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Complex networks are ubiquitous to several Computer Science domains. Centrality measures are an important analysis mechanism to 
uncover vital elements of complex networks. However, these metrics have high computational costs and requirements that hinder their 
applications in large real-world networks. In this tutorial, we explain how the use of neural network learning algorithms can render the 
application of the metrics in complex networks of arbitrary size. Moreover, the tutorial describes how to identify the best configuration for 
neural network training and learning such for tasks, besides presenting an easy way to generate and acquire training data. We do so by 
means of a general methodology, using complex network models adaptable to any application. We show that a regression model generated 
by the neural network successfully approximates the metric values and therefore are a robust, effective alternative in real-world 
applications. The methodology and proposed machine learning model use only a fraction of time with respect to other approximation 
algorithms, which is crucial in complex network applications. 

CCS Concepts: • Computing methodologies ~ Network science; Neural networks; • Information systems ~ Collaborative and social 
computing systems and tools; • Human-centered computing ~ Collaborative and social computing 
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1 INTRODUCTION 
Complex network models are ubiquitous to several computer science domains (e.g., [1] [2] [3] [4]). This motivates the 
development and application of several metrics for their understanding, analysis, and improvement. Moreover, the 
computational analysis of such networks in real-world environments is a fundamental tool in many fields such as mobile and 
5G wireless networks [5] [6]. 

Some of the most widely used network measurements aim at the evaluation, ranking, and identification of important 
vertices by their power, influence, or relevance. They are usually known as vertex centrality measures [7] [8] [9]. These 
metrics constitute a class of metrics and underlying algorithms, capturing a different idea of centrality, which is used in 
typical and fundamental applications. 

Even though the metrics’ algorithms are polynomial in time, the computation of such metrics becomes a difficult, often 
complex problem when they are applied to real-world networks, composed of thousands or even millions of elements and 
their connections. The use of centrality measures in large-scale networks and real-time applications demands principled 
approaches. Moreover, many application environments deal with dynamical networks that are constantly changing. Such 
applications make use of snapshots of their networks to analyze properties and changes over the time, which requires the 
computation from scratch of the network analysis metrics, such as centrality measures, for each network snapshot. 

In this tutorial, we show how to use and apply a methodology and associated machine learning-based techniques to 
effectively approximate vertex centrality measures. We do so by using neural networks learning in order to build a regression 
model. To guide and show the effectiveness of the methods, we apply the techniques to real world networks using two of the 
most important vertex centrality measures: betweenness and closeness centralities.  

We show how to use fast and feasible training methods for artificial neural networks, where training data are obtained with 
a complex network model called Block Two-Level Erdős and Rényi – BTER [10] [11]. The BTER model generates networks 
with diminished size, but with the same properties of the huge analyzed networks. This allows both researchers and 
practitioners unlimited an easy access to training data for whatever application one may have to tackle. Such a methodology 
is capable of providing enough information for the neural network to be able to generalize for the real datasets comprising 
huge networks.  

We illustrate our tutorial with several configurations for the neural networks, including many standard machine learning 
algorithms, different network structures, and combinations of meta-parameters. In this way, we identify the appropriate setup 
for such tasks. The tutorial shows how to use the configuration that presents the best quality and performance results in a set 
of 30 (large scale) real-world networks. Finally, we compare the results obtained from the machine learning model with the 
exact computation of the centrality measures and other approximation techniques proposed in the literature. We show how 
the machine learning methodology produces competitive results with quality comparable with other approximations methods 
but – perhaps more importantly - at just a fraction of time and space. The methodology and model used in this tutorial are 
capable of computing the ranking assumed by the centrality measures in linear time/space requirements and under reduced 
error margins. 

The remainder of this tutorial paper is organized as follows. First, we present key applications of centrality measures and 
then a prolegomenon to vertex centrality measures and complex network models, highlighting key definitions. Next, we 
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present approximation methodologies for network centrality measures, including a systematic tutorial on how to train, test, 
and use machine learning for such purposes. We then evaluate and compare results, by presenting several applications of 
centrality measures that can benefit from the machine learning based methodology. Finally, we conclude and outline 
directions for further research in the field. 

2 BACKGROUND AND RELATED WORK 
In this section, we briefly outline applications where centrality measures play a key role. In particular, we motivate the use of 
machine learning and approximation techniques that shall be useful when tackling large-scale complex networks. 

2.1 An Outlook of Centrality Measures 
Centrality measures are used as important analyses tools in several applications [12] [13] [14]. They are usually employed as 
a mean to identify relevant and important elements by identifying their behavior and roles within given complex networks. 
Centrality measures are also effective as a comparison factor with other domain-specific metrics and can be used as a bridge 
to other areas [15] [16] [17] [18]. 

In the coming subsections, we highlight promising areas in which recent studies have used centrality measures as a 
meaningful instrument. We do so by a simple taxonomy, classifying such examples considering their main application areas 
– of course, some of the researches are related to more than one application domain. 

2.2 Centrality in Computer Networks 
Given the ubiquity of computer networks structures, the use of centrality measures is pertinent as heuristics to improve the 
solution of security problems, control issues, communication flow, and resources optimization. 

One of many examples is the study of Maccari and Lo Cigno [19], who applied the betweenness centrality in the 
optimization of online routing control protocols responsible to provide a fast and efficient recovery from a node failure with 
minimal disruption of routes. They consider that the failure of a node with high centrality (they have focused in the top 10 
ranked vertices) generates higher loss compared to the failure of peripheral nodes and applied this fact in their proposed 
optimization problem formula to minimize routes’ disruption with reduced control message overhead. They also pointed it 
out that, although the centrality needs to be computed online (it takes about seconds to compute) and this is feasible only in 
networks with hundreds of vertices, there are approximation techniques that may be used for networks with thousands or 
more vertices. Moreover, the same technique can be extended to distance-vector protocols that are largely used in wireless 
mesh networks [20]. Ding and Lu [21] also studied nodes’ importance (given by centrality measures) to maintain the 
structural controllability of a network. 

Another key application of centrality measures is in wireless community networks (WCNs). WCNs are bottom-up 
broadband networks empowering people with their on-line communication means [22]. However, WCNs often lack in 
performance because services characteristics are not specifically tailored for such networks. Centrality measures are used as 
heuristics that improve the selection of peers and chunks within WCNs in the communication between users to reduce the 
impact of P2P streaming while maintaining applications performance. 

Kas et al. [23] studied social network analysis metrics and centrality measures as tools to improve the design of wireless 
mesh networks with better performance by efficiently allocating the resources available. The allocation of network resources 
using the centrality measures as heuristics has been a topic of study in distributed placement of autonomic Internet services 
for the efficient support of users’ demands [24]. 

There are also studies about mobile and 5G wireless networks that used centrality measures to reduce network traffic [5] 
[6]. Likewise, centrality measures are studied in the context of network security. For instance, they have been used to 
configure distributed firewalls [25] and to identify critical nodes in which intrusion detection and firewalling is most suitable 
[26]. In addition, they were applied to build cloud-based filters and footprints of traffic inspection algorithms at global 
scrubbing centers [27]. 

2.3 Complex Networks Construction 
The analysis and understanding of the structure of complex networks are fundamental to understand variables and properties 
that contribute to the network formation and to identify which premises affect network development and evolution [1] [3]. 
Centrality measures help these studies by identifying nuances and characteristics of components of the networks. In such 
context, centralities are used as means of understanding the role of a given element and its effect on the other elements of the 
entire network. 

König et al. [28] analyzed the underlying differences between technological and social networks and the assortativity 
behavior of network elements. They considered that the link formation is mainly based on the vertex centrality. Centrality 
measures were also used as part of a dynamic network formation model to explain the observed nestedness in real-world 
networks [29] and social networks community structures [30]. 

They are also fundamental to several community detection and formation algorithms [31]. The betweenness centrality 
measure was applied successfully by Newman and Girvan [31] as a heuristic metric in order to define proper cuts/divisions in 
social networks as a way to separate the elements and iteratively search for communities. The idea behind the algorithm 
proposed by the authors is that the more central elements are bridges between different communities. As an iterative 
algorithm, it needs to compute the centrality measure again at each step/cut/division made, and because of its frequent use in 



 

huge social networks an efficient implementation is required. Therefore, approximation methodologies are preferred most of 
the time. 

2.4 Artificial Intelligence Applications 
The use of network models in communication, cooperation, or learning structures is key in AI. Several AI domains offer 
themselves to the use of centrality measures as means of strategy, guidance, or simply as domain information. Machine 
learning algorithms and methods can use centrality measures as heuristics to learn faster, to synthesize input data, or as 
additional information about an AI application, which in turn helps in the generalization for a given domain. 

