Check for
Updates

Safe Stream-Based Programming with Refinement Types

Benno Stein
University of Colorado Boulder
Boulder, Colorado, USA
benno.stein@colorado.edu

Manu Sridharan
Uber Technologies, Inc.
San Francisco, California, USA
msridhar@uber.com

ABSTRACT

In stream-based programming, data sources are abstracted as a
stream of values that can be manipulated via callback functions.
Stream-based programming is exploding in popularity, as it pro-
vides a powerful and expressive paradigm for handling asynchro-
nous data sources in interactive software. However, high-level
stream abstractions can also make it difficult for developers to
reason about control- and data-flow relationships in their programs.
This is particularly impactful when asynchronous stream-based
code interacts with thread-limited features such as UI frameworks
that restrict Ul access to a single thread, since the threading behav-
ior of streaming constructs is often non-intuitive and insufficiently
documented.

In this paper, we present a type-based approach that can statically
prove the thread-safety of Ul accesses in stream-based software.
Our key insight is that the fluent APIs of stream-processing frame-
works enable the tracking of threads via type-refinement, making
it possible to reason automatically about what thread a piece of
code runs on - a difficult problem in general.

We implement the system as an annotation-based Java type-
checker for Android programs built upon the popular ReactiveX
framework and evaluate its efficacy by annotating and analyzing 8
open-source apps, where we find 33 instances of unsafe UI access
while incurring an annotation burden of only one annotation per
186 source lines of code. We also report on our experience applying
the typechecker to two much larger apps from the Uber Technolo-
gies, Inc. codebase, where it currently runs on every code change
and blocks changes that introduce potential threading bugs.

CCS CONCEPTS

» Software and its engineering — Software notations and
tools; Formal software verification;

KEYWORDS

stream-based programming, refinement types, mobile applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE 18, September 3-7, 2018, Montpellier, France

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5937-5/18/09...$15.00
https://doi.org/10.1145/3238147.3238174

565

Lazaro Clapp
Uber Technologies, Inc.
San Francisco, California, USA
lazaro@uber.com

Bor-Yuh Evan Chang
University of Colorado Boulder
Boulder, Colorado, USA
evan.chang@colorado.edu

ACM Reference Format:

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang. 2018.
Safe Stream-Based Programming with Refinement Types. In Proceedings
of the 2018 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE ’18), September 3-7, 2018, Montpellier, France. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3238147.3238174

1 INTRODUCTION

Many popular user interface frameworks (e.g., Swing, Cocoa, Eclipse,
i0S, Android) distinguish a single main thread from which all Ul
accesses must be performed [4, 5, 16, 25, 47]. This design is pre-
ferred by library developers since it eliminates the need for library-
internal synchronization: there is no need to worry about data
races or deadlock when only one thread is allowed to perform Ul
operations.

However, the single Ul thread model requires application devel-
opers to carefully avoid interacting with the UI from other threads
since doing so results in a runtime crash or undefined behavior.

Such invalid thread access bugs are very common in practice: a
Google search for Android’s CalledFromWrongThreadException, one
of several exceptions that Android can throw when the Ul is ac-
cessed improperly, yields over 47,000 results, including numerous
Github bug reports, StackOverflow questions, and developer guides
and tutorials.

Furthermore, invalid thread accesses are difficult to detect and
debug in practice. Existing Ul testing techniques are often unable
to achieve adequate coverage of possible Ul interaction traces [11]
and struggle with bugs that only manifest on certain devices in
the diverse Android hardware and software ecosystem [19, 58].
Program analysis approaches to finding improperly threaded UI
accesses are similarly inadequate: the callgraph-reachability tech-
nique proposed by Zhang et al. [64] and the effect type system
of Gordon et al. [28] both identify methods that interact with the
Ul effectively but use a very conservative and restrictive model to
determine when those methods run on the UI thread; on the other
hand, general approaches to concurrency analysis typically focus
on shared memory access rather than determining the thread on
which a given piece of code will run [20, 44].

In recent years, there has been an explosion in popularity of
stream-based programming frameworks like Reactive Extensions
[50], especially for interactive software like Android applications
that need to respond to user input in real time. Such frameworks
provide expressive and convenient threading abstractions for ma-
nipulating streams of data and computation, but offer little in the

https://doi.org/10.1145/3238147.3238174
https://doi.org/10.1145/3238147.3238174
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3238147.3238174&domain=pdf&date_stamp=2018-09-03

ASE ’18, September 3-7, 2018, Montpellier, France

way of tool support to help developers avoid invalid Ul access by
reasoning about what thread a stream is running on.

We propose in this paper a refinement type-based static analysis
that identifies possible invalid thread UI accesses in stream-based
Android applications, combining an effect type system that tracks
the possible Ul interactions performed by methods with a thread
type system that encodes the possible threading behaviors of asyn-
chronous data streams.

Our approach not only detects (or proves the absence of) im-
proper Ul access, but also helps developers understand and reason
about Ul interactions in their code. Furthermore, our annotation-
based approach makes that reasoning explicit and self-documenting,
allowing future contributors to more easily understand, modify, or
extend previously annotated code.

Our typechecker currently runs on every commit made to two
major Android applications at Uber Technologies, Inc. (Uber), block-
ing any changes that may introduce invalid thread access bugs. In
practice, we have found that the typechecker catches potential
bugs earlier in the development process and more efficiently than
existing testing and manual code review are able to.

We build on the insights of Gordon et al. [28], who first showed
the applicability of effect-typing to modern Ul frameworks with a
distinguished UI thread, by extending their work in two key dimen-
sions. First, we introduce a thread type system for determining the
thread on which stream operators execute. Combining the thread
type system with the effect typing of Gordon et al. enables verify-
ing Ul effect safety for a wider class of threading constructs, with
almost no additional annotation burden for developers. Second,
we develop an effect inference technique for callbacks and lambda
abstractions that further lowers the annotation burden of UI effect
typing and improves code readability.

Contributions: The primary contributions of our work are as
follows:

e We introduce a novel refinement-type system that soundly
verifies that stream-processing code only accesses the Ul
from streams running on the Android main thread. We demon-
strate its efficacy by implementing a static annotation-based
type checker for Android applications built upon the Re-
activeX Java stream-based programming framework. Our
system statically refines the types of callbacks and lambda
abstractions by the effects they may incur and data/event
streams by the threads on which they may run, then verifies
that non-Ul thread streams never call methods with Ul effect.
We analyze a corpus of 8 open-source Android applications,
as well as two large closed-source applications developed
at Uber. In doing so, we find that (a) improper UI access is
detectable by our tool and prevalent in both open-source and
closed-source codebases and (b) annotation burden on the
programmer is low enough for the tool to be incorporated
into a production developer workflow. In total, we find 33 in-
stances of Ul-effectful callbacks running on non-Ul-threaded
streams in the open-source corpus. At Uber our tool runs on
every code change as part of continuous integration, block-
ing any change that may introduce stream-based threading
bugs.

566

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang

2 OVERVIEW

In this section, we provide background information about stream-
based programming frameworks, the Android UI model, and refine-
ment typechecking by applying our tool to a simple example from
a user’s perspective.

2.1 Reactive Extensions

Reactive Extensions (ReactiveX) [50] is a multi-language frame-
work for asynchronous stream-based programming which allows
developers to easily write code that operates over streams of events
or data, composing and transforming them with various functional
operators and subscribing callbacks to perform computations in
response to events.

