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Abstract—ESBMC is a mature, permissively licensed open-
source context-bounded model checker for the verification of
single- and multi-threaded C programs. It can verify both
safety (e.g., bounds check, pointer safety, overflow) and user-
defined (as asserts in the program) properties automatically.
ESBMC provides C++ and Python APIs to access internal data
structures, allowing inspection and extension at any stage of
the verification process. We discuss improvements over pre-
vious versions of ESBMC, including the description of new
front- and back-ends, IEEE floating-point support, and an
improved k-induction algorithm. A demonstration is available
at https://www.youtube.com/watch?v=N_qmN-cazvM.

I. INTRODUCTION

ESBMC is a mature bounded model checking (BMC) tool
for multi-threaded C programs. Its development started in
2008 on top of the CProver framework [1], but almost all
components have been re-designed and re-implemented in
subsequent years, including the basic data structures, front-
end, symbolic execution, memory model, and back-end. The
purpose of this paper is to describe the recent (but yet
unpublished) tool modifications and extensions, including:

• a more robust, clang-based [2] frontend;
• an improved handling of floating-point arithmetics;
• an improved k-induction scheme that allows ESBMC to

better handle programs with unbounded loops; and
• a Python API that gives users easy access to ESBMC’s

internal data structures.
ESBMC primarily aims to help software developers by

finding subtle bugs in their code (e.g., array bounds violations,
nil-pointer dereferences, arithmetic overflows, or deadlocks).
It does not require any special annotations in the source code
to find such bugs, but it does allow users to add their own
assertions and also checks for violations of these. In addition,
ESBMC implements k-induction [3] and can therefore be used
to prove the absence of property violations (resp. the validity
of user-defined assertions). It relies on off-the-shelf satisfia-
bility modulo theory (SMT) solvers such as Boolector, Z3,
Yices, MathSAT, and CVC4 to fully automatically check the
verification conditions corresponding to the safety properties.

ESBMC has been applied to a large number of applications
from telecommunications, control systems, and medical de-
vices [4]. It is open source (under the terms of the Apache
License 2.0) and its source code and self-contained binaries
for 64-bit Linux environments are available at https://github.
com/esbmc/esbmc/ and www.esbmc.org, respetively.

II. COMPONENTS AND FEATURES

By default, ESBMC takes a C program and checks for
array bounds violations, divisions by zero, pointer safety

(incl. alignment), and all user-defined properties. It also has
options to check for overflows, memory leaks, deadlocks and
data-races, and to choose between a fixed- or (IEEE) floating-
point arithmetic. Figure 1 shows the tool architecture.

1) Front-end: ESBMC now uses clang [2], a state-of-the-
art compiler suite for C/C++/ObjectiveC/ObjectiveC++ widely
used in industry [5], as its front-end. This avoids the need
to maintain a separate front-end and allows us to focus on
our main objective, software verification. Specifically, ESBMC
uses clang’s API to convert clang’s AST into its own AST.
ESBMC thus differs substantially from other software verifiers
such as LLBMC [6] that use the LLVM bytecode. Note that
the C++ elements of the clang AST are not yet fully integrated
with ESBMC; it does not yet support polymorphism and some
other minor features. This requires some bug fixes in clang,
for which we already submitted patches.

2) Control-flow Graph (CFG) Generator: The CFG gener-
ator takes the program AST and transforms it into an equiva-
lent GOTO program, a simplified representation that consists
only of assignments, conditional and unconditional branches,
assumes, and assertions. In particular, this step eliminates all
for, while, do-while and switch statements. It also
adds checks for division by zero and out-of-bounds access
(and for integer and floating-point overflow, if enabled). In k-
induction mode (cf. Section III) it also analyses loop bodies
and “havocs” any variable modified inside a loop with non-
deterministic values; the havocked variables are used by the
inductive step to over-approximate the loop.

3) Symbolic Execution Engine: ESBMC then symbolically
executes the GOTO program: it unrolls loops k times, gener-
ates the static single assignments (SSA) form of the unrolled
program, and derives all the safety properties to be checked
by the SMT solver. This step also inserts pointer safety checks
for dynamically allocated memory, if they are enabled. Note
that this can only be done after unrolling because the pointer
analysis needs to know the maximum set of dynamically
allocated objects. ESBMC aggressively simplifies the program
to generate small SSA sets, using constant folding and various
arithmetic (including floating-point) simplifications.