Pedestrian detection is one of the example problems that used centrality measures associated with machine learning 
techniques. Detecting pedestrians in computer vision is a critical problem when one considers that the performance of trained 
detectors may drop very quickly when scenes vary significantly, which is frequently the case. Cao et al. [32] proposed a 
novel methodology for such a problem based on a bag of visual words to detect pedestrians in unseen scenes by dynamically 
updating the keywords using centrality measures to select new keywords on the manifold model. 

Another AI application used the metrics to classify label-dependent nodes in a network (e.g. hyperlinks connecting web 
pages), citations of scientific papers, e-mail conversations, and social interactions in the Web [33]. 

Centrality measures can be applied in several ways as an optimization heuristic [34] in multi-agent systems and multi-
robot teams, since they are essentially driven by their communication organization and strategies. Xu et al. [34] noticed 
through simulations that the more central robots (considering its betweenness centrality) in a large robot team (organized 
frequently as clusters) are the ones responsible to broadcast the information amongst clusters. Consequently, these central 
elements play an important role in group efficiency and are helpful to speed up the information diffusion. 

In addition, reinforcement learning applied to agents’ automatic skill acquisition has also been studied using centrality 
measures [35] [36]. 

2.5 Social Network Analysis 
There is a growing amount social networks data, from different sources. Therefore, it is crucial to study the available 
information, as many networks comprise hundreds of millions of vertices. Centrality measures are one of the most important 
analyses tools for these kinds of networks and can be used for many purposes and fundamental comparisons, which offer 
insights on their social impact and behavior. 

Danowski and Cepela [37] used centrality metrics to analyze the impact that presidential centrality role has on presidential 
job approval ratings. They hypothesized that when the centrality of the president is lower than of the other cabinet members, 
job approval ratings is higher. Jiang et al. [38] introduced a model to find influential agent groups and their impact in 
multiagent software systems by using centrality measures, while Mcauley and Leskovec [39] used the metrics to search and 
identify social circles in ego networks. 

The identification of important elements and an impact analysis of coautorship networks [40] is also a research topic 
where centrality measures proved to be fundamental. They have used data from 16 journals in the field of library and 
information science with a time span of twenty years to construct a coautorship network and, they tested the use of four 
centrality measures (closeness, betweenness, degree and PageRank) as predictors of articles’ impact. To validate such an 
analysis, they compared the results obtained with the centralities with the citation counts.  They unveiled a high positive 
correlation amongst it and the metrics, which strongly suggests that central authors are mostly likely to have a better 
reputation and produce articles with increased citations. Louati et al. [41] applied the metrics as selection heuristics to 
desired trustworthy services for social networks. Likewise, there are studies about the setup of marketing strategies involving 
the selection of influential agents that increase the impact factor and improve the match between marketing content and 
users’ expectation and interests have also proved the need for centrality measures [42] [43]. 

2.6 Traffic and Transport Flow 
Physical transport of goods and people are a huge strategic logistic problem for cities, states, and countries. For instance, the 
analysis of terrestrial, air, and water traffic networks used centrality measures as heuristics to solve flow and routing 
problems. Hua [44] analyzed the United States air transportation network to unveil the importance and impact that each 
airport has over the air traffic network as a whole. 

Gao et al. analyzed the potential of centrality to predict road traffic and flow patterns [45]. They examined urban street 
flow using the taxis trajectory (recorded via GPS) and compared to the result predicted using betweenness centrality and the 
consideration of spatial heterogeneity of human activities, which was estimated using mobile phone Erlang values. The 
combination of centrality with other techniques showed to be extremely effective. 

Centrality measures and their models are also used in global and local scenarios [46] and on the analysis of different points 
of view (intersection, road, and community views) in such scenarios [46]. 

2.7 Centrality in Game Theory 
In game theory, centrality measures are employed in studies about coalitional games. Coalitional or cooperative games are 
usually formed by groups of individuals that are connected via a network. The efficiency of this network is often related to 
the groups’ performance [47]. 

Noble et al. [47] studied the impact and relationship between the centrality of an agent with their collective performance in 



 

the resolution of cooperative problems. They tested several centrality measures (betweenness, closeness, degree, and 
eigenvector) combined with different network structures (defining communication channels among agents) and distinct 
solving strategies (evolutionary algorithms) in a set of minimization problems (real-valued functions). They showed that the 
centrality of an agent severely affects its contribution for the overall collective performance of the network. 

Centrality measures also have shown significance to define strategies for the dynamic formation and evolution of networks 
connecting individuals in social and economic game-based networks. Further, the measures have also been applied to risk 
assessment, considering fairness and efficiency, and to identify a bank’s systemic impact and relevance [49]. Most games 
also make use of complex centrality measures, and as they require efficient algorithms and sometimes approximation 
algorithms to be feasible [48]. 

2.8 Biological Networks 
Biological networks are examples of network structures not built by humans composed by biological structures. Protein-
protein interaction (PPI) is one particular type of biological network where centrality measures have been applied [50]. They 
have applied centrality measures like betweenness, degree and closeness to select proper/informative candidates (proteins) 
for labelling in PPI networks clusters and then classify/predict their purpose or function inside a biological cell. They reason 
that the more central proteins in a PPI network cluster are probably responsible for a given cell function. The identification 
and the behavior of important proteins related to specific reactions in a cell constitute a huge step towards the development of 
drugs with minimal collateral effects and also to better understand diseases and hormonal interactions and their effects. Note 
that PPI networks are usually huge, sparse, and numerous. So, an efficient analysis method is fundamental in these 
applications. 

The metrics were also important in several studies about human brain connectivity and its behavioral interpretations [51] 
[52]. Neural connections and interactions (synapses) form huge complex networks where actions of a living being is 
controlled and determined. Therefore, the identification, classification, clustering, behavior, and inner-relationship are topics 
of high research interest. There is a growing demand for the applications of centrality measures in the biomedical sciences 
due to their successful use in many network related topics and the insights obtained from several application domains [51] 
[52]. 

3 PROLEGOMENON TO CENTRALITY MEASURES AND COMPLEX NETWORKS  

In this section, we cover the main concepts underlying the most important centrality measures and complex network models 
that shall be used in the sequel. Both topics are vital to understand of applications involving social, biological, and 
technological complex networks. 

Centrality measures are fundamentally complex and diverse, and so is the field of complex networks. Therefore, we 
provide brief, but clear explanations about their underlying definitions, ideas, purposes, and algorithms. For more 
comprehensive surveys on centralities, please see e.g. [53] [54]; complex networks and graph measurements are surveyed in, 
e.g.  [55] [56]. 

3.1 Vertex Centrality Measures 
Vertex centrality measures can be characterized by deterministic algorithms (and associated formulations) that describe the 
computation of a “centrality” value for each vertex of a graph or network. However, the concept of what centrality is and 
what exactly it measures depends on its mathematical formulation. As a result, there are several centrality measures capturing 
distinct ideas of centrality. Many of them are very similar to each other in their conception and computed results, while 
others are specifically designed to networks in a determined field [7] [8] [9] [13]. 

Informally, the main question that the centrality measures try and answer is how central a vertex is, how much it is at the 
core or in the periphery of a network. Depending on the definition of centrality, an individual with high centrality is the one 
that has more control, visibility, or independence inside a network. There are metrics suitable to directed and weighted 
graphs, while others are used in strong connected simple graphs, or in temporal graphs. Vertex centrality measures make use 
only of the structural pattern of the network (i.e., vertices connections, edges weights, and temporal timeline) for their 
evaluation. Therefore, all formulas and algorithms receive as input an adjacency matrix or adjacency list, with weights and 
temporal sequence when appropriate, representing the network under analysis. 

For certain centrality measures, meta-parameters can be tuned to adapt the metric to a given kind of network structure or to 
control the weights given to different aspects/parts of the centrality. The metrics adapted to directed graphs are examples of 
the former case and the ones composed of more than one centrality measure are examples of the latter case. 

In this section, we detail four of the main vertex centrality measures: betweenness, closeness, degree, and eigenvector. We 
also briefly explain some of the most relevant metrics in the literature. In the tutorial, we focus on unweighted symmetric 
networks, so we present the metric’s versions adapted for such kind of graphs; however, some modifications turn some of the 
metrics suitable for most kinds of graphs. Notice that in most applications where centrality is important, the vertices rank is 
used instead of their absolute centrality value. This aims at better comprehension, interpretation, and comparison of values. 
Rank centrality is a post-processing of the centrality measures where, for each vertex, a rank is given based on their centrality 
value decreasing order. If vertices are tied, their resulting rank is averaged.  

Centrality measures can be classified into four groups with respect to their purpose and conceptualization. 



 

3.1.1  Degree Centralities 
These are the simplest and most straightforward centrality measures. They were introduced by Shaw [7], formally defined by 
Nieminen [8] and popularized by Freeman [9]. These centralities are related with the idea of visibility that a vertex has 
among its neighbors. 