Stream processing frameworks have gained popularity in recent
years due to their ability to provide a uniform interface to multiple
asynchronous input sources, allowing developers to build respon-
sive interactive applications and easily interoperate (via the stream
API) with new frameworks and technologies. Stream-based pro-
gramming also encourages a functional programming paradigm,
preferring composable modular computations to imperative proce-
dures over mutable state.

A typical use-case of ReactiveX is to receive or generate an
Observable stream, perform a number of operations that modify its
data or thread, and then subscribe an Observer (or other callback-
like object) to asynchronously consume the resulting event stream.
This so-called “fluent” interface, in which multiple calls are chained
together, is a hallmark of the stream-based programming paradigm,
combining ideas from the Observer pattern, the Iterator pattern,
and functional programming [50].

Take, for example, the code snippet in Fig. 1, which updates
car locations on a map using the ReactiveX framework. The
carLocationData stream represents location data for some set of
cars, updated periodically by a remote server. The filter operator
filters the stream to include only cars currently without a passenger.
Then, observeOn moves subsequent operations to the main thread,
a requirement for performing UI updates on Android. The delay
operator introduces a delay before each location update, to allow
for other processing to complete. Finally, the anonymous function
passed to subscribe invokes UI APIs to display the cars in the map.

A key feature of the ReactiveX fluent interface is that each oper-
ation in a chain of calls returns a new Observable instance rather
than performing side effects on the receiver of the call. This side-
effect free nature of ReactiveX enables a type-based analysis, since
each intermediate Observable instance in the call chain can be given
a single static type that is not subject to change later in the chain.
Note that ReactiveX’s API is distinct from the Builder pattern [23],
which supports a similar call-chaining syntax but does perform side
effects with each call, passing the same Builder instance through
the chain.

Though Fig. 1’s example makes use of only a few simple stream
operators, ReactiveX provides a wide range, from functional pro-
gramming standards like filter (emit only those data that satisfy
a given predicate) to more exotic combinators like switchMap (map
incoming data to new streams, emitting events only from the most
recent datum’s stream). Streams (i.e. Observables) possess 340 such

Safe Stream-Based Programming with Refinement Types

Observable<...> carlLocationData = ... ;

carLocationData
.filter (car
.observeOn (AndroidSchedulers.mainThread())
.delay (100, TimeUnit.MILLISECONDS)
.subscribe(

-> { /* display car on map */ },

-> { /* render error message */ })

-> /*car has no passengerx*/)

car
err

Figure 1: Simple example usage of ReactiveX Observable
streams. Contains the distillation of a threading bug that
was detected by our tool and fixed, as explained in sec-
tion 2.2,

operators in ReactiveX Java version 2.1.12, in addition to any cus-
tom operators defined by third party libraries or more specialized
types of streams.

With the expressivity of such a large and complex framework
inevitably comes a steep learning curve, since it is difficult for
developers to become familiar with the APIL This contributes to the
preponderance of threading bugs in real-world applications using
ReactiveX. In our experiments, we find that many programs contain
latent threading bugs that require a nuanced understanding of the
framework to detect.

The program in Fig. 1, for example, looks safe from improper
UI access at first glance: its author was careful to observeon the
Android main thread before subscribing a callback that renders
Ul elements and error messages. However, due to the threading
behavior of the delay operator, the program actually accesses the
UI from a background thread.

2.2 Refinement Typechecking

In spite of the intractability of determining what thread a piece of
code will run on in general, stream-based frameworks like Reactive
Extensions are amenable to thread analysis by means of refine-
ment types [22, 48]. As discussed in the previous section, the fluent
functional interface of ReactiveX streams is the key feature which
enables the use of a type-based approach to track the thread of in-
termediate calls in the chain, obviating the need for more expensive
general-purpose thread analyses.

Informally, a refinement type system can be thought of as aug-
menting base types (e.g., integers, lists, strings) by qualifiers that
further restrict the values of the base type (e.g., positive integers,
nonempty lists, ASCII strings). Refinement subtyping holds when
both base subtyping and qualifier subtyping hold, and standard intu-
itions about nominal subtyping over base types behave analogously
for refined types'.

In this paper, we verify the safety of Ul access in stream-based
Android programs using two separate but parallel type refinements.

First, we refine the types of all methods and callback-like objects
with an effect qualifier from Fig. 2, which places an upper bound on
the side effects they may incur, as in Gordon et al. [28]. We say a
method is “Ul-effectful” when it may access the Ul and is annotated
with @UIEffect.

!Namely, refinement subtyping is reflexive and transitive, and the Liskov substitution
principle holds for refined types.

567

ASE ’18, September 3-7, 2018, Montpellier, France

QUIEffect

T

@SafeEffect

Figure 2: Qualifier hierarchy for effect type refinements.

@AnyThread
@CompThread @QUIThread

@BottomThread
Figure 3: Qualifier hierarchy for thread type refinements.

Next, we refine the types of all data streams with a thread qual-
ifier from Fig. 3, which places an upper bound on the thread on
which they may emit events. If such a thread cannot be determined
statically, the stream will have the trivial @nyThread qualifier, which
does not restrict the base type at all.

In both cases, we take care to minimize annotation burden using
sensible default qualifiers, shorthands to annotate entire classes or
packages, and type inference to determine qualifiers where they
are implied.

Finally, we typecheck the program, confirming that all assign-
ments, return values, and function arguments respect their declared
types, Ul-effectful methods are never called from safe-effectful meth-
ods, and Ul-effectful callbacks are subscribed only to Ul-threaded
streams. Otherwise, we report warnings to the developer where
these conditions are not met.

A more precise and formal treatment of the refinement type sys-
tem we instantiate can be found in section 3. For now, we will build
intuition by applying our refinement typechecker to the program
in Fig. 1.

When a developer tries to compile the program in Fig. 1, our
compiler issues the following error at the subscribe callsite:

error: [rx.thread.violation] Subscribing a callback with
QUIEffect to an observable scheduled on @CompThread; QUIEffect
effects are limited to @UIThread observables

This error indicates a potential threading error in the program:
the callbacks being passed to subscribe can touch the UL but they
are being subscribed to a Observable scheduled on a background
computation thread.

The reason for this error is that delay automatically returns a
stream running on a background computation thread. Thus, even
though the developer used observeOn to force the stream onto the
main thread before subscribing Ul-effectful callbacks, the interme-
diate call to delay promptly moved it to a computation thread. In
practice, we found that even expert developers were often unaware
of this delay behavior, documentation of which is limited to a short
note buried deep in a large generated documentation file.

However, our typechecker refines the types of each program
value: @AnyThread for the initial carLocationData stream, @AnyThread
for the result of filter, @QUIThread for the result of observeOn,
@CompThread for the result of delay, and @UIEffect for the lambda
expressions passed to subscribe. Thus, our typechecker is able

ASE ’18, September 3-7, 2018, Montpellier, France

to identify the bug — subscription of a @UIEffect function onto a
@CompThread stream — and issues the error reproduced above.

The fix to this issue, once the developer has been made aware of
it by the typechecker, is simple and requires no annotations: swap
the positions of the delay and observeOn calls and the code will
typecheck and compile without error.

3 THREAD & EFFECT SEMANTICS

This section details the thread semantics of the Android UI frame-
work and the ReactiveX threading model and formalizes the thread
and effect type systems we use to analyze ReactiveX-based Android
applications.

Recall that the Android UI toolkit is not thread-safe and adheres
to a single thread model; as such, any code that accesses UI com-
ponents must do so from the UI thread [25]. This is a relatively
standard model for other UI frameworks, including iOS as well as
Java’s Swing, SWT, and AWT [4].

