in cache, and update
the out cache with the values from the in cache. This retrieval from the in cache may return an
empty set of values if there is no such mapping for this configuration from the previous iteration.
In the initial iteration, we first conservatively assume that all computations can diverge, and if
not, we update its values in the cache after the evaluation. In terms of partial orders and lattices,
it is the case that starts the Kleene iteration from the bottom of the lattice. The out cache of this
iteration will be used as the in cache for the next iteration.

6.2.4  Putting Them Together. With the skeleton of cache-and-continuation-passing style aeval
in mind, we may now use the nd operator to fill in the details. The first case of our match is that e
is a let expression:

case Let(x, App(f, ae), e) =
val closures = atomicEval(f, env, store)
nd[Storable] (closures, Ans(Set[VS](), new_cache), { case (cls, clscache) =
val Clos(Lam(v, body), c_env) = cls; val vbaddr = allocBind(v, new_time)
val new_cenv = c_env + (v +— vbaddr); val new store = store.update(vbaddr, atomicEval(ae, env, store))
aeval(body, new_cenv, new_store, new_time, clscache, { case Ans(bdvss, bdcache) =
nd[VS] (bdvss, Ans(Set[VS](), bdcache), { case (vs, bdvsscache) =
val Val(vals, time, vsstore) = vs; val baddr = allocBind(x, time)
val new_env = env + (x +— baddr); val new_store = vssstore.update(baddr, vals)
aeval(e, new_env, new_store, time, bdvsscache, { case Ans(evss, ecache) =
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continue(Ans(evss, ecache.outUpdate(config, evss)))

HHHDD

We invoke nd twice and perform a nesting, two-step, depth-first evaluation over possible values
of App(f, ae). The outer application of nd evaluates over the set of possible target closures of f.
For each such closure, we go into its body with a new environment and a new store. Recall that
the function aeval returns a set of VS objects to its continuation, so the continuation argument
bdvss represents a set of values from multiple computation paths when evaluating this single body
expression.

We next consider the inner application of nd, which evaluates over the set of the function body’s
values/stores bdvss. For each VS, the timestamp and the store in VS will be instantiated to the next
application of aeval. The environment new_env is built on the outer environment variable env,
which is the environment of this let expression. The inner application of aeval evaluates e with
the substituted environment and store, then returns a set of values of one computation path to
its continuation, where we apply the continue function with these values and the updated cache.
Note that the cache is used in a monotonic way: each function call to aeval or nd is passed with
the latest cache from the most recent continuation of aeval or nd.

case ae if isAtomic(ae) =
val vs = Set(VS(atomicEval(ae, env, store), new_time, store))
continue(Ans(vs, new_cache.outUpdate(config, vs)))

If the argument expression e is atomic, which is the second case of match, we simply construct a
new instance of VS and pass it to the continue function.

Once the evaluation is completed at each case, we obtain a set of VS objects and must update
the out cache. In the first case of pattern matching, this happens at the innermost continuation of
aeval, where we reach the end of one computation path. For the second case, we update the out
cache before calling the continue function.

val mtCache = Cache(Store[Config, VS](Map()), Store[Config, VS](Map()))
def analyze(e: Expr) = {
def iter(cache: Cache): Ans = {
val Ans(vss, anscache) = aeval(e, mtEnv, mtStore, mtTime, cache, ans = ans)
if (anscache.out == anscache.in) Ans(vss, anscache)
else iter(Cache(anscache.out, Store[Config, VS](Map())))
} iter(Cache.mtCache) }

Finally, the analyze function (as the entrance of the analysis) does a looping iteration to find
the least fixed-point of the cache, starting from an empty cache. If the out cache of this iteration is
equivalent to its in cache, which means no further information was discovered during this iteration,
then we have reached a fixed-point of cache that has over-approximated the concrete evaluations,
and thus the result can be returned. Otherwise, we install the latest out cache to the in cache
position when initializing the next iteration; in the meantime, an empty cache will be used as the
out cache.

Now, we have a big-step abstract interpreter written in plain continuation-passing style which
utilizes the nd operator and guarantees termination by caching.