The degree centrality (CD) of a vertex w is the number of edges connected to it, i.e., the number of its adjacencies (1) [57]. 
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The corresponding algorithm has time complexity Θ(m) by counting each edge and does not require any specific graph 
representation [58]. So, an adjacency list can be used for sparse graphs with space complexity Θ(n+m) or an adjacency 
matrix for denser graphs with space complexity Θ(n²) [57]. The degree centrality is the less complex and has the smallest 
computational cost among centrality measures. 

The metric is subdivided into indegree and outdegree for directed graphs. There are variations in which the weights of the 
edges are accounted for. This class of metrics is the only one that considers only local information to evaluate each vertex 
centrality. Notwithstanding, it is highly correlated to all other centrality measures despite its simpler formulation. This metric 
has low capability at distinguishing vertices or ranking them, i.e., it considers many vertices as equally central [12]. 

3.1.2  Path Centralities 
This group of centralities evaluates the vertices as being central if they are in between (or at the “crossroads”) of many 
“paths”. This fact allows the vertices to control the communication through such paths. Each centrality of this class considers 
different kinds of paths or consists of a distinct evaluation of these paths. 

Most of these metrics require the graph to be strongly connected or evaluate each connected component of the graph 
individually and independently. However, there are more tolerant variations or adaptations that relax these restrictions to any 
kind of graph structure. 

The most widespread and used metric is the betweenness centrality (CB), which considers only the smallest paths, called 
geodesics. This concept was introduced by Shaw [7] and formally defined by Freeman [13]. 

The betweenness of a vertex w is the number of geodesics between vertices i and j that passes through vertex w divided by 
the total number of geodesics between the vertices i and j (2) [57]. Considering i and j all vertices of the graph, and j larger 
than i (a geodesic from i to j and from j to i is considered only once) [57]. 

The metric can be calculated using Brandes’ algorithm [14], keeping its time complexity at O(mn) and does not need any 
specific representation for the input graph [57] [58]. It is the least complex metric in this class of centrality measures. 
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Other examples of centrality measures that belong this class of metrics are: 
(i) Flow betweenness [15]: based on the network’s maximum flow paths; 

(ii) Random walk betweenness [16]: considers all paths, but weighs them according to the probability in which a random 
walk would passes through it; 

(iii) Communicability betweenness [17]: considers all paths, but rates the longest paths as less important; 
(iv) Range limited betweenness [18]: considers only the shortest paths inside a range limit. 

3.1.3  Proximity Centralities 
The basic idea of proximity centralities is that the lower the distance between a vertex to the others, the higher its centrality 
value and its independence from the network. The main difference among these centralities is that each metric computes the 
“distance” between vertices in a distinct way. Since these centralities are based on distance metrics, there is an inherent 
problem with disconnected graphs: depending on the centrality measure, the distance between two disconnected vertices are 
considered infinite or the largest possible distance for the given network size. 

The most prevalent and used centrality measure of this group is the closeness centrality (CC), first presented by Bavelas 
[59] and then formally defined by Sabidussi [60]. Closeness centrality is the sum of the geodesics inverse distances from the 
vertex analyzed to all other vertices (3) [57] [58]. 
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This metric can be calculated using a small variation of Brandes’ algorithm [61], keeping the same time complexity of 
betweenness centrality – and it does not require any specific representation for a graph [57] [58]. 

Other examples of centrality measures that belong to this class are: 
(i) Informational centrality [62]: it is computed by the probability that a random walk starting from the start point ends in 

the target point; 
(ii) Eccentricity [63]: considers only the distance to the farther vertex from the starting point; 
(iii) Random walk closeness [64]: the distance is measured by the average random walk time it takes to arrive to a target; 



 

(iv) Hierarchical closeness [65]: it is computed by a composition of closeness centrality and degree centrality (out degree 
in directed graphs). 

3.1.4  Spectral Centralities 
All metrics that belong to this group evaluate the vertices centrality by their participation in substructures of the network. 
They are called spectral measures because of their relation with the set of eigenvalues of the adjacency or Laplacian matrix 
of the graph representing the network. Perhaps the mostly widely used among these measures is the eigenvector centrality 
(CE). Bonacich [66] suggested the centrality based on the eigenvector of the largest eigenvalue of a network’s adjacency 
matrix. Eigenvectors can be seen as a weighted sum of not only immediate contacts but, as well as, indirect connections with 
every vertex of the network of every length [57] [58] [66]. Moreover, it weighs contacts of a vertex according to their own 
centrality, i.e., links with central vertices contribute towards their own centrality. 

The eigenvector respective to the largest eigenvalue can be computed via an iterative procedure known as “power method” 
using the adjacency matrix and an auxiliary vector [67], which reduces its computational cost considerably and avoids 
numeric precision issues [57]. 

The power method requires an infinite number of steps (worst case) but as the number of steps increases, the precision of 
the measure also increases [57]. Therefore, the number of decimal places can be used to turn this measure feasible even for 
massive networks where a hundred steps usually grants enough precision to differentiate the vertices centrality values [57] 
[67]. 

The eigenvector centrality value of a vertex w at an iteration it is the w index of a vector E multiplied by the adjacency 
matrix A divided by the sum of the elements of E at a previous iteration (4) [57] [67]. The vector E can be initialized with 
any real positive number [57] [67]. 
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The following centrality measures also belong to this class of metrics: 
(i) Katz centrality [68]: similar to the eigenvector centrality, but uses an attenuation factor to reduce the influence of 

distant vertices; 
(ii) PageRank centrality [69]: similar to the Katz centrality, but adds a dumping factor applied to directed graphs 

(correcting the rank sink and drain problems caused, respectively, by cycles and vertices with zero outdegree); 
(iii) Subgraph centrality [70]: evaluates the vertices by their participation in subgraph structures of the network giving less 

weight as the subgraph becomes larger;  
(iv) Functional centrality [71]: similar to the subgraph centrality, but with limited range on graph structures. 
In Table I we present a summary of the characteristics of the centrality measures discussed in this subsection. It shows if 

the centrality measures can be applied to digraphs and/or graphs with weighted edges; the expected parallelism speedup due 
to algorithmic restrictions and dependencies; the granularity of each measure, i.e., its ability to distinctly evaluate the 
vertices; and the complexity of the centrality algorithm and whether its parameters have to be tuned manually. 

It is important to notice that although Eigenvector, Katz and PageRank exact algorithms have quadratic upper bounds 
considering their time complexity, they perform in practice near linear time due to the application of an iterative version of 
the algorithms (“power method” [67]). For instance, this fact enabled the use of such centralities in the core of the ranking 
system of Web search engines, such as Google [69]. 

 
TABLE I. CENTRALITY MEASURES SUMMARY 

Centrality  
Measure Digraph Weighted  

Graph 
Parallelism  

Speedup Granularity Parameterized Complexity 

Degree No Yes High Low No Θ(m) 
Indegree Yes Yes High Low No Θ(m) 

Outdegree Yes Yes High Low No Θ(m) 
Betweenness No* No* High High No O(mn) 

Flow Betweenness No* Yes Medium Low No O(m2n) 
Random Walk 
Betweenness No No Low High No O(mn2+n3) 

Communicability No No Low High No O(n4) 
Range Limited 
Betweenness Yes Yes Low High Yes O(mnl+l/d) 

Closeness No* No* High Medium No O(mn) 
Information No Yes Low High No O(n3) 
Eccentricity No* No* High Low No O(mn) 

Random Walk Closeness No No Medium High Yes O(n2) 
Hierarchical Closeness Yes No* High Medium No O(mn) 

Eigenvector No No Medium High Yes O(n2) 



 

Centrality  
Measure Digraph Weighted  

Graph 
Parallelism  

Speedup Granularity Parameterized Complexity 

Katz Yes No Medium High Yes O(n2) 
PageRank Yes Yes Medium High Yes O(n2) 
Subgraph No No Medium High No O(n2) 
Functional No No Medium High Yes O(n2) 

*. There is a more complex version of the algorithm that supports this characteristic. 

3.2 Complex Network Models 
Recently, complex network research has aimed not only to the identification and understanding of network principles, but 
also to the effective use of their properties and applications [1] [2]. 

Research results have shown that technological, biological, and social networks share common properties, such as low 
diameter, high clustering coefficients, presence of community structure, and scale-free degree distribution [64] [65]. These 
developments have led to the identification of complex network models capable of stochastically generate networks with 
similar or related properties. These models were proposed with two main goals: (i) to understand what underlying effects 
give rise to such properties, and (ii) to produce synthetic networks with controlled characteristics that may serve as research 
tools for many disciplines [3] [12] [72] [73]. 