Existing work has established effect types as a useful abstraction
for developers to avoid violating this single-thread assumption [28].

However, such work is limited to relatively simple threading
models where the library provides an interface to the Ul thread for
code running elsewhere: for example, the Eclipse SWT UI frame-
work defines a function with signature

static void asyncExec(Runnable r);
which allows a developer to pass some Ul-effectful code r to be run
on the Ul thread.

While Android does provide analogous functions (e.g., Activity#
runOnUiThread, View#post) that can be analyzed by existing effect-
typing techniques, it also provides more expressive functions be-
yond their reach (e.g., AsyncTask, Handler). In addition, Reactive
Extensions’ threading constructs introduce even more complexity
and require new techniques to be analyzed properly.

3.1 Effects

The application of effect type systems to UI frameworks is a fairly
well-understood technique: functions are annotated with effect
qualifiers, which can then be checked to verify that the annotated
function does not perform any effects not permitted by its annota-
tion. Our effect system builds on top of that of Gordon et al. [28],
wherein functions have one of two effect annotations: QUIEffect,
denoting a method that may (or may not) interact with the UI, or
@SafeEffect, denoting a method that is guaranteed not to touch the
Ul

The sub-effecting relation < is given by @SafeEffect < @UIEffect
and the two reflexive relationships, @SafeEffect < @SafeEffect and
QUIEffect < @UIEffect. That is, a method with safe effect can be
used in place of a method with UI effect, but not vice versa.

We say that a program is effect-safe when its effect annotations
over-approximate all possible effects performed at runtime; thus,
in an effect-safe program, a method annotated @SafeEffect is guar-
anteed never to interact with the UL Checking effect-safety of a
program whose methods are annotated by their effect reduces to
checking the following two conditions:

- Transitivity: A method with effect annotation e may only
call a method with effect annotation e’ if ¢’ < e.

ZNote that this ignores polymorphic qualifiers, which will be detailed in section 3.3.

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang

568

class A {
QUIEffect void foo() (...}
@SafeEffect void bar() {...} }
class B extends A {
// Transitivity violation
@SafeEffect void baz() { foo(); }
// Inheritance violation
@QUIEffect void bar() {...} }

Figure 4: Example violations of the effect type system. B#baz
violates the transitivity condition because it is annotated as
safe but calls a Ul-effectful method A#foo, while B#bar vio-
lates the inheritance condition because it manipulates the
UI but overrides a method declared to be safe.

- Inheritance: A method with effect annotation e may only
override a method with effect annotation e’ if e < e’.

In other words, the transitivity condition states that safe methods
cannot call Ul methods, while the inheritance condition states that
methods cannot have Ul effect if they override a safe method. As-
suming that Ul-effectful library methods are annotated accordingly,
proving these two conditions suffices to show that the Ul is only
accessed from methods annotated with @QUIEffect. Figure 4 provides
concrete examples of effect-safety violations.

The reader may find it useful to think of these two conditions
in terms of reachability in a directed graph whose vertices are
methods, with edges from callers to callees and from superclass
methods to overriding subclass methods. In such a graph, an edge
from a method with effect e to a method with effect e’ violates one
of the above conditions when e < ¢’. The task of applying effect
types to an Android application is thus equivalent to determining
the region of nodes from which Android UI methods are reachable:
that region has Ul effect, while its complement has safe effect.

Other than the lambda support and inference mechanism de-
scribed in section 3.4, this effect type system is identical to that of
Gordon et al. [28].

3.2 Threads

The threading behavior of Android applications that make use of
stream-based programming frameworks like Reactive Extensions
is determined not only by a small set of Android API methods with
fixed semantics but also by a wide range of stream operators with
dynamic threading behavior. Effect typing alone is therefore insuf-
ficient to properly verify the UI thread-safety of such applications.

Consider, for example, the subscribe method of Observable, which
is called on a stream in order to register some callback to be exe-
cuted whenever an event is emitted by the receiver stream.

In contrast to Android’s runOnUiThread, which can safely be
passed a Ul-effectful callback in all contexts, subscribe can only
be passed a Ul-effectful callback obs when the receiver stream is
running on the UI thread.

In order to express that invariant, an analysis must reason not
only about the effects of methods, but also the threads on which
streams emit events (and, by extension, execute subscribed call-
backs).

Safe Stream-Based Programming with Refinement Types

To that end, we augment our type system with type annotations
that refine stream types by their thread. These type annotations
are drawn from the qualifier hierarchy given in Fig. 3. The top of
the qualifier hierarchy, @AnyThread, denotes a stream that can emit
events on any thread; @UIThread and @CompThread denote streams
that can emit events only on the UI thread or a background com-
putation thread, respectively; @BottomThread denotes a stream that
cannot emit events on any thread. This bottom type is never written
by a programmer but is used within the typechecker for the null
value, dead code, and wildcard lower bounds [9].

Annotating stream operators with thread type refinements al-
lows a typechecker to reason about the threading behavior of those
constructs. For example, the thread semantics of the delay func-
tion used in the motivating example in Fig. 1 can be specified by
annotating its receiver @AnyThread and its return type @CompThread.

Combining thread refinement types for streams with effect refine-
ment types for methods is the key idea that allows our typechecker
to verify Ul thread-safety of stream-based Android applications by
checking that subscription of Ul-effectful callbacks only occurs on
Ul-threaded streams.

3.3 Qualifier Polymorphism

Some design patterns — particularly those designed for modularity
and reusability — have effect and thread behavior that cannot be
expressed by a single type signature with fixed refinements. In
these cases, we make use of qualifier polymorphism.

Qualifier polymorphism is a form of parametric polymorphism,
which also underlies generics in Java and C# and universally quanti-
fied types in Haskell and OCaml. Consider, for example, this method
from the Java collections library, which creates a singleton set:

Set<T> singleton(T obj){...}

The generic type variable T may be instantiated as any single Java
object type, constraining the element type of the returned set to be
the same as the argument type.

Similarly, qualifier polymorphism uses a generic refinement
variable to relate type refinements rather than explicitly annotat-
ing types with a fixed qualifier. We define a @PolyThread (resp.,
@PolyUIEffect) qualifier that may be instantiated as any concrete
thread (resp., effect) qualifier, constraining the refinements on mul-
tiple types to be the same®.

Qualifier polymorphism is well suited to several design patterns
in stream-based Android applications, several examples of which
are selected and reproduced in Figure 5.

The Callback interface exhibits effect polymorphism: we use the
polymorphic qualifiers @PolyUIType and @PolyUIEffect to enforce
that a Callback instance has a Ul annotation when its handleMessage
method has Ul effect. Similar interfaces such as Runnable, Action,
and Observer are annotated analogously, relating the refinement
type of the callback-like object to the effect of its implemented
method(s).

3 Implicitly, a class or method with polymorphic qualifier annotations is parameterized
by a single refinement type variable which is used wherever the polymorphic qualifier
is written. As such, it is impossible to parameterize a definition by multiple refinement
type variables, but we have not found any any code patterns in practice where such
a type is required. This polymorphic qualifier syntax is defined and provided by the
Checker Framework [9].

569

ASE ’18, September 3-7, 2018, Montpellier, France

@PolyUIType interface Callback {
@PolyUIEffect
boolean handleMessage(Message m); }

class Observable<T> {
@PolyThread Observable<T> take
(@PolyThread Observable<T> this,
int k){...3};
@PolyThread Observable<T> observeOn
(@PolyThread Scheduler thread){...};}

Figure 5: Examples of thread- and effect-polymorphic types,
drawn from Reactive Extensions’ io.reactivex.Observable
and Android’s android.os.Handler, respectively.