6.3 Pushdown Control-Flow Analysis, Revisited

In the previous section, we established a computable pushdown control-flow analysis through
refunctionalization and caching. In this section, we revisit the pushdown control-flow problem and
examine what we have done to overcome it.
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The Problem with Return-flows. Pushdown control-flow is a property of the analysis that precisely
models the run-time call structure of the analyzed program. A pushdown control-flow analysis
provides an as-exact-as-runtime return-flow when analyzing a program, but traditional control-flow
analysis collapses the state space into a finite space and thus causes imprecise stack modeling.

To see how traditional control-flow analysis suffers from spurious return-flows, we can consider
the following example:

(let ([id (lambda (z) z)1)
(tet ([x (id 1)I)
(let ([y (id 2)])

X)))

In the k-CFA algorithm, or in using the abstract abstract machine shown in Section 2.3, the
call sites (id 2) and (id 1) share the same return flow, so the invocation of (id 2) returns to
both call-sites [x (id 1)] and [y (id 2)]. Therefore, the returned value 2 for variable y is also
propagated to variable x, causing imprecise analysis results to arise. This return-flow merging is
inevitable, even when increasing the context-sensitivity. Even worse, if we use the monovariant
analysis (i.e., 0-CFA), the analysis result would be such that x and y point to the value set {1, 2}.
Because the algorithm does not distinguish incoming values from different call sites for z (the
argument of id). Under 1-CFA, the algorithm is able to distinguish that variable z has two different
values at two call sites, so variable y would not be polluted by 1. However, variable x still points
to the value set {1, 2}, as the two call-sites still share the same continuation and 1-CFA does not
increase the ability to separate the return-flows.

Call/Return Matching through Refunctionalization and Caching. The refunctionalized AAM with
caching precisely matches return-flows even though we do not have a stack model. The higher-order
functions representing continuations already connect all the executions in order.

In fact, we started with an unbounded-stack AAM which already precisely matches the calls and
returns by explicitly using the data types to model the stack. However, in the refunctionalized AAM,
the higher-order functions representing continuations of the analyzed language are blended into
the call stack of our defining language (Scala) through refunctionalization, and hence the call/return
flow of the analyzed language is naturally matched. This is why we say the pushdown property of
the analysis is inherited from the defining language [Darais et al. 2017]. Another consequence of
refunctionalization is that we have no place to explicitly save the context information in the store
or on the stack.

Meanwhile, refunctionalization not only forces the nondeterministic control flows to be higher-
order, but also drives us to use a different caching algorithm. Indeed, the caching algorithm plays an
important role in guaranteeing the analysis will eventually terminate. An interesting implication
of this is if we apply the caching algorithm with some necessary changes to small-step abstract
machines with an unbounded stack, we are also able to establish a computable and precise call/return
match.

7 BACKTO DIRECT-STYLE

In the previous section, we presented a refunctionalized AAM in extended continuation-passing
style, and then simplified it by utilizing the nd operator. To obtain a definitional abstract interpreter
in direct-style, we have multiple choices of how to proceed:

o By replacing the continuations with monads [Filinski 1994], we obtain the abstract definitional
interpreters in monadic style which are similar to what Darais et al. [2017] describe.
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e By representing the continuation-passing style with delimited control operators such as shift
and reset, we derive a new form of abstract interpreters in direct-style. This transformation
is the left-inverse of the CPS transform [Danvy 1994; Danvy and Lawall 1992].

e In fact, we may also just use the same caching algorithm but with side effects such as
assignments and mutations to update the cache, and then achieve the same definitional
interpreter with pushdown control-flow. Friedman and Medhekar [2003], in a tutorial on
abstract interpreters, use this style to model caches and updates. In this case, nondeterminism
can be easily handled via for comprehensions.

These coincidences should not be a surprise, since the literature is rich in showing the corre-
spondence between monads and continuation-passing style as well as delimited control [Danvy
and Filinski 1990, 1992; Moggi 1991; Wadler 1992].

In this section, we present the second version that uses delimited control operators.