In this subsection, we briefly summarize the most well-known complex network models, starting by the simpler and elder 
ones. 

3.2.1  Erdős and Rényi Random Graphs 
Erdős and Rényi [74] introduced the first model that generates simple random graphs [58]. It defined a fixed number of 
vertices n and a probability p of connecting each pair of vertices, which also corresponds to the final clustering coefficient of 
the graph [58]. The higher is the value of p, the higher the mean degree and density, and the lower the diameter of the 
network [58]. These simple graphs do not represent real-world networks with high fidelity because they do not present any 
community structure and because their degree distribution follows a Poisson distribution [58]. 

3.2.2  Watts and Strogatz Small-World Model 
In small-world networks, most vertices can be reached within short paths [58]. In addition, these networks show a large 
number of small cycles, especially of size three [58]. Watts and Strogatz [72] proposed a model to generate networks with 
the small world properties. The graph starts with a ring of connected vertices, each one adjacent to its k nearest neighbors 
[58]. Then, with probability p, each edge is randomly reassigned to any available position. This relinking method, with an 
intermediate or small p (typically p should be lower than 0.5), will create paths among distant vertices while keeping a high 
clustering coefficient among close neighbors [58]. 

The higher is the value of k, the higher the vertex mean degree, clustering, and density, although diameter decreases. In 
addition, the higher is p, the lower is the clustering coefficient and diameter [58]. 

3.2.3  Barabási and Albert Scale-free Networks 
The analyses of large social networks data show that their degree follows a scale-free power-law distribution. Barabási and 
Albert [73] explained this property using the fact that networks expand continuously by the addition of new vertices and that 
these new vertices attach preferentially to vertices already well connected, i.e., vertices with higher degree (or “the rich get 
richer”) [58]. 

The model proposed by them has the above features. It starts with k number of fully connected vertices and keeps adding 
new vertices with k connections, defined by a preferential attachment formula [58]. The probability of a vertex pi receiving a 
new connection takes into consideration the degree d of the vertex divided by the sum over the degree of all vertices. In this 
way, high degree vertices have a greater chance of receiving new connections than vertices with lower degree: the higher 
values of k, the mean degree, clustering coefficient, and density gets higher, while the diameter sinks [58]. 

3.2.4  Networks with Community Structure 
Newman and Park [30] analysis of several social networks showed that such networks are formed by community structures. 
Each vertex has many connections with vertices inside the same community and few connections with vertices of other, i.e., 
outside communities [58]. In addition, they discovered that, in such networks, high degree vertices tend to be connected with 
other high degree vertices too [58]. Further, they showed that vertices with small degree are usually connected with vertices 
with small degree (i.e., they present dissortativity behavior) [58]. 

They proposed a model that generates random networks with the above properties [58]. Their model starts defining c 
communities and an (uneven) distribution of vertices for each community that represents distinct group sizes [58]. Further, 
each vertex can be assigned to more than one community [58]. Then, each vertex has a fixed high probability p of being 
connected to every other element of its own communities and zero probability to be connected with vertices to which it does 
not share a community [58]. Notice that the vertices that were assigned to more than one community are those that link the 
different communities [58]. In this network model, the higher the value of p and the lower the value of c, the higher is the 



 

network’s mean degree, clustering, and density, although network diameter decreases [58]. 

3.2.5  Geographical Models 
Complex networks are generally considered as lying in an abstract space, where the position of vertices has no definite 
particular meaning [58] [55]. However, several kinds of networks model physical interactions in which the positions of the 
vertices characterize a higher probability of interaction with close neighbors than with distant ones [58]. Costa et al. [55] 
introduced a model of this behavior where the probability of vertices i and j being connected decays exponentially with 
distance between i and j [58]. 

3.2.6  Kronecker Graphs 
Leskovec et al. [75] proposed a model in which real world networks are formed by the same substructures, repeatedly and 
recursively. The model defines an algorithm that estimates parameters capable of generating synthetic networks with 
properties similar to any given real network. 

The model starts with an adjacency matrix typically of order two to four. Each cell of the matrix represents the probability 
that a vertex has a link towards the other in a core substructure. An algorithm proposed by the same authors in which a real 
network is used as basis, estimates these initial parameters. The matrix is symmetrical for undirected graphs and 
asymmetrical for directed graphs. To recreate networks of arbitrary size, the matrix is multiplied by itself using the 
Kronecker product, a generalization of the outer product. The Kronecker product doubles the size of the network and can be 
repeated until the desired size is achieved. The resulting matrix is composed of several parameters (probabilities) that can be 
used to generate networks with properties that approximate the real network given as basis. 

 

 

 
Fig. 1. Sample networks generated by the complex network models (simple random graph, small-world model, scale-free model, networks 
with community structure, geographic model and Kronecker graphs, respectively, from top-left to bottom-right). The size of the vertices is 
proportional to their degree. All networks contain about a hundred vertices. Source [58] 

3.2.7 Block Two-Level Erdős and Rényi Model 
The Block Two-Level Erdős and Rényi (BTER) model [10] generates networks with very similar properties of real networks 
[57]. It builds a network based on a degree distribution and a desired clustering coefficient. All networks generated by the 
BTER model present community structures and low diameter (i.e., small-world phenomena) [10] [57]. 

The BTER model is divided into three steps [11]. First, the vertices are grouped by degree in communities with size equal 
to the degree of its members plus one [57]. Then, each community is considered an Erdős and Rényi graph where the 
probability of connection among vertices is equal to the desired clustering coefficient [57]. The last step generates 
connections proportional to the excess degree of each vertex (number of connections that a vertex needs to match its desired 
degree) [57]. This weighted distribution is based on Chung and Lu graphs [76] [77]. 
 

TABLE II. COMPLEX NETWORK MODELS SUMMARY 

Network Model Degree Distribution Assortativity* Number of 
Parameters 

Configuration 
Complexity 

Erdős and Rényi Poisson Positive 2 Low 
Small-World Model of 

Watts and Strogatz Dirac Delta Positive 3 Low 

Scale-free Networks Power Law Positive 3 Low 



 

Network Model Degree Distribution Assortativity* Number of 
Parameters 

Configuration 
Complexity 

Networks with 
Community Structure Multinomial Negative At least 3 Medium 

Geographical Models Poisson Negative At least 2 Low 
Kronecker Graphs Lognormal Any At least 5 High 

Block Two-Level Erdős 
and Rényi Multinomial Any At least 3 Medium 

*. The assortativity coefficient or assortative mixing is the Pearson correlation coefficient of the degree between pairs of connected vertices. A positive 
assortativity means that vertices tend to be connected with vertices with similar degree while a negative coefficient means that vertices are connected with 
higher or lower degree vertices. 
 
 

In Table II we present a summary of the characteristics of the complex network models discussed above. It shows the 
expected degree distribution and the assortativity coefficient of vertices degree in the networks generated with the model. It 
also presents the number of configurable parameters of each model and the overall complexity to configure such parameters 
to generate networks with desired characteristics (considering the restrictions and capabilities of each model). 

4 MACHINE LEARNING METHODS FOR NETWORK CENTRALITY MEASURES 
Several authors have proposed approximation techniques for specific network metrics. Unfortunately, typical centrality 

measures algorithms do not scale up to graphs with billions of edges (such as large social networks and Web graphs). Even 
though their algorithms are polynomial in time, their computation requires days or even months for massive networks [78] 
[79]. Closeness metric, for instance, takes about 5 years to compute for a network with 24 million vertices and 29 million 
edges [80]. This can be even more critical when one needs to compute many centrality queries, particularly when one is 
interested in the centrality of all vertices or whenever the network structure is dynamic through the time. This feature is 
common to most real networks, which are constantly changing and evolving in time [1] [55]. 

In this section, we describe the most common method for sampling and then a detailed tutorial of the methodology based 
on machine learning techniques for network centrality learning and computation. 

4.1 Vertices Sampling Techniques 
The underlying premises behind a sampling technique is simple: one should compute the exact centrality value for a 
predefined number of sampled vertices and then estimate the centrality value of the others based on such computation. For 
instance, the betweenness and closeness centralities share a quite similar foundation. One computes the single source shortest 
path (SSSP) for a given number of sample vertices. Each SSSP tree gives the exact centrality value for its source vertex. At 
the same time, one can use them as an approximation for the other vertices considering that all previously computed SSSP 
trees are partial solutions for such vertices. Therefore, a given vertex not sampled will have its centrality value approximated 
by an average result given by all SSSP trees from the sampled vertices. An algorithm for such objectives was defined and 
tested in real case scenarios by Bader et al. [78] for betweenness and by Eppstein and Wang [79] for closeness centralities.  