Methods that take Callback instances with Ul effect versions of
handleMessage will need to declare the corresponding formal param-
eter as @UI Callback. Methods that do not care about the callback’s
effect take @PolyUI Callback instances. Our tool defaults to inter-
preting unannotated formals of a polymorphic type as @AlwaysSafe
(non-UI affecting) instances. Analogous logic applies to the types
of fields and locals.

The Observable class — the main stream data type in ReactiveX —
exhibits two distinct forms of thread polymorphism. First, most of
its methods (e.g., take in Fig. 5) do not affect the thread of the stream
they operate on; we express this behavior by constraining their
receiver® and return values to have the same thread refinement with
the @PolyThread qualifier. Second, we use thread polymorphism to
express the dependently-typed behavior of the observeon operator,
which takes a Scheduler (e.g., a thread pool) and returns a stream
emitting events on that thread pool. In order to do so, we overload
the meaning of our thread qualifiers to apply to schedulers as well
as streams and annotate the scheduler and the returned stream of
observeOn with the @PolyThread qualifier.

Qualifier polymorphism introduces some additional complexity
to the definition of effect-safety given in section 3.1. The interac-
tion between polymorphic and concrete effects is fairly straight-
forward: we have @SafeEffect < @PolyUIEffect and @PolyUIEffect
< @UIEffect, since those relations would hold for whatever con-
crete effect @PolyUIEffect takes on. That is, the body of an effect-
polymorphic method can call any method with safe effect but is
forbidden from calling Ul-effectful methods. On the other hand,
the body of an effect-polymorphic method may only call other
effect-polymorphic methods when they share the same receiver
object, since arbitrary other effect-polymorphic methods may be
instantiated with an incompatible concrete effect.

3.4 Lambdas and Qualifier Inference

The callbacks used in stream processing frameworks like ReactiveX
are typically written as either anonymous inner classes or Java 8
lambda expressions. When a callback is passed to a method whose
formal parameter is annotated with a particular effect qualifier, the
anonymous class or lambda must itself have a compatible type qual-
ifier. In the case of anonymous inner classes this can be achieved by

4The receiver this is explicitly written and annotated as the first argument to the
method, as per Java’s Type Annotation specification; this does not affect the semantics
of the function whatsoever [36].

ASE ’18, September 3-7, 2018, Montpellier, France

javac
T ' H
] Rx Thread & Effect Checker
Library 0 '
Annotation —— ” - 3 v
Stubs ‘ Type Qualifier Hierarchies | * Executable

Java Sources

Figure 6: Typechecker infrastructure diagram showing its
internal components, inputs and outputs. From a user’s per-
spective, Ul thread-safety checking is integrated seamlessly
with other javac compile-time checks in this default config-
uration, but it is also possible (by means of a command-line
option) to run the checker as a standalone process, emitting
a success message instead of generating an executable when
the program is deemed safe.

using a type-use annotation (e.g., new @UI Consumer{. ..} to spec-
ify a Consumer whose accept method has @UIEffect). However, the
syntax of Java lambda expressions does not permit any explicit
type annotations (refinement or otherwise). Rather, their type is
resolved through type inference.

Consider, for example, the Java type of the lambda expression
passed as the first argument to Observable#subscribe in Figure 1:

car -> { /xdisplay car on map */}

The first formal parameter of Observable#subscribe has type
@PolyUI Consumer, so the compiler infers that Consumer is the func-
tional interface’ base type of the lambda. During compilation, javac
will convert any lambda expression to an anonymous instantiation
of a compatible functional interface, inferring its base type from
the context.

However, the base type inference mechanism does not apply to
refinement type qualifiers. Instead, we apply local type qualifier
inference to compute the proper effect annotation with which to in-
stantiate the @PolyUI polymorphic qualifier by inspecting the body
of the lambda expression. If a call to a method with @UIEffect effect
is found within the body of the lambda, we mark the corresponding
anonymous instance of the functional interface as @UI, and other-
wise as safe. In the example above, as long as the code in brackets
includes at least one call to an @QUIEffect method, we infer the type
of the lambda to be @UI Consumer.

4 TYPECHECKER IMPLEMENTATION

This section details the implementation of a typechecker for the
aforementioned thread and effect type systems, which is able to
soundly verify the Ul thread safety of ReactiveX-based Java Android
applications.

The typechecker’s design balances competing goals: it must not
only provide reliable guarantees of safety and correctness, but also
be easy-to-use and integrate into developer workflows. What’s
more, in order to find and fix existing UI threading bugs, it must
be applicable to legacy codebases without a prohibitive amount
of configuration or annotation effort. To that end, we build the

5 A functional interface is any Java interface with a single abstract method.

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang

570

typechecker upon the Checker Framework [9, 14, 48], which pro-
vides infrastructure for building custom typecheckers that augment
Java’s base type system.

Refinement types are implemented as Checker Framework type
qualifiers: annotations on existing Java base types which are then
processed at compile-time by our typechecker. The Checker Frame-
work allows users to check those types by simply invoking a javac
compiler with certain command-line flags. This design enables any
modern Java build system or IDE to incorporate UI thread-safety
typechecking with minimal configuration overhead.

The typechecker plugin itself consists primarily of three com-
ponents, as shown in Fig. 6: the type qualifiers themselves, custom
typing rules that specify the Ul thread-safety invariant, and a type
factory that generates annotations that are not explicitly written
but rather inherited, derived, or inferred.

The type qualifier hierarchies — described in detail individually
in Section 3 - implement Java type annotations for each thread and
effect type. In addition to the type hierarchies shown in Figures 2
and 3, this also includes polymorphic qualifiers that range over
those lattices as well as class- and package-level annotations which
apply some annotation to each method therein.

The custom typing rules express the constraints on effect in-
heritance and transitivity and enforce the core Ul thread-safety
invariant: that @QUIEffect-ful callbacks may only be subscribed to
@UIThread streams. These custom typing rules augment the standard
rules implemented by the Checker Framework which constrain,
for example, actual parameters to declared formal parameter types,
assignment r-values to corresponding l-value types, and return
values to declared method signatures.

Finally, the implicit type factory is responsible for generating
type refinements for those variables that lack an explicit refinement
annotation. This process takes one of three forms:

- Inheritance: In addition to the @UIEffect and @SafeEffect
method annotations, the effect type system we build upon
also provides shorthand annotations to facilitate blanket an-
notation of all methods in a class or package [28]. These
shorthands are especially useful when all methods of a par-
ticular package or class share the same effect, saving the
effort of annotating each one manually.

Inference: Whenever our typechecker encounters a lambda
expression, we retrieve the functional interface base type
inferred by javac for the lambda. If that type has a concrete
effect qualifier, no inference is required and we simply apply
that qualifier. Otherwise, we scan the body of the lambda for
any invocations of methods with @UIEffect. If any are found,
then the anonymous instance associated with the lambda
expression is annotated @UI (see Section 3.4).

Defaults: When an un-annotated method or variable does
not inherit a type refinement and inference does not apply, a
sensible default is chosen by the typechecker. These defaults
minimize annotation burden dramatically by only forcing
developers to write annotations where the type refinement
varies from the default.