4) SMT back-end: ESBMC’s SMT back-end supports five
solvers: Boolector (default), Z3, MathSAT, CVC4 and Yices.
The back-end is highly configurable and allows encoding
quantifier-free formulas with support for bitvectors, arrays,
tuple, and fixed-point arithmetic (all solvers), linear integer
and real arithmetic (all solvers but Boolector) and floating-
point arithmetic (all solvers).We use the back-end to encode
the SSA form of the program into a quantifier-free formula and
check satisfiability of C∧¬P , where C is the set of constraints
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Fig. 1: ESBMC architectural overview. The tool takes a C program as input. It then converts the AST generated by clang into
a CFG and the symbolic execution engine unrolls the program and generates the SSA form of the program. The SSA is then
converted to an SMT formula which is satisfiable only if the program contains errors.

and P is the set of properties. If the formula is satisfiable,
then the program contains a bug: ESBMC will generate a
counterexample with the set of assignments that lead to the
property violation.

5) Python API: ESBMC now includes a Python API that
reduces the difficulty of prototyping new features and makes
the tool internals accessible to a wider audience, i.e., the
verification process shown in Figure 1 can be intercepted and
changed at any point. Python is well-known for its expres-
siveness (e.g., set comprehensions) and the language bindings
eliminate the need to consider object lifetime and other low-
level details. Rapid prototyping is encouraged by avoiding
recompilation of the main tool; it enables new verification
ideas to be rapidly tested. For example, a developer can
easily add their own intrinsic function to model a new library
function or to exploit a different SMT theory:

1def symex_step(self, art):
2 # Boilerplate accessing instruction ’insn’ omitted
3 if insn.type == gptypes.FUNCTION_CALL:
4 call = esbmc.downcast_expr(insn.code)
5 sym = esbmc.downcast_expr(call.function)
6 if sym.name.as_string() == ’c::isnan’:
7 # Interpretation of call here
8 return
9 # Otherwise call through to rest of ESBMC

10 super(ThisClass, self).symex_step(art)

However, the Python API also has drawbacks—it is slower
than C++, and developers can operate it illegally, causing the
tool to crash. In the long term, it would thus be desirable to
provide ESBMC as a library of verification facilities for the
development of new tools.

III. THE k-INDUCTION ALGORITHM IN ESBMC

k-induction allows BMC to find a property violation or even
to prove (partial) correctness without fully unwinding loops.
ESBMC uses this in an iterative deepening style:

kind(P, k) =


P contains a bug, if ¬B(k)

P is correct, if B(k) ∧ [F (k) ∨ I(k)]

kind(P, k + 1), otherwise.

Here, the base case formula B(k) is the standard BMC
formula, which is satisfiable iff the program has a counterex-
ample of length k or less. The forward condition F (k) checks
whether all program states were reachable for the current k.

The inductive step I(k) checks that, if a safety property holds
in the first k steps, then it also holds for k+1 steps. Iterative
deepening implies that ESBMC always finds the smallest k to
either prove correctness or find a property violation.

ESBMC now uses an improved scheme of the earlier version
described by Gadelha et al. [3]. In particular, this new version
no longer collects havocked variables into states, rewriting
every access to these variables into state accesses. Instead, the
havocked variables are directly assigned nondeterministic val-
ues in the inductive step. This is a simpler and more accurate
transformation and follows the work by Donaldson et al. [7].
Note, however, that the implementation by Donaldson et al.
works from the outermost loop inwards and downwards, so
that the creation of copies of the loop body during unrolling
will replicate nested loops, requiring further loop unrolling of
the nested loops. The implementation should keep track of the
newly created loops to correctly replicate them, but does not
do that. Our implementation avoids this problem by working in
the opposite direction (from the inner nested loops outwards).

Property-directed reachability (PDR), which allows refining
invariants from the counterexamples, has been proposed as a
better alternative to k-induction. However, PDR is difficult
to implement robustly, and there are only few PDR-based
verifiers for C programs (e.g., SeaHorn [8]), which in practice
do not perform as well as expected.

IV. FLOATING-POINT ENCODING IN ESBMC

In previous versions, ESBMC verified programs using a
fixed-point arithmetic; this is appropriate for, e.g., programs
running in a number of embedded devices, but not for
programs that rely on floating-point arithmetic. The current
version of ESBMC encodes floating-point arithmetic either
using the SMT theory of floating-points, fully available in
Z3 and, partially, in Mathsat and CVC4, or using bitvectors,
which extends the floating-point arithmetic support (except for
floating-point exceptions) to all solvers that are currently inte-
grated. This is a major improvement over our prior work [9],
where we model most of the C11 standard functions [10].