However, the simple approach given by the sampling technique has a few drawbacks and leads to relevant questioning 
such as how many vertices should be sampled and how should one select them? Or, how can one efficiently parallelize the 
sampling technique considering that it is not possible any longer to compute each vertex centrality independently?  

Brandes and Pich [81] studied the vertices selection problem. They proposed several heuristics to choose vertices for the 
sampling techniques, starting with simple ones, such as picking the high degree vertices and finishing with more complex 
ones, which considers vertices distances and mixed strategies. Despite all their attempts to find an optimal heuristic for such 
problem, they concluded that picking vertices uniformly at random on average is the best strategy when considering different 
types of network structures. 

4.2 Building Sampling Experiments 
In order to make the concepts clearer to the reader, we put the ideas into a practical experimentation. This will serve to 
illustrate the capabilities of the method in validation and comparative analyses. 

We shall illustrate the effect of sample sizes in a parallelized version of the sampling algorithms in real case scenarios 
using 30 real-world networks from four freely available data repositories. The selected networks are symmetric and binary 
(unweighted edges). Only the largest connected component (LCC) was used for the tutorial experiments, which was 
computed for all analyzed networks. The list of all real networks with their respective size and the size of its LCC 
(proportion w.r.t. the number of vertices), classified by network type and grouped by data repository is presented in Table III. 

In the sequel, we computed each of the four exact centrality measures (eigenvector – CE, betweenness – CB, closeness – 
CC, and degree – CD) for all real networks. The computation of eigenvector and degree centralities is sequential, while 
betweenness and closeness centralities are computed simultaneously with a merged algorithm keeping the same time 
complexity upper bounds and using parallelism [61]. All algorithms2 were programmed in C and the parallel computations 
used the native OpenMP (Open Multi-Processing interface). 
The computation of the metrics used a SGI Altix Blade with 2 AMD Opteron dodeca-core with 2.3GHz, 128KB L1 Cache 
 

2 The source code of the experiments in this tutorial paper is freely available at https://github.com/fgrandoinf/centrality-measures 



 

and 512KB L2 Cache per core, 12MB L3 cache total and 64GB DDR3 1333MHz RAM memory, Red Hat Enterprise Linux 
Server 5.4. 

The computation time is presented in Table IV, and represents the actual time spent for each of the metrics. Degree 
centrality required less than 1s to compute for all networks; therefore, we omitted it from the table. Table IV also presents the 
mean time required for the computation of a sample-based approximation algorithm for betweenness and closeness 
centralities. We adopted two sample sizes for each network: 2.5% and 5% of the number of total vertices. The samples were 
uniformly randomized and five independent trials with distinct random seeds were executed for each sample size for each 
network. 

The computation of the approximation algorithm was run in the same machine, but in a sequential environment. However, 
the computation of both algorithms shared similar parts; therefore, their computation was simultaneous for performance 
improvement. The times presented in Table IV comprise the computation of both metrics (betweenness and closeness). 

The parallelization of the approximation algorithms is inefficient because it requires a larger number of dependent 
variables between different threads and a larger amount of memory. Parallelization reduced the execution time in about half 
but used 24 cores and 24 times more memory in the parallel environment. Notice that eigenvector and degree centralities are 
feasible even for massive networks, requiring orders of time less to compute than betweenness and closeness centralities, 
even though the computation of the previous were sequential and the computation of the latter made use of 24 cores in a 
parallel environment. 

We also tested a sequential version for the latter centralities in the smaller networks (up to a hundred thousand vertices) 
used in the tutorial experiments. Experiments took around 16 times more computation time than their parallel versions, which 
indicates that the parallel version of the algorithm granted only about 2/3 of gain despite all threads being fully independent. 

One can also observe the overhead effect of the sampling algorithms. Such algorithms maintain the same asymptotic time 
complexity upper bound, but at the expense of higher constant variables. For such reason, they are only viable when the size 
of networks compensates this effect, which, in the tests, occurred only for the networks with more than one million vertices 
when compared with the parallelized version of the exact algorithms. 

We compared the results of the approximation algorithms (sample sizes of 2.5% and 5.0%) with the exact metrics using 
the Kendall τ-b correlation coefficient, which is a nonparametric measure of strength and association (interval [-1,1]) that 
exists between two variables measured on at least an ordinal scale. The 5% sample achieved a correlation of 0.9548, while 
the 2.5% sample achieved 0.9461. Therefore, we needed just a small fraction of vertices to approximate the centrality of all 
vertices of the network with high accuracy. However, the larger sample size, which required twice the time to compute, did 
not compensate its cost. 

 
TABLE III. EXPERIMENTAL DATA: REAL NETWORKS DESCRIPTION 

Network Type Vertices Edges LCC % 
Stanford Large Network Dataset Collection 

Autonomous Systems AS-733 [82] Routers 6,474 12,572 100.00 
Oregon-1 [82] Routers 11,174 23,409 100.00 
Oregon-2 [82] Routers 11,461 32,730 100.00 

Astro Physics [83] Collaboration 18,772 196,972 95.37 
Condensed Matter [83] Collaboration 23,133 91,286 92.35 
General Relativity [83] Collaboration 5,242 13,422 79.32 

High Energy Physics [83] Collaboration 12,008 117,619 93.30 
High Energy Physics Theory [83] Collaboration 9,877 24,806 87.46 

Amazon [84] Co-Purchasing 334,863 925,872 100.00 
DBLP [84] Collaboration 317,080 1,049,866 100.00 

Youtube [84] Social 1,134,890 2,987,624 100.00 
Brightkite [85] Social 58,228 212,945 97.44 
Gowalla [85] Social 196,591 950,327 100.00 

Enron [86][87] Email 36,692 180,811 91.83 
Texas [86] Road 1,921,660 1,879,202 70.31 

Facebook [39] Social 4,039 82,143 100.00 
Social Computing Data Repository 

Blog Catalog 3 [88] Social 10,312 333,983 100.00 
Buzznet [88] Social 101,168 2,763,066 100.00 

Delicious [88] Social 536,108 1,365,961 100.00 
Douban [88] Social 154,907 327,162 100.00 

Foursquare [88] Social 639,014 3,214,986 100.00 
Hyves [88] Social 1,402,611 2,184,244 100.00 

Livemocha [88] Social 104,438 2,193,083 99.68 



 

Network Type Vertices Edges LCC % 
BGU Social Networks Security Research Group 

The Marker Café [89][90] Social 69,411 1,644,781 99.86 
The Koblenz Network Collection 

US Power Grid [72][91]  Supply Lines 4,941 6,594 100.00 
Catster [91] Social 149,700 5,447,465 99.42 
Dogster [91] Social 426,820 8,543,322 99.92 
Hamster [91] Social 2,426 16,098 82.44 

Euroroad [91][92] Road 1,174 1,305 88.50 
Pretty Good Privacy [91][93] Communication 10,680 24,316 100.00 

 
 
 
 

TABLE IV. METRICS COMPUTATION TIME WITH THE REAL NETWORKS. 
DEGREE CENTRALITY REQUIRED LESS THAN 1 SECOND TO COMPUTE (AND IS OMITTED) 

Network 
Time (hh:mm:ss) 

Exact Sample 5% Sample 2.5% 
CE CB and CC CB and CC CB and CC 

Euroroad < 1s < 1s 00:00:52 00:00:23 
Hamster < 1s 00:00:03 00:01:42 00:00:49 

Facebook < 1s 00:00:05 00:03:31 00:01:42 
General Relativity < 1s 00:00:05 00:03:29 00:01:43 

US Power Grid < 1s 00:00:05 00:04:13 00:02:02 
Autonomous Systems AS-733 < 1s 00:00:11 00:05:35 00:02:45 
High Energy Physics Theory < 1s 00:00:25 00:07:21 00:03:36 

Pretty Good Privacy < 1s 00:00:25 00:09:07 00:04:33 
Oregon-1 < 1s 00:00:36 00:09:32 00:04:46 
Oregon-2 < 1s 00:00:37 00:09:50 00:04:49 

High Energy Physics < 1s 00:01:25 00:09:42 00:04:48 
Condensed Matter < 1s 00:03:20 00:18:54 00:09:23 

Blog Catalog 3 00:00:04 00:03:57 00:09:42 00:04:48 
Astro Physics 00:00:01 00:04:42 00:16:19 00:08:00 

Enron 00:00:01 00:10:28 00:30:46 00:15:12 
Brightkite 00:00:02 00:25:46 00:53:41 00:26:26 
Douban 00:00:03 02:10:51 02:45:48 01:23:02 

The Marker Cafe 00:00:29 03:05:17 01:50:32 00:54:31 
DBLP 00:00:09 03:33:41 07:40:50 03:49:58 

Buzznet 00:00:47 03:41:01 03:10:24 01:35:47 
Amazon 00:00:16 04:19:25 08:45:19 04:23:10 

Livemocha 00:00:39 04:30:08 03:19:42 01:40:25 
Gowalla 00:00:10 04:32:46 04:31:08 02:13:08 
Catster 00:01:17 06:16:43 07:04:34 03:15:08 

Delicious 00:00:20 09:47:57 15:34:38 07:53:01 
Foursquare 00:00:44 24:23:38 32:33:36 16:04:30 

Texas 00:00:10 33:38:20 49:06:11 24:07:02 
Dogster 00:01:39 120:30:45 27:05:10 17:11:20 
Youtube 00:01:03 188:07:33 44:04:45 22:28:10 
Hyves 00:00:41 213:16:27 54:08:52 26:24:56 

 
Next, we explain a faster (linear bounded) approximation technique for centrality measures that uses machine learning 

methods. 