We refine un-annotated methods with the @SafeEffect quali-
fier so that annotations only need to be explicitly written on
code that interacts with the UI, while un-annotated streams

Safe Stream-Based Programming with Refinement Types

receive the @AnyThread trivial refinement so that, unless oth-
erwise specified, we soundly assume a stream could emit
events on any thread.

The choice of default annotations is a design choice; in prac-
tice, we find that these defaults largely correspond to devel-
oper intuitions and reduce annotation overhead.

Those three elements — qualifier hierarchies, custom typing rules,
and implicit type generation - suffice to typecheck whole programs:
programs that are complete and self-contained in a set of source
files. The stream-based Android apps we are concerned with, how-
ever, are open programs which interact with other libraries and
frameworks whose source code the typechecker may not have
access to: ReactiveX and the Android standard library, at a bare
minimum.

In order to typecheck code that interacts with un-analyzed ex-
ternal libraries, we refine types as needed at the public interface
of libraries using annotation stubs: files consisting of annotated
type signatures for library methods. These annotations allow the
typechecker to specify refinement types for third-party library code
without checking the internals of those libraries or rebuilding them
from source.

Annotation stubs are particularly effective for specifying the
effects of Android library methods and the threading behavior of
Observable operators. We present several such annotation stubs in
Figure 7 in order to build intuition and demonstrate the technique.

- ScrollView is an Android Ul element, so most of its methods
have UI effect. The @UIType class-level shorthand applies
QUIEffect to each of its methods; however, some methods -
including post — can safely be called from non-UI threads
and are thus annotated @SafeEffect.

delay schedules the returned Observable on the computation
threadpool, so its return value is annotated @CompThread.
observeOn returns an Observable that emits events on the
given Scheduler. This behavior is expressed by applying the
polymorphic @PolyThread qualifier to both the return type
and the thread parameter, constraining them to both have
the same thread refinement.

take simply truncates a stream after k events and does not
affect the thread of the stream it is called on, as is the case
with most Observable operators. We therefore constrain its
receiverand return value to run on the same thread, using
the polymorphic @PolyThread qualifier.

Annotation stubs are a possible source of unsoundness in our
approach, since the refinement types they provide are trusted and
the corresponding source code is unchecked. However, we are able
to mitigate this concern through careful review of source code and
documentation for both Android and ReactiveX. In particular, our
annotation stubs conform to the Android developer guide’s admoni-
tion that the android.widget and android.view packages comprise
the Android UI toolkit (i.e. have Ul effect) and to all threading behav-
iors specified in the ReactiveX Observable documentation [25, 50].

5 EVALUATION

We answer the following research questions in order to evaluate
our approach.

571

ASE ’18, September 3-7, 2018, Montpellier, France

(1) Is the typechecker usable and practical? Is the annotation
burden sufficiently small for real-world Android developers
to make use of the tool, and are the messages and warnings
emitted by the tool useful and understandable?

(2) Does the typechecker find real bugs and help fix them? Are
threading bugs in stream processing code prevalent in prac-
tice, does our tool identify them successfully, and is a pro-
gram that successfully typechecks reliably free of such bugs?

5.1 Evaluation Suite

Our experimental evaluation consists of case studies over 8 open-
source Android applications, as well as a report on our experience
applying the tool in production to two Android applications devel-
oped at Uber

We select open-source applications for our experiments from
Github according to the following criteria. First, we restrict our
search to Android applications written in Java (excluding Android
applications written in other languages since our typechecker op-
erates over a Java AST).

Of those, we consider only applications that import a 2.x version
of ReactiveX. We exclude applications using a 1.x version because
our annotation stub coverage thereof is more sparse and applica-
tions using the older library version are more likely to be abandoned
or broken.

Finally, we took the 8 most recently indexed applications with
10 or more Github “stars.” These two criteria form an imperfect but
practical proxy for repository activity: taking recently indexed apps
avoids those that are abandoned or unmaintained, while requiring
at least 10 stars ensures that the apps are not small personal projects
or one-off experimental applications.

We believe that the 8 subject programs selected thusly form a
reasonably representative cross-section of open-source Android
projects, including, for example: a widely-forked template for Model-
View-Presenter apps [61], a client for a Russian technology news
website [45], and an app that scans, tracks, and organizes receipts [7].
In total, this open-source evaluation suite consists of 142 thousand
lines of code written by 82 distinct contributors.

In addition to this corpus of open-source applications, we have
also applied the typechecker to the Uber Eats and Uber Driver apps,
both of which are large closed-source Android applications written
and maintained by professional developers at Uber.

5.2 Annotation Workflow

This section details the process of applying the typechecker to an
existing Android application.

First, we clone the application, and confirm that it builds success-
fully in our local environment. In practice, we found that all of the
open-source apps gathered according to our criteria use the Gradle
build system and were relatively easy to build locally [29]. Next,
we configure the application’s build to invoke our custom type-
checker simply by adding package dependencies and setting javac
command-line options in the build.gradle configuration file. At
this point, the typechecker is fully configured and will be seamlessly
integrated with the existing compilation process.

However, the task of refining effect and thread types of existing
code remains. We find it most efficient to annotate in two phases:

ASE ’18, September 3-7, 2018, Montpellier, France

@QUIType class ScrollvView {//...

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang

@SafeEffect boolean post(@UI Runnable action);}

class Observable<T> {//...
@CompThread Observable<T> delay(long delay,

TimeUnit unit);

@PolyThread Observable<T> observeOn(@PolyThread Scheduler thread);

@PolyThread Observable<T> take(@PolyThread Observable<T> this,

int k);3}

Figure 7: Selected example stub annotations for ReactiveX Observable methods and an Android UI class.

first, apply effect annotations throughout the application, ignoring
any errors related to threading and then, once all methods have the
proper effect type, apply thread annotations and/or fix real bugs
until no alarms remain.

Recall the two conditions that govern effect typing: methods
may only call methods with lesser effect (transitivity) and override
methods with greater effect (inheritance).

Since all unannotated application code has @SafeEffect by de-
fault and all Android UI methods have @UIEffect from annotation
stubs, every call from the application into the Android UI toolkit
violates the transitivity condition in the app’s initial (unannotated)
state. In order to deal with this avalanche of alarms, we first identify
all packages with names connoting UI effect (e.g., ui, view, widget,
layout, etc.) and use the package-level @UIPackage annotation to
apply @UIEffect to all methods therein.

Then, we triage remaining alarms and write type annotations
manually until no alarms remain. We proceed from files with the
most alarms to those with fewest, using the class-level @UIType for
especially alarm-ridden classes where most methods have Ul effect.

It is possible that our package- and class-level annotations assign
the @UIEffect refinement to methods that do not actually interact
with the UL As such, manual triage is not as simple as blindly propa-
gating QUIEffect annotations: we are careful to identify cases where
an alarm is due to the package- and class-level annotations and use
@SafeEffect to exclude a method from the coarse UI annotation
rather than further propagating the spurious @UIEffect.

Unlike the effect type system, which requires a moderate amount
of manual annotation, the thread type system requires almost none.
Rather, our library annotation stubs are sufficient for the type-
checker to determine the thread type refinement of intermediate
values of fluent call-chains in most cases, and it is rare for develop-
ers to store Observable streams in instance fields or local variables,
which would require type annotation at their declaration.

Therefore, once effect annotations are completed, the only re-
maining alarms in most applications are genuine threading vio-
lations, where a Ul-effectful callback is subscribed to a non-UI-
threaded stream. We manually inspect these violations to confirm
that they are bugs and then find fixes on a case-by-case basis.