7.1 Back to Direct-Style with Control Operators

We first transform the function aeval to direct-style by removing the additional continuation
argument continue and sequentializing the expressions in aeval. To enable using delimited control
operators inside of aeval, we also add an annotation @cps [Ans] on the return type, which tells
the compiler to CPS transform this function. Returning to direct-style in the case where e appears
as an atomic expression is straightforward: we simply unwrap the application of continue. The
abstract evaluator aeval now looks as follows:
def aeval(e: Expr, env: Env, store: BStore, time: Time, cache: Cache): Ans @cps[Ans] = {
val config = Config(e, env, store, time)
if (cache.outContains(config)) Ans(cache.outGet(config), cache)
else {
val new_time = config.tick; val new_cache = cache.outUpdate(config, cache.inGet(config))
e match {
case Let(x, App(f, ae), e) = ...
case ae if isAtomic(ae) =
val vss = Set(VS(atomicEval(ae, env, store), new_time, store))
Ans(vss, new_cache.outUpdate(config, vss))

Frd

The case where e is a let expression is less straightforward. As previously identified, nd works
on an unknown number of nondeterministic choices, and it takes a function k that works for every
element in the collection. Here we present another function choices that uses delimited control
operator shift to capture that k when the program is written in direct-style and pass it to nd.

def nd[T](ts: Iterable[T], acc: Ans, k: ((T, Cache)) = Ans): Ans = {
if (ts.isEmpty) acc else nd(ts.tail, acc ++ k(ts.head, acc.cache), k)

}

def choices[T](ts: Iterable[T], cache: Cache): (T, Cache) @cps[Ans] = shift {
f: (((T, Cache)) = Ans) = nd(ts, Ans(Set[VS](), cache), f)

}

The function choices takes two arguments: a set of elements of type T, and an initial cache.
The return type of choices is (T, Cache) with an annotation @cps[Ans], which denotes that
choices will iteratively return an element of type T from the collection along with the latest cache
once f is invoked, but the final returned value of the function is type Ans. The function f is the
delimited continuation captured by the shift operator. Whenever we call choices, the subsequent
computations that will be executed after its call-site constitute the delimited continuation f. Once
the function f (which is the function k in nd) is invoked and returned, it returns to its call site where
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nd will be invoked on the remaining elements of the collection. Now we can use this function to
sequentialize expressions in the let case:

case Let(x, App(f, ae), e) =
val closures = atomicEval(f, env, store)
val (Clos(Lam(v, body), c_env), clscache) = choices[Storable](closures, new_cache)
val vbaddr = allocBind(v, new_time); val new_cenv = c_env + (v + vbaddr)
val new_store = store.update(vbaddr, atomicEval(ae, env, store))
val Ans(bdvss, bdcache) = aeval(body, new_cenv, new_store, new_time, clscache)
val (VS(vals, time, vsstore), vscache) = choices[VS] (bdvss, bdcache)
val baddr = allocBind(x, time); val new_env = env + (X + baddr)
val new_vsstore = vsstore.update(baddr, vals)
val Ans(evss, ecache) = aeval(e, new_env, new_vsstore, time, vscache)
Ans(evss, ecache.outUpdate(config, evss))

For every nondeterministic fork-point in the abstract interpretation, we can simply call choices
on the set of possible choices and write the program sequentially as concrete interpreters, and
the subsequent statements and expressions after the call site become the delimited continuation
f. We have two applications of choices, which correspond to the two applications of nd in the
refunctionalized form in the previous section. choices also returns the latest cache to its left-hand
side when invoked. The cache will continue to accumulate for the following calls of choices or
aeval, given the fact that the abstract interpreter should always use the latest cache.

analyze is also changed by calling the reset operator around the function application of aeval
to set the delimiter.

def analyze(e: Expr) = {
def iter(cache: Cache): Ans = {
val Ans(vss, anscache) = reset { aeval(e, mtEnv, mtStore, mtTime, cache) }
if (anscache.out == anscache.in) Ans(vss, anscache)
else iter(Cache(anscache.out, Store[Config, VS](Map())))
} iter(Cache.mtCache) }

We have finally arrived at the end of this series of transformations. The inverse transformation
of the last step is essentially that of performing a CPS transformation on the function aeval
and explicitly using function nd instead of function choices. Then, these continuations must be
manifestly embedded at the call site of nd, instead of implicitly provided by the shift operator.