 

4.3 Machine Learning Methods: Applications, Experiments, and their Analyses 
Some authors [57] [58] [94] have tried and experimented with approximation methodologies based mainly on machine 
learning and neural artificial networks. However, some of these works ([57] [58]) are limited because they only applied and 
showed the use of the technique for small networks with sizes up to 500 vertices, or focused the application to the 
approximation of eigenvector and PageRank centrality measures, which are feasible even for massive networks. In addition, 
none of the above works tried to optimize the neural network meta-parameters and structure using a generic neural network 
model instead. Here, we propose and explain a neural model methodology that has two major strengths: its adaptability (they 
can be used to approximate several distinct centrality measures) and its efficient computation time (they are able to compute 
the centrality measures a lot faster than any other method after the model has been trained). Moreover, we optimize the 
model considering several combinations of parameters and test it on real world networks comprising several thousands of 
vertices. 

The methodology underlying the machine learning method is divided into four main steps. 
(i) First, the training data is acquired by using a complex network model to generate synthetic networks in which the 

centrality measures are computed. This is the data used for training the artificial network; 
(ii) Second, the training algorithm, network size and meta-parameters are selected for training the artificial neural 

network; 
(iii) Third, the accuracy of the model generated with the artificial neural network is compared with models generated by 

other machine learning techniques; 
(iv) Finally, the regression model is generated with the artificial neural network and applied to real-world networks in an 

application. 
These steps are illustrated to facilitate the methodology understanding and reproduction of experiments using the 

techniques described here. In Fig. 2, the steps are used to illustrate how one can generate regression tasks in several 
applications. Each one of these steps will be detailed in the following sections. 
 

 
Fig. 2. Summary of the machine learning-based method for centrality measures. 

4.4 Training Data Acquisition 
When using any supervised machine learning method/algorithms, one important step is to obtain enough and consistent 
training data and to select the appropriate input data for the model. Since obtaining data from real networks is a costly 
process and that the computation of the centrality measures in huge networks is very expensive, one can generate one’s own 
networks for such purposes using a complex network model. 

The complex network model enables one to generate many synthetic networks with the properties enjoyed by real 
networks. Moreover, it allows one to generate smaller networks that reduce the computing costs to calculate the exact 
centrality measures, but – more importantly - keeping the most relevant structural properties presented by massive real-world 



 

networks. 
The BTER complex network model was chosen for such tasks as it is one of the best models to reproduce real world 

networks structural properties; moreover, it is easy to implement and configure. BTER requires two configuration 
parameters: the desired degree distribution and the clustering coefficient (which can be configured as a global value, by 
vertices degree or by community structure). In the tutorial, we applied both a heavy-tailed and a lognormal distribution as 
degree distribution to provide generic data to train and learn the model. Both distributions are known as the best 
representatives of most real networks degree distribution studied in the literature [95] [96]. 

Table V [57] summarizes the formula of each function used to model the degree distribution and the parameter values used 
in the experiments. The values generated by each function were considered as proportions (weights) that a given degree 
appears in a given network size [57]. 

 
TABLE V. DEGREE DISTRIBUTIONS OF VERTICES 

Distribution Formula Parameters 
Heavy-tailed k!! λ = {1.5, 2, 2.5} 

Log-normal e
!(!"!)2

!  S = {5, 10, 15} 
Source [57] 

 
 
The global clustering coefficient of many real networks belongs to the real numbers interval between 0.1 and 0.5, but 

preliminary tests with the BTER led to higher choices of clustering coefficients as parameter of the model [57]. This is 
mainly because the parameter set of the model is the maximum clustering coefficient to which the network generated [57]. 
Considering this, we selected as desired clustering coefficients for the model random values in the real numbers interval [0.3, 
0.7] [57]. 

There are also other configurable parameters to consider during the construction of the networks, like degree-1 vertices 
and groups of vertices with mixed degree [57]. Those are selected following the suggestions made by the BTER authors [11]. 

The training data contained 10 networks for each kind of degree distribution (Table V) with sizes ranging from 100 to 
1,000 vertices, totaling 600 synthetic networks and 330 thousand vertices. These relatively small sizes were selected to 
enable the computation of the exact ranks of the metrics (betweenness and closeness) used as labels during the training. 

The second issue one has to deal with is the selection of the proper input attributes to train the model. Each centrality 
measure uses complex properties of the graph representing the network and the computation of most of these properties are 
the main reason that centrality measures are time expensive. For such reason, in the tutorial we selected the fastest centrality 
measures (degree and eigenvector), which are computationally feasible even for massive networks and are highly related to 
the other metrics [12]. This provides generality to this tutorial as such metrics summarize most information needed to 
compute the other extant metrics. 

Therefore, we compute degree and eigenvector to serve as input data and we chose to compute the exact values of 
betweenness and closeness as desired output values (supervised learning) in the networks generated with the BTER model. 
Closeness and betweenness metrics were chosen because they are the most applied centrality measures but, at the same time, 
their exact algorithms computation is unfeasible or require too much time to compute in massive networks and dynamic 
networks. The increasing availability and interest of study on such networks created an urge for approximation techniques for 
both measures, as they are important analysis tools for many areas [53]. 

We computed the rank of each vertex in each centrality measure, as we are interested in the order of such vertices and not 
in the absolute centrality values. Consequently, a sample input of training data will contain the rank of a vertex considering 
the eigenvector and degree centralities (2 inputs) and the outputs/label/desired values will be the rank of the same vertex in 
one of the other centralities (betweenness and closeness in our experiments). 

In addition, when one is considering the use of the same technique to approximate other centrality measures (e.g. walk 
betweenness, hierarchical closeness or subgraph centralities), the input information will remain the same for the simplest 
centrality measures (degree and eigenvector). The desired measure/s need to be computed in the synthetic networks to serve 
as output labels during the training. Notice that such computation is feasible due to the use of the complex network model 
that generates smaller synthetic networks with properties similar to that of the massive networks that will later be used in the 
application environment. 

Both input and desired values are first normalized by the size of the network, then to belong to the interval [-1, 1] and 
finally to have zero mean and variance equal to one. The preprocessing helps configure the artificial neural networks in an 
easier way and allows for faster training. 

4.5 Artificial Neural Network Training 
The appropriate training of an artificial neural network can be a complex issue. Many techniques and methodologies, 
algorithms and tools can be applied in specific tasks. For such reason, we applied the neural network toolbox from MATLAB 
2015 to configure and train the neural networks. This toolbox comprises most of the algorithms that are well established in 
the field with a built-in parallelism pool and a robust implementation for industrial, academic and research use. 

Before one starts the training, one needs to select several meta-parameters for an artificial (neural) network, such as size 
and structure of the network, learning algorithm, and learning parameters. Therefore, in the experiments, we initially 
optimized these parameters using 10-fold cross-validation to find out the best configuration to approximate the centrality 



 

measures. 
The batch method is typically used to update the weights of the network. In batch training, the adjustment delta values are 

accumulated over all training items to give an aggregate set of deltas and then they are applied to each weight and bias. 
In the experiments, we stopped the training after 5min to check the fastest training configuration, so to avoid the use of a 

large unnecessary number of parameters and to prevent overfitting. Our objective here was to find out the most efficient 
configuration of parameters considering both its computational costs and solution quality. The quality of the solution was 
measured by the determination coefficient (R²) using only the test set results, which considers 10% of total data. 

We have selected the fully-connected feedforward multilayer perceptron neural network architecture as first approach as 
this model is robust to outliers, generates a highly flexible model and it is simple to implement and train using the 
backpropagation learning algorithm. 

First, we experimented with several networks sizes (numbers of neurons and hidden layers). The number of neurons of the 
networks with more than one hidden layer was selected in a way that they match the total number of learning parameters of 
the network with only one hidden layer. For example, the neural network with a single hidden layer with 175 neurons 
comprises 525 learning parameters in our configuration, the same exact number of parameters presented by a two-hidden 
layer network with 21 neurons in each layer and of a three-hidden layer network with 15 neurons in each layer. The same 
was valid for each of the other groups of test cases (7-3-2, 11-4-3, 25-7-5, 56-11-8, 84-14-10, 299-28-20 and 532-38-27 
respectively to one hidden layer, two hidden layers, and three hidden layers). The total number of learning parameters ranged 
from 18 to 1596. 