Once fixes have been found and applied, the application is verifi-
ably safe from non-UI thread access of UI elements in stream-based
code.

Crucially, this fairly involved annotation process is a one-time
cost. After an application has been configured to use the thread
and effect typechecker and fully annotated once, future bug fixes
and feature additions require minimal annotations. Nonetheless,
possible threading errors are automatically reported by the com-
piler as they are written, allowing developers to write and modify
complex asynchronous stream-based software with confidence.

572

5.3 Experimental Results

For our experiments, we apply the described workflow to the 8
open-source applications gathered according to the aforementioned
criteria. Figure 8 reports a summary of our results, which we apply
here to the two stated research questions:

Is the typechecker usable and practical?

There are two facets to this question: first, is the annotation
burden reasonable, both in terms of developer time and total anno-
tation, and second, is the typechecker usable and understandable
for real Android developers?

Our results on the open source evaluation suite demonstrate
that, while the initial overhead of annotation is meaningful, it is far
from prohibitive: we spent an average of 2.3 hours per application,
writing one annotation per 186 source lines of code.

Does the typechecker find real bugs and help fix them?.

We find a total of 33 threading defects spread across 6 different
apps in the open source evaluation suite, an average of 4.1 errors
per application. The errors vary from simple oversights (e.g., forget-
ting an observeOn) to more complex interactions between multiple
stream operators and combinators. The wide range of bugs found
across a majority of subject programs demonstrates the applicability
and efficacy of our approach.

We reproduce one example defect identified by the typechecker
here, taken from the ForPDA [45] application and slightly modified
for clarity.

observable.onErrorReturn(throwable -> {
handleError (throwable ,onErrorAction);
return fallbackValue; 3})

.observeOn (AndroidSchedulers.mainThread())

.subscribe(callback)

The onErrorReturn method takes a lambda that runs whenever
the receiver Observable emits an error, catching the error and emit-
ting the lambda’s return value instead.

In this case, the lambda simply calls handleError on the error
throwable and returns a default value fallbackValue, before sched-
uling the resulting stream on the main thread and subscribing
a callback callback. The handleError function renders the error
message in the Ul but it may run on a background thread since
onErrorReturn precedes the observeOn that moves the stream to the
main thread. The fix to this bug is simple: switch the positions of
onErrorReturn and observeOn, and the code compiles without error.

5.4 Uber Case Study

As part of our evaluation, we deployed the typechecker in Uber’s
development infrastructure for two major applications: the Uber
Eats Android app and the newest version of the Uber Driver Android

Safe Stream-Based Programming with Refinement Types

ASE ’18, September 3-7, 2018, Montpellier, France

App KLoC Annotations Time Spent (hrs.) Errors Found Compile Time (sec.)
ForPDA [45] 33.0 197 3 4 27
chat-sdk-android [8] 34.6 102 2 6 21
trust-wallet-android [55] 8.8 27 1 2 17
arch-components-date [21] 0.7 2 0.5 0 8
MVPArms [61] 6.3 59 1 1 9
rxbus [37] 3.3 12 1 0 3
SmartReceiptsLibrary [7] 39.9 217 7 16 30
OpenFoodFacts [46] 14.9 146 3 4 41
Averages 17.7 95 2.3 4.1 19.5

Figure 8: Open-source test corpus experimental results. Reported LoC figures are computed with sloccount [59]. Reported
compilation times are the mean of five executions of gradle compiling all application release sources with our typechecker
enabled, measured on a laptop with an Intel i7-6700HQ processor and 8GB RAM, running Ubuntu 16.04.

app (then in development, it was released to partners in April 2018).
The typechecker runs as part of the continuous integration pipeline
in parallel with a manual code review process. It inspects every
patch, blocking code from merging into the trunk of the repository
if it fails to typecheck.

Android apps at Uber are organized as a collection of targets,
compiled and unit tested separately. Over a period of 8 months, we
progressively enrolled individual targets from each of the two apps
onto the typechecker. For each target, we first wrote an initial set of
annotations for existing code, then enabled typechecking for that
target and merged in the new annotations simultaneously.

Overall, we enrolled over half a million LoC corresponding to
targets from each of the two apps. As of this writing, we did not
enroll targets in other Uber apps, or shared platform code and
first-party libraries, although we did add (trusted but unchecked)
annotations stubs for shared UI code.

During the initial enrollment process, we made 41 substantive
changes to the application in addition to the added type annotations.
Most of those changes are simple additions of observe0n calls to
ReactiveX fluent call chains to move streams onto the main thread.
These represent potential preexisting issues regarding improper
UI access off the main thread. Although it is possible for many
of them to be safe in practice, due to implicit knowledge about
runtime behavior not captured in our type system, we consider
the safety offered by the typechecker to be worth the potential
marginal performance cost of moving these streams to the main
thread or performing redundant observeoOn calls.

During this enrollment period, we observed two critical pro-
duction bugs involving ReactiveX streams accessing the UI from a
background thread. The first was distilled into the delay() example
shown in Figure 1. The second was an issue where developers failed
to notice that Observable#switchMap could create and return a new
Observable on a different thread, rather than propagate the thread
of its receiver. These bugs were patched as soon as they manifested
in production and the app updated accordingly, but both would
have been caught by the current version of the typechecker had it
already been enabled for the corresponding targets. This gives us
some confidence that the tool is catching other similar issues before
they make it past the development stage. By design, issues identi-
fied by the typechecker are fixed before they become production
bugs.

573

After enrollment, any further commits changing files inside the
corresponding target are checked against our type system and de-
velopers are responsible for maintaining the annotations as part of
the development cycle. Over the 8 months of our rollout, over 4, 000
commits and 178 developers interacted with our typechecker. We
note that enrolled targets contain an average of one type annotation
per 104 LoC, indicating that the burden placed on developers is
relatively low.

Furthermore, when excluding commits made by the authors
during the initial enrollment, the annotation burden falls to one
type annotation per 179 LoC, implying that much of the annotation
burden is incurred upfront and not as ongoing maintenance cost.

We measured that developers have added 135 observeOn(...) in-
vocations to commits under code review in response to typechecker
warnings, each representing a potential fix to a threading defect that
could otherwise have gone uncaught. Note that we cannot verify
that all of these changes are fixing real threading bugs; some may
have been needed due to a spurious @UIEffect annotation or other
typechecking imprecision. But, as we have not received developer
feedback indicating excessive false positives, we believe that many
of these changes were either fixing real issues or improving the
code by making it more obviously safe. Catching these threading
issues early in the development process reduces costs and improves
productivity, as developers do not need to context-switch back to
code they wrote days or weeks earlier to fix bugs.

5.5 Threats to Validity

The evaluation results presented in this section are predicated upon
the correctness and soundness of our technique and experimental
design.

First, it is important to note that our technique does not make
any global guarantee about UI access or general thread-safety: the
typechecker only verifies that Ul-effectful code is annotated ac-
cordingly and stream-based code is safe from invalid UI thread
access. As such, our tool does not find Ul threading bugs outside of
stream-based code or non-UI threading bugs such as deadlocks or
data races.

Furthermore, the safety guarantees provided by the typechecker
are sound with respect to trusted library annotation stubs, which
could potentially diverge from the true behavior of the underlying
code. We note, however, that our QUIEffect annotations for the

ASE ’18, September 3-7, 2018, Montpellier, France

Android standard library include all methods explicitly specified as
Ul-effectful by the official developer guide [25].