To conclude, starting from a small-step abstract abstract machine, eventually we obtain a big-step
abstract definitional interpreter with pushdown control-flow, written in direct-style.

8 RELATED WORK

Defunctionalization and Refunctionalization. Reynolds [1972] proposed defunctionalization as a
program transformation technique that can be used to transform higher-order functions to first-
order data types. While the technique is very general, it was first presented as a key step in
transforming higher-order definitional interpreters into their first-order counterparts. As a form
of generalized closure conversion, defunctionalization is widely used in compilation and analysis
[Cejtin et al. 2000; Consel 1993; Eisenberg and Stolarek 2014; Fourtounis et al. 2014; Pottier and
Gauthier 2006]. Refunctionalization as a left inverse of defunctionalization, was introduced by
Danvy [2006b]; Danvy and Millikin [2009].

Ager et al. [2003] observed that defunctionalization and refunctionalization can be used to
show the functional correspondence between interpreters and abstract machines. A number of
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independently designed small-step semantic artifacts can be obtained by closure-converting, CPS-
transforming, and then defunctionalizing their big-step counterparts, and vice versa by refunc-
tionalizing [Danvy and Millikin 2009]. Such semantic artifacts include the SECD machine [Ager
et al. 2003; Danvy 2004; Danvy and Millikin 2008b], the CEK machine [Ager et al. 2003], the CLS
machine [Ager et al. 2003], Categorical Abstract Machines [Ager et al. 2003], lazy abstract machines
[Ager et al. 2004], monadic evaluators [Ager et al. 2005], as well as languages with richer constructs
[Biernacka and Danvy 2009; Danvy 2008, 2009], etc.

Besides, Danvy and his collaborators observed the correspondence between evaluation contexts
and continuations. For deterministic languages, Danvy [2008] showed that reduction contexts are
defunctionalized (data type representing) continuations and reduction semantics is a structural
operational semantics in continuation-passing style. Not unexpectedly, the correspondence also
exists for nondeterministic languages. For example, Danvy and Nielsen [2001] observed that
refunctionalizing a regular expression matcher with two stacks yields its counterpart with two
layers of continuations. In addition, the operational semantics of control operators (e.g., shift and
reset) can be given by an abstract machine with multi-layer continuations [Biernacka et al. 2005;
Danvy and Filinski 1990].

But as mentioned above, defunctionalization and refunctionalization are more general concepts,
with a wide range of uses. For example, Danvy and Nielsen [2001] showed that defunctionalization is
dual to Church encoding, and further case studies where known higher-order and first-order imple-
mentations can be related through defunctionalization and refunctionalization include backtracking
algorithms (e.g., regular expression matcher), Dyck word recognizer, Dijkstra’s shunting-yard algo-
rithm, and even Quicksort [Danvy 2006b; Danvy and Millikin 2009; Danvy and Nielsen 2001].

Lightweight Fusion. Lightweight fusion as one of the transformation in our paper was presented
by Ohori and Sasano [2007]. As shown by Danvy and Millikin [2008a], lightweight fusion can be
used to show the equivalence between small-step and big-step abstract machines.

Abstract Interpretation and Control-Flow Analysis. Cousot and Cousot [1977] discovered abstract
interpretation as a sound approach to approximate a program’s run-time behavior. Control-flow
analysis is one instance of abstract interpretation on higher-order functional programs that can be
traced to Jones [1981]. Shivers [1988, 1991] introduced k-CFA which uses k recent calling contexts
as program contours that differentiate values from different contexts. A recent formulation of
control-flow analysis is the abstracting abstract machines methodology [Van Horn and Might
2010, 2012] which forms the starting point of this paper. The AAM approach has been successfully
applied to programming languages such as Java [Might et al. 2010] and Racket [Tobin-Hochstadt
and Van Horn 2012].