In this way, one can make a direct comparison of the effect caused by the number of layers and discover the most efficient 
configuration of parameters. Notice that the more parameters the network comprises, the better is its performance, up to a 
tipping point where the complexity of its training computation does not pay off and training efficiency decays. Therefore, an 
important objective is also to identify such tipping point to optimize the learning performance. 

One can select the training algorithm suggested by MATLAB environment as default (the Levenberg-Marquardt 
algorithm) to train the neural networks in this stage. Additionally, we set the activation function of all hidden layers to 
hyperbolic tangent (any sigmoid function would suffice for such task) and the activation function of the output layer as a 
linear function (due to the regression task in hand). 

In the experiments (Fig. 3), a three-hidden layer network with 20 neurons in each layer was the architecture that presented 
the best trade-off between solution quality and training speed. The larger networks suffered from overfitting and complexity 
demands, while smaller networks hindered solution quality. 

 
Fig. 3. Outline of results for different artificial neural network structures. Summary of results for each centrality measure ranked with 99% 
confidence intervals (i.e. the expected mean value is within the shown interval with 99% chance if the experiment is repeated). When the 
interval does not appear in the figure, it means that the variance is too small to be significant in this scale. 



 

 
Fig. 4. Summary of results for the artificial neural network algorithms, for each centrality measure; ranked version with 99% confidence 
intervals. The algorithms were grouped by their category, and then by increasing order of solution quality. We depict only the results for 
the three-hidden layer network architecture with 20 neurons in each layer – all the other architectures exhibited a similar pattern. 

 
Fig. 5. Outline of results for each combination of the LM algorithm parameters, for each centrality measure; ranked version with 99% 
confidence intervals. 

 
In the next stage of training, we experimented with all the backpropagation algorithms available in MATLAB’s neural 

network toolbox for feedforward networks (notice that, of course, many freely available machine learning software tools 
offer several versions of such algorithms). We tested all the combinations of previously selected network architectures with 
all algorithms. Table VI [57] depicts the algorithms and their selected parameter values for this experimental stage. The 
parameters are the ones selected by default by the MATLAB environment and are more robust for a large number of 
applications. The fact is noticeable in Fig. 4 where the performance of the different algorithms is depicted. 

One can notice that in Fig. 4, although the difference between most algorithms is considerably small, the second-order 
algorithms perform better than the ones with line search, which in their turn were generally better than the first-order 
algorithms. Moreover, the LM algorithm presents a slightly better overall result than all others do for Rank Closeness despite 
being statistically like all second-order algorithms for Rank Betweenness. Therefore, the LM algorithm was selected to 
further improvements and experiments in the final stage of parameter optimizations. 

In the third and final stage, we optimize the parameters within the LM method. The Marquardt adjustment (mu) initial 



 

value is set to a value close to zero. This allows the training algorithm to apply larger weight updates and so speed up the 
initial convergence, due to the fact that the weight values are initially set randomly (with lower and maximum bounds to 
avoid an initial and detrimental saturation of the activation function). It is not very important what exact value is chosen 
considering that the algorithm will further adjust the size of the steps dynamically during the training with two other 
parameters: mu decrease and increase factors. The LM method has also a parameter to set a maximum value for mu, which 
limits the method to a smallest step size and can avoid overfitting and the waste of time with finer grained, but nearly useless 
steps. In our application, this parameter can be set to an arbitrarily high value since we also use a maximum time limit to stop 
the training early and later (in the final setup and training) we use a validation set to avoid overfitting. 

Thus, we focus on the optimization of the mu decrease/increase factors, which are responsible for adjusting the mu factor 
at each training iteration and are usually sensible to each specific application, requiring finer adjustments to achieve the best 
results in solution quality and training performance. The decrease factor parameter is a proportion of the increase factor, 
preferably smaller than the other to prevent loops during training. The exact number of the increase and decrease factors 
depends on the numerical amplitude of the training data. As they are not easy to estimate, we tested a wide range [1.5,100] of 
parameter combinations. The results of this comparison can be checked in Fig 5. 

We can note by looking at Fig. 5 that excluding the decreasing factor value of 1 (100% of the increase factor), all other 
combinations of parameters were statistically similar within the confidence intervals. This fact demonstrates that these 
parameters do not interfere as much as one may think in this task. However, the combination 1.5 with 0.1 of increasing and 
decreasing factors, respectively, presents the lowest variance and the highest mean in our experimental results. Hence, we 
trained our final model using a fully connected artificial three-hidden layer network with 20 neurons in each layer (Fig. 6) 
and the LM algorithm with initial/maximum mu set to 0.005/1010 and increasing/decreasing mu factor set to 1.5/0.1. 

 
Fig. 6. Artificial neural network architecture for the experiments with the LM algorithm. 

 
TABLE VI. PARAMETERS OF THE BACKPROPAGATION ALGORITHM 

Algorithm Parameters 
Gradient Descent (Gd) [97] Learning rate = 0.01 

Gradient Descent with Momentum (Gdm) [97] Learning rate = 0.01 
Momentum constant = 0.9 

Variable Learning Rate Gradient Descent (Gdx) 
[97] 

Learning rate = 0.01 
Momentum constant = 0.9 
Increase/decrease ratio to learning rate = 1.05/0.7 

One-Step Secant (Oss) [98] 

Linear search = 1-D minimization backtracking [99] 
Initial step size = 0.01 
Scale factor to sufficient performance reduction = 0.001 
Scale factor that determine sufficiently large step size = 0.1 
Step size lower/upper limit = 0.1/0.5 
Minimum/maximum step length = 10-6/100 
Linear search tolerance = 0.0005 

BFGS Quasi-Newton (Bfg) [100] The same parameters and values as the method above. 

Polak-Ribiére Conjugate Gradient (Cgp) [101] 

Linear search = 1-D minimization using Charalambous’ method [102] 
Initial step size = 0.01 
Scale factor to sufficient performance reduction = 0.001 
Scale factor that determine sufficiently large step size = 0.1 
Scale factor to avoid small performance reductions = 0.1 
Linear search tolerance = 0.0005 

Fletcher-Powell Conjugate Gradient (Cgf) [101] The same parameters and values as the method above. 
Conjugate Gradient with Powel/Beale Restarts 

(Cgb) [103] The same parameters and values as the method above. 

Scaled Conjugate Gradient (Scg) [104] Change in weight for the second derivative approximation = 5.10-5 
Regulation of the Hessian indefiniteness = 5.10-7 

Resilient Backpropagation (Rp) [105] 

Learning rate = 0.01 
Initial weight change = 0.07 
Increment/decrement to weight change = 1.2/0.5 
Maximum weight change = 50 

Bayesian Regularization (Br) [106] 
Marquardt adjustment (mu) = 0.005 
mu decrease/increase factor = 0.1/10 
mu maximum value = 1010 

Levenberg-Marquardt (LM) [107] The same parameters and values as the method above. 
Source [57] 



 

 
Fig. 7. Training behavior of the parameters and the mean squared error (MSE) evolution over each epoch of training for each target 
centrality measure. 
 

Finally, we tested a different input configuration with the addition of two-hop degree rank (a vertex degree value summed 
with the degree of its immediate neighbors). In this experiment we only tested the neural network configuration for the final 
model. The results showed that the addition of a new input improved the accuracy of the model to approximate closeness 
centrality by 5% on average, but it reduced the accuracy for betweenness centrality by 10% on average. Therefore, we chose 
to use just the two basic inputs (degree and eigenvector ranks) for the final training of the model. 

For the setup that generates the final model, we divided the data uniformly at random (330,000 vertices from 600 different 
synthetic networks) into a set with 85% for training and a set with 15% for validation to prevent overfitting. The training 
stops whenever the solution does not improve for the validation set in 10 consecutive full batches. We set no training time 
limit (Fig. 7). 

Notice that although MSE continues to drop, the validation set serves as an early stopping criterion to prevent overfitting, 
because it was not used for training. The training took about 10min for rank closeness and about 7min for rank betweenness. 
We run the experiments in the same machine specifications with all CPU cores allocated for parallelism. The machine had 
the following specifications: Intel Core i7-5820K processor with six 3.3Ghz physical cores with 15MB shared cache 
memory, quad-channel 4x4GB DDR4 2133MHz RAM memory, Windows 10 operating system. 

The learning/regression of rank betweenness showed higher difficulty than rank closeness, even though both presented 
very low error bounds. This is supported by the final MSE values, one of each is half the other, but both are considerably 
small, since the output is in the interval [-1,1] and we used 330 thousand samples for training. 