Since these experiments were performed by an author of the tool,
it is possible that the reported time spent underestimates the time
that would be spent by a less experienced user. However, that factor
is balanced somewhat by the fact that we were unfamiliar with the
open-source applications being annotated - several of which were
even documented in languages not spoken by the annotator.

It is also possible that our subject program corpus is not repre-
sentative of stream-based Android programs in general, either due
to small sample size or biases in our selection criteria.

6 RELATED WORK

Although there is a wealth of research on analysis of concurrent pro-
grams, existing approaches are ill-suited to the problem of detecting
improperly threaded Ul interactions in asynchronous stream-based
software.

Much of the existing literature focuses on race detection, order-
ing violations, and deadlocks, leveraging a wide range of dynamic
and static techniques including instrumentation, lockset algorithms,
and model checking [20, 32, 44, 53].

However, the single thread model we wish to verify precludes
the need for general thread analyses: there are no data races or
deadlocks in a Ul library that runs on only one thread. Furthermore,
the aforementioned analyses are computationally expensive, relying
on various pointer and alias analyses to reason about Java’s heap-
allocated threading constructs.

Our type-based approach builds upon a deep body of work in
extensible type systems to address both of these issues with concur-
rency analysis, since typechecking is an intraprocedural analysis
that scales well and our type system is designed specifically to
identify improper UI thread access.

The idea of augmenting an existing type system with more ex-
pressive domain-specific types was introduced by Freeman and
Pfenning in their seminal work refining algebraic datatypes in Stan-
dard ML [22]. However, their contributions are primarily theoretical,
providing only a barebones proof-of-concept implementation.

Extending a language’s syntax with annotations to express refine-
ments, as originally proposed for Standard ML in [13], has emerged
as a technique enabling practical adoption of refinement type sys-
tems. Annotation-based type systems are widespread, augmenting
an existing static type system in Haskell [56] and SML [15] or
adding simple static types to dynamically typed languages such as
JavaScript [42] and Python [57].

In Java, the Checker Framework [48] provides a means to extend
the Java base type system with arbitrary custom type refinements.
This has also been used in the past, for example, to infer and check
locking disciplines for multithreaded programs, verify information
flow properties, and implement ownership and universe types [17,
18, 34].

The most closely related work to our own of which we are
aware is the effect type system of Gordon et al. [28], which is also
implemented using the Checker Framework. However, without
the qualifier inference and thread typing techniques detailed in
this paper, their typechecker is unable to verify the stream-based
applications with which we are concerned.

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang

574

Testing is a popular alternative to static analysis (type-based
or otherwise) when trying to rule out classes of errors in soft-
ware. There is a large body of work on automatically testing An-
droid applications at the level of the UL Fully automated test-
ing approaches include random and search-directed event gen-
eration tools [12, 27, 35, 38, 40, 52, 63], model-based exploration
[1,2,6, 10,31, 43, 49, 62], concolic testing [3], and event generation
using evolutionary algorithms [39].

Industrial state of the art mostly uses scripted UI tests con-
structed for a particular app using a testing framework [26, 51,
54, 60]. Record-and-replay systems also see widespread use to iso-
late bugs encountered during manual testing or after deployment
[24, 30, 33] and can be combined with search-based approaches
into hybrid testing schemes [41].

However, by their very nature, testing techniques cannot show
the absence of bugs, only their presence. Even a theoretical perfect
tester which explores all possible UI interaction traces can miss
threading bugs. For example, issues flagged by our typechecker
may depend on interaction with the network causing an event to
be emitted on a stream that is subscribed by UI affecting code, but
it is possible to explore every reachable view without this event
ever occurring and thus miss the bug.

A survey by Choudhary et al. [11] suggests that existing fully
automated UI testing tools do not significantly outperform random
exploration in terms of code coverage under a fixed time budget.
This could be due to either a faster rate of event generation for the
simpler approach or the difference in engineering efforts going into
an industry standard tool versus research prototypes. In either case,
these approaches are challenging to scale for large and complex
applications.

Finally, testing-based tools usually run late in the development
process, whereas our analysis can run before a code change has
even been merged into the trunk of the repository for our apps.

7 CONCLUSION

We present in this paper a technique that statically verifies Ul access
to occur only from the Ul thread in stream-based Android programs.
Our approach refines the types of data streams with a static bound
on their thread, refines the types of methods and callback-like
objects with a static bound on their side-effects, and collates the
two type systems in order to detect invalid thread accesses or prove
the absence thereof.

We demonstrate the efficacy and usefulness of our typechecker
by evaluating it on 8 open-source applications and finding 33 bugs.
We also report on our experience applying the tool at scale to
two large production Android applications at Uber, where it has
analyzed over 4000 commits by 178 developers at time of writing.

ACKNOWLEDGMENT

The authors would like to thank Werner Dietl, Colin Gordon, Michael
Ernst, and members of the CUPLV lab for valuable discussions.

This material is based on research sponsored in part by the
National Science Foundation under grant number CCF-1055066 and
by DARPA under agreement number FA8750-14-2-0263. The U.S.
Goverernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation
thereon.

Safe Stream-Based Programming with Refinement Types

REFERENCES

(1]

—
—

[12]

[13]

[14]

[15]

[16
[17

[18]

[19]

[20]

[21

[22]

[23]

[24

[25]
[26

[27

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De
Carmine, and Atif M. Memon. 2012. Using GUI Ripping for Automated Testing
of Android Applications. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE). 258-261.

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 5 (2015), 53-59.

Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-
mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE). 59.
Apple. 2018. App Programming Guide for iOS. https://developer.apple.com/
library/content/documentation/iPhoneOSProgrammingGuide.

Apple. 2018. MacOS Cocoa. http://developer.apple.com/technologies/mac/cocoa.
html.

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and Depth-First Exploration
for Systematic Testing of Android Apps. In Proceedings of the ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA). 641-660.

Will Baumann. 2018. Smart Receipts.
SmartReceiptsLibrary.
Chat SDK. 2018.
chat-sdk-android.
Checker Framework Developers. 2018. Checker Framework Manual. https:
//checkerframework.org/manual.

Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate Learning. In Proceedings
of the ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA). 623-640.

Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering (ASE).
429-440.

Lazaro Clapp, Osbert Bastani, Saswat Anand, and Alex Aiken. 2016. Minimizing
GUI Event Traces. In Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE). 422-434.

Rowan Davies. 1997. Refinement-Type Checker for Standard ML. In Proceedings
of the International Conference on Algebraic Methodology and Software Technology
(AMAST). 565-566.

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivan¢ Muslu, and Todd W.
Schiller. 2011. Building and Using Pluggable Type-checkers. In Proceedings of the
International Conference on Software Engineering (ICSE). 681-690.

Joshua Dunfield. 2007. Refined Typechecking with Stardust. In Proceedings of
the ACM Workshop Programming Languages meets Program Verification (PLPV).
21-32.

Eclipse. 2018. Standard Widget Toolkit. http://eclipse.org/swt.

Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,
Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han,
Paul Vines, and Edward XueJun Wu. 2014. Collaborative Verification of Informa-
tion Flow for a High-Assurance App Store. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). 1092-1104.
Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto Spoto, and Javier
Thaine. 2016. Locking Discipline Inference and Checking. In Proceedings of the
International Conference on Software Engineering (ICSE). 1133-1144.

Mattia Fazzini and Alessandro Orso. 2017. Automated Cross-Platform Inconsis-
tency Detection for Mobile Apps. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2017. 308-318.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

Rebecca Franks. 2018. Date Countdown. https://github.com/riggaroo/
android-arch-components-date-countdown.