Currently, MathSAT does not support fp.rem (remainder
operator) and fp.fma (fused multiply-add) and CVC4 does
not support the conversion to other sorts operators; our SMT
backend falls back to the bitvector mode when an unsupported
operation needs to be encoded: it converts the arguments from
floating-points to bitvectors, encodes the operation and returns



the resulting bitvector encoded as a floating-point. This is
only possible by using the (non-standard) SMT-LIB functions
fp_as_ieeebv and fp_from_ieeebv to convert to and
from bitvectors. This process is transparent to the user and
effectively means that missing operations will be correctly
encoded, despite the lack of support by the underlying solver;
it allows us to use SMT solvers like Boolector that do not have
any built-in floating-point theory. Most of the floating-point
operations in ANSI-C programs can be directly converted to
SMT; only two operations needed special handling:

1) Cast to boolean: The SMT standard does not define
conversions between boolean and floating-point types. In ES-
BMC, when casting from booleans to floating-points, an ite
operator is used, such that the result of the cast is 1.0 if the
boolean is true; otherwise it is 0.0; we encode casts from
floating-points to booleans as conditional assignments: the cast
result is true when the floating is not 0.0; otherwise it is false.

2) Equality: Bitvector assignments and equalities opera-
tions are encoded using the equality operator (==). However,
the SMT standard defines a separate operator for floating-point
equalities, the fp.eq operator, where “(fp.eq x y) evaluates
to true if x evaluates to -zero and y to +zero, or vice versa.
fp.eq and all the other comparison operators evaluate to false
if one of their arguments is NaN”.

The operator is defined to handle the special symbols from
the IEEE floating-point standard, in particular, signaled zeros
and NaNs; for this reason, ESBMC encodes all equality of
floating-points using the fp.eq operator, while assignments
remain being encoded using the equality operator.

V. ILLUSTRATIVE EXAMPLE

Here, we describe how to verify a C program with ESBMC
using the code fragment shown in Fig. 2. For this particular
program, ESBMC is invoked as follows:

esbmc <file>.c --floatbv --k-induction

where <file>.c is the C program to be checked,
--floatbv indicates that ESBMC will use floating-
point arithmetic to represent the program’s variables, and
--k-induction selects the k-induction proof rule strategy.
ESBMC has many options to customize the verification pro-
cess (e.g., SMT solver, property, verification strategy); esbmc
--help provides the full list.

ESBMC unrolls the program in Fig. 2 and converts it
into SSA form, to produce verification conditions (VCs), one
for each assertion that can not be statically determined. The
resulting formula C ∧ ¬P is then passed to an SMT solver to
check for satisfiability; in our running example, the resulting
formula is correctly checked in less than one second. We can
also introduce a bug by removing the isnan(x) check from
line 5 in Fig. 2, which would lead to this counterexample:

S1 7→ N = 2147483648
S2 7→ x = +NaN
S3 7→ x = +NaN
S4 7→ x > 0.0f

Here, state S4 leads to an assertion failure in line 9 (i.e., if
x = +NaN , then x > 0.0f evaluates to false); ESBMC is
also able to detect this violation in less than one second.

1#include<math.h>
2int main() {
3 unsigned int N = nondet_uint();
4 double x = nondet_double();
5 if(x <= 0 || isnan(x))
6 return 0;
7 for(unsigned int i = 0; i < N; ++i) {
8 x = (2*x);
9 assert(x>0);

10 }
11 assert(x>0);
12 return 0;
13}

Fig. 2: Illustrative C code fragment. Here nondet_uint()
and nondet_double() stand for non-deterministic integer
and double values, respectively. isnan checks whether a
given floating-point is a not-a-number (NaN) value.

VI. EXPERIMENTAL EVALUATION

1) Setup: We evaluated ESBMC over the benchmarks from
the latest SV-COMP [11], which contains 9523 verification
tasks that check for property reachability (2941 tasks), memory
safety (326 tasks), reachability in concurrent programs (1047
tasks), overflow (358 tasks), termination (2009 tasks) and
reachability in Linux device drivers (2842 tasks).

The experiments were conducted on a computer with an
Intel Xeon E3-1230 v5 CPU running at 3.40GHz and 33GB of
RAM under an x86 64-linux operating system (Ubuntu 16.04,
Linux kernel 4.4). The verification time limit was set to 900s
(CPU) and memory usage limited to 15 GB.

Table I shows our experimental results; a detailed descrip-
tion of the different tools can be found in [11]. A task counts
as correct true (resp. false) if it does not (resp. does) contain
any reachable error location or assertion violation, and the tool
reports “safe” (resp. “unsafe”), together with an appropriate
witness (proof resp. counterexample); otherwise, it counts as
incorrect true (resp. false) accordingly. The difference between
the grand total (9523) and the sum of the two sub-totals gives
the number of tasks for which the tool exhausted time or
memory, or failed otherwise.