4.6 Comparison Between Different Machine Learning Models 
There are many machine learning techniques capable of creating regression models in tasks such as the ones tackled in this 
tutorial. To reinforce the application of neural learning models we compared their performance with other machine learning 
techniques from the literature and also available in the MATLAB environment. For such purpose we applied the same 
training data and configuration applied for the neural learning algorithm (depicted in Subsections 4.4 and 4.5). 
 We applied a 10-fold cross-validation analysis to compute the R² as comparison factor. Notice that due to the high number 
of samples in the training data even small differences in the R² means a considerable disparity in the performance. The 
results and the algorithms applied in our experiments are described in Table VII. Due to the robustness of the implementation 
of the algorithms in MATLAB, all the 99% confidence intervals lie in the fourth decimal place; therefore, they are not shown 
in the Table. 

TABLE VII. MACHINE LEARNING MODELS COMPARISON 

Learning Algorithm Description Interpretability Flexibility 
CC CB 
R² R² 

Linear Regression A linear regression model with only 
intercept and linear terms Easy Very low 0.95 0.87 

Interactions Linear A linear regression model with 
intercept, linear and interaction terms Easy Medium 0.95 0.87 

Robust Linear 
A robust (less sensitive to outliers) 
linear regression model with only 
intercept and linear terms 

Easy Very low 0.95 0.86 



 

Learning Algorithm Description Interpretability Flexibility 
CC CB 
R² R² 

Stepwise Linear A linear model with terms determined 
by a stepwise algorithm Easy Medium 0.95 0.87 

Fine Tree A fine regression tree with minimum 
leaf size of 4 Easy High 0.96 0.88 

Medium Tree A medium regression tree with 
minimum leaf size of 12 Easy Medium 0.96 0.89 

Coarse Tree A coarse regression tree with minimum 
leaf size of 36 Easy Low 0.95 0.89 

Boosted Trees An ensemble of regression trees using 
the LSBoost algorithm Hard Medium to High 0.95 0.87 

Bagged Trees A bootstrap-aggregated ensemble of 
regression trees Hard High 0.95 0.88 

Linear SVM 
A support vector that follows simple 
linear structure in the data, using the 
linear kernel 

Easy Low 0.95 0.87 

Quadratic SVM A support vector machine that uses the 
quadratic kernel Hard Medium 0.96 0.87 

Fine Gaussian SVM 

A support vector machine that follows 
finely-detailed structure in the data. It 
uses the Gaussian kernel with kernel 
scale 1/2 

Hard High 0.96 0.88 

Medium Gaussian 
SVM 

A support vector machine that finds 
less fine structure in the data. It uses 
the Gaussian kernel with kernel scale 
2 

Hard Medium 0.96 0.87 

Coarse Gaussian SVM 
A support vector machine that follows 
coarse structure in the data. It uses the 
Gaussian kernel with kernel scale 4 2 

Hard Low 0.96 0.87 

MLP Neural Network 
with Backpropagation 

A Multilayer Perceptron Neural 
Network Implementation with 
Backpropagation Learning 

Hard High 0.97 0.92 

 We can check in the Table that the neural network architecture performs considerably better than all other techniques to 
approximate Betweenness centrality and slightly better for Closeness centrality. It proved to be the more flexible while 
robust tested methodology in our experiments although it may be hard to interpret. 

4.7 Artificial Neural Network Learning with Real World Network Data 
The final stage of a machine learning application is testing the respective learning algorithm/model with real world data to 
validate the model. In the tutorial experiments, we used 30 real-world networks from four freely available data repositories of 
network data. All the selected networks were symmetric and binary (unweighted edges). The largest connected component 
(LCC) is used in the experimental validation, and LCC was computed for all analyzed networks. 

First, we computed eigenvector and degree centralities for all vertices of the real networks. The rank of the vertices in each 
network considering each of the centralities is then used as inputs for the machine learning model to approximate its rank in a 
target selected centrality (betweenness or closeness in our experiments). Notice that a different model is used depending on 
the target centrality measure because a different model was trained specifically to approximate each centrality (Section 4.5). 

We also computed the exact values for the betweenness and closeness centralities for all the networks, but they are only 
used to compute the precision/error of the results provided by the approximation methods (Figs. 8 and 9) and to compare 
their cost in time (Table IV of Section 4.2). 

The next stage is to run the model generated by the artificial neural network and previously trained to approximate 
betweenness and closeness for the vertices of the real networks. In order to do so, we used the same computer configuration 
of the training tasks in a parallel environment with 6 cores. The computation took less than 1s for any of the networks, which 
is a significant result and illustrates the effectiveness of the machine learning methodology. 

We then compared the results generated by the neural network (NN) with the results of the approximation algorithms (with 
sample sizes of 2.5% and 5.0%) using the Kendall τ-b correlation coefficient. 

 



 

 
Fig. 8. Mean correlation coefficients computed for all real-world networks. 

 

 
Fig. 9. Mean correlation coefficients considering only three networks (Blog Catalog 3, Foursquare and Livemocha). These were the top 3 
networks w.r.t. the model’s performance for both centrality measures. 

 
One can see that there is just a small gain for the approximation algorithms when the size of sample is doubled (notice the 

difference between 2.5% and 5.0% above), which is hardly worth the cost considering that the computation time is doubled. 
On the other hand, the results obtained with the model were lower in quality, but still granted good results (over 0.55 for 
betweenness and 0.65 for closeness centralities). Moreover, because of the generic formulations based mainly on social 
networks characteristics that were input for the BTER model (which generates the synthetic networks used for the artificial 
neural network training), we expected a large variance in the results presented by the model considering distinct kinds of 
networks. This, however, is not observed for the sample-based algorithms, which perform nearly equally well in all networks 
tested. One can see that the learning model achieved a poorer result for the infrastructure networks (Euroroad, Texas, and US 
Power Grid for instance) and a better performance in social networks. 

These results show that even though the neural network model was not capable to rank all the vertices in the correct order, 
it is effective enough to classify chunks of vertices as highly central and has a close performance with respect to the sample 
approximation methods that require considerably more computational time. Many applications of centrality measures are 
interested in the selection of the top central vertices and not in their exact centrality order. For instance, the selection of 
influencers to optimize advertisement, the control and protection of critical spots in a communication network and the 
allocation of resources to enhance their distribution usually make use of a group of elements and do not rely on their specific 
order. Moreover, these kinds of networks, massive and constantly evolving require a continuous analysis and computation of 
such metrics. Therefore, the time saved by the use of a machine learning model is quite relevant in such applications. 

However, the use of machine learning may not be adequate to approximate centralities in applications that rely on the 
exact centrality values or are oversensitive to the order of the centrality rank. They are more adequate for applications where 
the use of centrality measures offers complementary analysis or are used as part of a decision process or heuristics. 

5 CONCLUSIONS 
The growing rate of network research and applications demands the development of principled research models and tools for 
network analysis.  Centrality measures are widely used in many application domains. However, as networks grow in size, 
their computation costs present several challenges, especially when working with complex real-world networks. These 
challenges may hinder some important applications and studies. 



 

Machine learning techniques have recently been successful in a number of relevant applications that manage large 
amounts of data [75] [107] [108] [109]. Moreover, the referred growing availability of massive amounts of network data 
demands the use of effective machine learning techniques to better exploit and to interpret these data. In this context, we 
presented a tutorial where we have explained how one can propose, explain, test, and compare centrality measures using 
artificial neural networks learning. To do so, we have identified the best configuration for the artificial neural network 
training, including network structure, training algorithm, and training meta-parameters.  

We have shown how one can use a generative model - such as the BTER complex network model - as a way to provide 
unlimited training data as it may be configured to generate synthetic networks of any size and with similar structural patterns 
for any kind of application. The experimental results revealed that two simple centralities, degree and eigenvector, can be 
used as input vector to approximate closeness and betweenness centralities. Experimental results show us that the machine 
learning methodology can be used with any other similar metric as targeted value, which increases their potential use. 

The model is able to approximate the target centrality measures with considerable accuracy and reduce computation costs 
in 30 real world experimental case scenarios. The model showed an incredible advantage and tradeoff with respect to 
computation costs, making it a viable option for applications where accuracy is not the fundamental goal and the computation 
resources are limited, but where approximations via machine learning are effective alternatives. 

Suggested future research avenues include the use and development of multi-tasking artificial neural networks capable of 
learning multiple centrality measures at once, and the approximation of temporal centrality measures using recurrent neural 
models. The development of tools capable of automatically generating/training artificial neural networks, which approximate 
several centrality measures for a given generic network, would also facilitate further applications. The methodology 
presented in this tutorial paper elicits the requirements towards building such tools. 
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