Timothy S. Freeman and Frank Pfenning. 1991. Refinement Types for ML. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). 268-277.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd D. Millstein. 2013.
RERAN: Timing- and Touch-Sensitive Record and Replay for Android. In Pro-
ceedings of the International Conference on Software Engineering (ICSE). 72-81.
Google. 2018. Android Developer Guide. https://developer.android.com/guide.
Google. 2018. Espresso. https://developer.android.com/training/testing/ui- testing/
espresso-testing.html.

Google. 2018. UI/Application Exerciser Monkey. https://developer.android.com/
tools/help/monkey.html.

https://github.com/wbaumann/

Chat SDK Android. https://github.com/chat-sdk/

ASE ’18, September 3-7, 2018, Montpellier, France

Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. 2013. Java
UI : Effects for Controlling UI Object Access. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). 179-204.

Gradle, Inc. 2018. Gradle Build Tool. https://gradle.org.

Matthew Halpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:
Cross-Platform User-Interaction Record and Replay for the Fragmented Android
Ecosystem. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 215-224.

Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable Ul-Automation for Large-scale Dynamic Analysis
of Mobile Apps. In Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys). 204-217.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2004. Race Check-
ing by Context Inference. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 1-13.

Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet Lightweight
Record-and-Replay for Android. In Proceedings of the ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 349-366.

Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. 2012. Inference
and Checking of Object Ownership. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP). 181-206.

Bo Jiang, Yuxuan Wu, Teng Li, and W. K. Chan. 2017. SimplyDroid: Efficient
Event Sequence Simplification for Android Application. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering (ASE).
297-307.

JSR 308 Expert Group. 2014. Annotations on Java Types. http://download.oracle.
com/otndocs/jcp/annotations-2014_01_08-pfd-spec.

Kuwork. 2018. RxBus. https://github.com/kuwork/rxbus.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input
Generation System for Android Apps. In Proceedings of the Joint Meeting on
Foundations of Software Engineering (FSE/ESEC). 224-234.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented
Evolutionary Testing of Android Apps. In Proceedings of the ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE). 599-609.

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-Objective Automated
Testing for Android Applications. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA). 94-105.

Ke Mao, Mark Harman, and Yue Jia. 2017. Crowd Intelligence Enhances Auto-
mated Mobile Testing. In Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE). 16-26.

Microsoft. 2018. TypeScript. https://www.typescriptlang.org.

Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam Malek.
2016. Reducing Combinatorics in GUI Testing of Android Applications. In Pro-
ceedings of the International Conference on Software Engineering (ICSE). 559-570.
Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race Detec-
tion for Java. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 308-319.

Evgeny Nizamiev. 2018. ForPDA. https://github.com/RadiationX/ForPDA.
Open Food Facts, Org. 2018. Open Food Facts. https://github.com/openfoodfacts/
openfoodfacts-androidapp.

Oracle. 2018. JDK Swing Framework. http://docs.oracle.com/javase/6/docs/
technotes/guides/swing/.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. 2008. Practical Pluggable Types for Java. In Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
201-212.

Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: Auto-
matic Security Analysis of Smartphone Applications. In Proceedings of the ACM
Conference on Data and Application Security and Privacy (CODASPY). 209-220.
Reactive Extensions. 2018. Reactive Extensions. reactivex.io.

Robotium. 2018. Robotium. https://github.com/robotiumtech/robotium.
Raimondas Sasnauskas and John Regehr. 2014. Intent Fuzzer: Crafting Intents of
Death. In Proceedings of the Joint International Workshop on Dynamic Analysis
(WODA) and Software and System Performance Testing, Debugging, and Analytics
(PERTEA). 1-5.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas E.
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multi-Threaded
Programs. In Proceedings of the ACM Symposium on Operating System Principles
(SOSP). 27-37.

Selendroid. 2018. Selendroid. http://selendroid.io/.

Trust. 2018. Trust Wallet. https://github.com/TrustWallet/
trust-wallet-android-source.

Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. 2013. Abstract Refinement
Types. In Proceedings of the European Symposium on Programming (ESOP). 209
228.

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014.
Design and Evaluation of Gradual Typing for Python. In Proceedings of the ACM

https://developer.apple.com/library/content/documentation/iPhoneOSProgrammingGuide
https://developer.apple.com/library/content/documentation/iPhoneOSProgrammingGuide
http://developer.apple.com/technologies/mac/cocoa.html
http://developer.apple.com/technologies/mac/cocoa.html
https://github.com/wbaumann/SmartReceiptsLibrary
https://github.com/wbaumann/SmartReceiptsLibrary
https://github.com/chat-sdk/chat-sdk-android
https://github.com/chat-sdk/chat-sdk-android
https://checkerframework.org/manual
https://checkerframework.org/manual
http://eclipse.org/swt
https://github.com/riggaroo/android-arch-components-date-countdown
https://github.com/riggaroo/android-arch-components-date-countdown
https://developer.android.com/guide
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/training/testing/ui-testing/espresso-testing.html
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://gradle.org
http://download.oracle.com/otndocs/jcp/annotations-2014_01_08-pfd-spec
http://download.oracle.com/otndocs/jcp/annotations-2014_01_08-pfd-spec
https://github.com/kuwork/rxbus
https://www.typescriptlang.org
https://github.com/RadiationX/ForPDA
https://github.com/openfoodfacts/openfoodfacts-androidapp
https://github.com/openfoodfacts/openfoodfacts-androidapp
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/
http://docs.oracle.com/javase/6/docs/technotes/guides/swing/
reactivex.io
https://github.com/robotiumtech/robotium
http://selendroid.io/
https://github.com/TrustWallet/trust-wallet-android-source
https://github.com/TrustWallet/trust-wallet-android-source

ASE ’18, September 3-7, 2018, Montpellier, France

Symposium on Dynamic Languages (DLS). 45-56.

[58] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android Fragmenta-
tion: Characterizing and Detecting Compatibility Issues for Android Apps. In
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering (ASE). 226-237.

[59] David A. Wheeler. 2004. SLOCCount. https://www.dwheeler.com/sloccount/.

[60] Xamarin. 2018. Calabash. http://calaba.sh/.

[61] Jess Yan. 2018. MVP Arms. https://github.com/JessYanCoding/MVPArms.

[62] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-Box Approach for Au-
tomated GUI-Model Generation of Mobile Applications. In Proceedings of the

Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang

576

[63

(64

]

International Conference on Fundamental Approaches to Software Engineering
(FASE). 250-265.

Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. DroidFuzzer: Fuzzing
the Android Apps with Intent-Filter Tag. In Proceedings of the International
Conference on Advances in Mobile Computing & Multimedia (MoMM). 68.

Sai Zhang, Hao Lii, and Michael D. Ernst. 2012. Finding Errors in Multithreaded
GUI Applications. In Proceedings of the ACM/SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA). 243-253.

https://www.dwheeler.com/sloccount/
http://calaba.sh/
https://github.com/JessYanCoding/MVPArms

	Abstract
	1 Introduction
	2 Overview
	2.1 Reactive Extensions
	2.2 Refinement Typechecking

	3 Thread & Effect Semantics
	3.1 Effects
	3.2 Threads
	3.3 Qualifier Polymorphism
	3.4 Lambdas and Qualifier Inference

	4 Typechecker Implementation
	5 Evaluation
	5.1 Evaluation Suite
	5.2 Annotation Workflow
	5.3 Experimental Results
	5.4 Uber Case Study
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