Pushdown Control-Flow Analysis. There have been significant efforts to achieve precise call/return
matching based on small-step abstract abstract machines [Earl et al. 2012; Gilray et al. 2016b;
Johnson and Van Horn 2014; Vardoulakis and Shivers 2010].

CFA2 is the first solution that solves the return-flow problem [Vardoulakis and Shivers 2010],
but CFA2 has several limitations: it only works on continuation-passing style programs, and does
not support polyvariant analysis, in addition to having an exponential time complexity. Pushdown
control-flow analysis (PDCFA) is a mechanism which maintains this precision through the use of a
Dyke state graph representing all possible stacks contained within the unbounded-stack machine
[Earl et al. 2010, 2012]. Similar to PDCFA, abstracting abstract control (AAC) is another strategy for
maintaining stack precision [Johnson and Van Horn 2014]. AAC functions by utilizing continuations
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which are specific to both the source and target states of a call-site transition, which guarantees
that no spurious merging will occur during returns.

Gilray et al. [2016b] further proposed a polyvariant continuation-addresses allocator for small-
step AAM to achieve pushdown analysis. This method is both simple to implement and compu-
tationally inexpensive and so called Pushdown for Free (P4F). Based on the AAM we presented
in Section 2.3, the only changes in the code required is not only keeping track of the entry-point
expression of the callee, but also holding the target environment when allocating a continuation
addresses. No other pieces of code would need to be modified. Notably, this change only causes a
constant-factor increase in time complexity of the analysis if the store is widened.

Our work establishes the pushdown control-flow analysis through refunctionalization and a
proper caching algorithm. The call/return flow is naturally matched by the call structure of the
meta-language.

Abstracting Definitional Interpreters. Reynolds’ seminal paper Definitional interpreters for higher-
order programming languages [Reynolds 1972, 1998] showed that in definitional interpreters, the
defined language inherits properties such as the order of evaluation from the defining language,
unless these properties are made explicit in the interpreter. With this insight, Darais et al. constructed
abstract definitional interpreters [Darais 2017; Darais et al. 2017] which automatically inherit the
pushdown control-flow property from its defining language because the defined language simply
uses the call-stack model of the meta-language. Darais et al.’s abstract definitional interpreters
work on direct-style A-calculus, and are themselves written in monadic style. One of the advantages
of monadic abstract interpreters is modularity. Hence, deploying different sensitivities or features
can be achieved by just applying different monads. Prior to that, Sergey et al. [2013] presented a
monadic abstract interpreter for small-step semantics.

This paper is greatly inspired by the work of Darais et al. [2017]. A first surface-level difference
is that our presentation uses A-Normal Form A-calculus, instead of plain A-calculus, although our
work could be easily adapted to handle plain A-calculus as well. Going through the transformation
steps from AAMs to ADIs instead of only considering the final ADI result provides additional
insights. In particular, it reveals that refunctionalization plays an important role for inheriting the
call structure (i.e., the model of the stack) from the meta-language. In addition, we demonstrate that
the explicit use of monads in ADIs is optional, by translating to direct-style ADIs with delimited
control operators in addition to the monadic version of Darais et al. [2017]. We use the delimited
control operators shift and reset [Danvy and Filinski 1990] as implemented in Scala [Rompf et al.
2009]. The correspondence of delimited continuations and monads is well known [Danvy and
Filinski 1990, 1992; Filinski 1994; Moggi 1991; Wadler 1992].

9 CONCLUSION

In this Functional Pearl, we bridge the gap between small-step abstract abstract machines and
big-step abstract definitional interpreters by applying a series of syntactic transformations to
transform the former into the latter. Among these transformations, linearization turns a work-
list into an additional layer of continuations, refunctionalization converts the first-order data
types representing continuations to higher-order functions, and finally, the left-inverse of the CPS
transformation converts the CPS abstract interpreter into a direct-style abstract interpreter with
delimited control operators, which looks almost identical to the corresponding concrete interpreter.

This sequence of transformation demonstrates that a functional correspondence exists not only
between concrete semantic artifacts, but also between abstract semantic artifacts. An interesting
open question remains of whether there also exist correspondences between static analyses that
are formalized in different denotational and operational styles.
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