2) k-Induction: Overall, ESBMC ranked third, behind
CPA-Seq and UAutomizer, with 14 incorrect false results (10
due to inaccuracies in our concurrency and memory models
respectively, and 4 due to bugs in the simplifier), and 10
incorrect true results. However, none of the incorrect results
are related to the k-induction algorithm, and the results show
that ESBMC is currently the best k-induction tool.

CBMC also implements k-induction, but the process is more
onerous on the user, requiring three different calls to CBMC:
to generate the CFG, to annotate the program and to verify
it, whereas ESBMC handles the whole process in a single
call. Additionally, CBMC does not have a forward condition
to check if all states were reached and relies on a limited loop
unwinding technique [7].

CPA-Seq applies a number of different techniques when ver-
ifying a program, so a direct comparison to their k-induction
is not possible; however, a “pure k-indcution” version (CPA-
kind, [12]) showed poor results in a previous competition.



2LS CBMC CPA-Seq DepthK ESBMC v1.25.2 ESBMC v5.0 Symbiotic UAutomizer UKojak UTaipan

Correct true 1898 1438 3790 1184 1957 2822 1418 3902 1725 2292
Correct false 1426 1856 2598 1516 1476 1494 1209 1278 514 563
Incorrect true 2 2 0 19 336 14 1 2 0 3
Incorrect false 5 3 4 37 92 10 0 0 0 3

Total correct results 3324 3294 6388 2694 3433 4316 2627 5180 2239 2855
Total incorrect results 7 5 4 58 428 24 1 2 0 6

TABLE I: Results from SV-COMP 2018.

DepthK uses an invariant generator to instrument the
code with invariants and uses k-induction to verify the pro-
gram [13]. Although one would expect better results, DepthK
uses an old version of ESBMC to verify the programs; this
explains the poor results.

2LS implements an algorithm called kIkI (k-invariants and
k-induction), which integrates an abstract interpretation invari-
ant generation between the base case and the inductive step;
in contrast to our k-induction, their version has no forward
condition. Overall 2LS verifies 22% fewer benchmarks than
ESBMC (in particular, 2LS returns 33% fewer correct results),
although it also returns fewer incorrect results.

3) Comparison with old k-induction schema: In order
to compare with with the old k-induction schema used in
ESBMC v1.25.2 [3], we re-ran it over the current SV-COMP
benchmark set. Table I shows a 25% increase in correct results
and a 95% decrease in incorrect results, but this is slightly
misleading: 168 of the incorrect results produced by the old
scheme are from the concurrency category and are caused by
the concurrent model used back then. However, the old scheme
also produces incorrect results in the ReachSafety-ECA (95)
and ReachSafety-Recursive (28) categories, which are related
to the k-induction algorithm, specifically its incorrect approx-
imation of loop termination conditions.

4) Floating-point verification: ESBMC uses MathSAT for
tasks that involve floating-point arithmetics. This combination
not only outperforms a Z3-based ESBMC, but also all other
tools in SV-COMP. ESBMC achieved the highest score in the
ReachSafety-Floats subcategory where it can verify 84% of the
tasks (145 out of 172) within the time and memory restrictions.

Although CBMC was the first verifier to support bit-
precise verification of C programs that use floating-point
arithmetic, it is less efficient than ESBMC. In particular, it
can sometimes take a very long time to produce an SMT for-
mula; for example, the SV-COMP benchmarks floats-esbmc-
regression/*nondet*.c are less than 30 lines long, but the
latest CBMC version (v5.8) takes hours to convert the derived
VC into SMT format,1 while ESBMC can verify them in a
few seconds. Regarding the SMT backend, ESBMC provides
a superior alternative to CBMC, which generates the SMT
formula in a file and externally calls the solvers, whereas
ESBMC uses the solvers’ native APIs. In [4], we explain the
difference in performance using both approaches (using API
and file interfaces). Additionally, the SMT backend of CBMC
is unable to support full ANSI-C, as recently reported in [14].

1https://github.com/diffblue/cbmc/issues/1944

VII. CONCLUSION AND FUTURE WORK

We have presented ESBMC, the first open-source SMT-
based context-bounded model checker to support full C pro-
grams [4], [15]. ESBMC is a mature tool; here, we focussed on
three three novel features of the latest version ESBMC v5.0:
the new clang front-end, the new floating-point back-end
and, in particular, our new implementation of the k-induction
proof rule. Results over the SV-COMP 2018 benchmark suite
show that ESBMC is the strongest k-induction tool currently
available. We are currently extending the k-induction proof
rule to use information from the inductive step, to make bug
finding more efficiently [16].
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