
Improving Problem Identification via Automated Log Clustering
using Dimensionality Reduction

Carl Martin Rosenberg
Simula Research Laboratory

Oslo, Norway
cmr@simula.no

Leon Moonen
Simula Research Laboratory

Oslo, Norway
leon.moonen@computer.org

ABSTRACT
Background: Continuous engineering practices, such as continu-
ous integration and continuous deployment, see increased adoption
in modern software development. A frequently reported challenge
for adopting these practices is the need to make sense of the large
amounts of data that they generate.
Goal:We consider the problem of automatically grouping logs of
runs that failed for the same underlying reasons, so that they can
be treated more effectively, and investigate the following questions:
(1) Does an approach developed to identify problems in system logs
generalize to identifying problems in continuous deployment logs? (2)
How does dimensionality reduction affect the quality of automated
log clustering? (3) How does the criterion used for merging clusters
in the clustering algorithm affect clustering quality?
Method:We replicate and extend earlier work on clustering system
log files to assess its generalization to continuous deployment logs.
We consider the optional inclusion of one of these dimensionality
reduction techniques: Principal Component Analysis (PCA), Latent
Semantic Indexing (LSI), and Non-negative Matrix Factorization
(NMF). Moreover, we consider three alternative cluster merge crite-
ria (Single Linkage, Average Linkage, and Weighted Linkage), in
addition to the Complete Linkage criterion used in earlier work. We
empirically evaluate the 16 resulting configurations on continuous
deployment logs provided by our industrial collaborator.
Results: Our study shows that (1) identifying problems in con-
tinuous deployment logs via clustering is feasible, (2) including
NMF significantly improves overall accuracy and robustness, and
(3) Complete Linkage performs best of all merge criteria analyzed.
Conclusions: We conclude that problem identification via auto-
mated log clustering is improved by including dimensionality reduc-
tion, as it decreases the pipeline’s sensitivity to parameter choice,
thereby increasing its robustness for handling different inputs.

KEYWORDS
Continuous engineering, failure diagnosis, log analysis, log mining.

1 INTRODUCTION
Continuous Engineering (CE) practices such as Continuous Inte-
gration (CI), Continuous Delivery (CDy), Continuous Deployment
(CDt), and Continuous Release (CR), are increasingly adopted to
meet the demand for incremental software development with rapid
feedback. Each of these practices can be characterized by their focus
on creating short and automated cycles to give developers early

Published in ESEM’18, Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, October 2018, Article: 16, pp. 1–10,
https://doi.org/10.1145/3239235.3239248.

feedback on potential issues and reduce risk by taking repeated
incremental steps. These cycles are triggered in response to new
code being committed to the Version Control System, via periodic
scripts, or simply when a developer demands it.

CI aims at automatically building and (unit) testing software
changes multiple times a day, CDy extends it with automated accep-
tance testing and quality checking to ensure that a product is ready
for deployment, CDt adds automatic deployment to production-like
hardware and deployment testing to CDy, and finally, CR further
adds automatically releasing the new software to the customers.1
When there is no need to distinguish, we will refer to them as CE.

In a traditional setup without CE, a developer or operator would
manually build, test or deploy the system, observe the results and
immediately react to them. With CE, on the other hand, it is possi-
ble to trigger a cycle that runs all necessary commands and tracks
their outcomes in a logfile, switch context to a new task, and defer
inspection of the resulting logfile to some later time. When the
cycles are time consuming, this increases developer productivity.
However, it also easily creates a situation where unprocessed re-
sults accumulate. This is not necessarily a problem, as long as the
entire cycle is made to run correctly before the product is released.
However, the vast amounts of results that can accumulate may
interfere with this last goal.

Indeed, a frequently reported challenge for adopting CE prac-
tices concerns the systematic and integrated analysis of the wealth
of data resulting from the automated build, test, and deployment
processes [1–6]. A recent literature review identifies the lack of
transparency and awareness regarding test and build results as
one of the main threats to adopting CDy, together with the need
for measures that improve coordination and collaboration on ad-
dressing such results [7]. As similar challenges were brought up by
our industrial collaborator, we set out to investigate techniques to
automatically support such coordination.
Goal: We consider the challenge of automatically grouping logs of
CE runs that failed for the same underlying reasons. The idea is that
instead of having to investigate all individual results, automated
log clustering would allow for a more systematic, coordinated ap-
proach where one investigates a representative for a group of failed
runs, addresses the issues that caused failure, and can reasonably
expect that the issues of logs that failed for corresponding reasons
have been accounted for (which will be checked by following runs).
To this end, we replicate and extend earlier work by Lin et al. [8]
that proposes an automatic clustering pipeline for system log se-
quences, so that an system operator diagnosing an issue only needs
to investigate a few representative sequences.

1 There is a ongoing debate on the exact definitions and boundaries of these practices,
but we will use the incremental CI ⊂ CDy ⊂ CDt ⊂ CR definitions provided here.

1

ar
X

iv
:2

00
9.

03
25

7v
1 

 [
cs

.S
E

] 
 7

 S
ep

 2
02

0

https://doi.org/10.1145/3239235.3239248


Published in ESEM’18 Carl Martin Rosenberg and Leon Moonen

Contributions: The main contributions of this work can be sum-
marized as follows: (1) We conduct a replication study to investigate
to what extent an approach developed to identify problems in sys-
tem logs generalizes to the context of identifying problems in CDt
logs. (2) We extend the original study in two ways: (2a) by investi-
gating how the optional inclusion of one of three dimensionality
reduction techniques affects the quality of automated log cluster-
ing, and (2b) by investigating three additional alternative criteria
for merging clusters in the Hierarchical Agglomerative Clustering
algorithm that it uses. (3) We empirically investigate the impact
of the 16 resulting configurations on the quality of clustering CDt
logs provided by our industrial collaborator. (4) We analyze and
discuss how dimensionality reduction helps to lower the pipeline’s
sensitivity to parameter choices, thereby increasing its robustness
for handling different inputs.
Overview: The remainder of this paper is organized as follows:
Section 2 discusses Lin’s approach, and Section 3 presents the vari-
ations that we investigate. Section 4 describes the setup of our
empirical investigation, whose results are presented and discussed
in Section 5. Section 6 presents related work, and Section 7 provides
some concluding remarks.

2 BACKGROUND
The baseline for our work is LogCluster by Lin et al. [8], a technique
developed for analyzing system logs from online services. This
section presents the main parts of the LogCluster pipeline, and the
next section describes our adaptions to it.

Conceptually, LogCluster groups logs into clusters, selects a rep-
resentative log for each cluster, and presents these to the developer.
To perform the clustering, the logs must first be preprocessed and
represented in a manner that is amenable to clustering. In LogClus-
ter, this comprises a log abstraction step that represents each log as
a sequence of events, and a log vectorization step that uses inverse
document frequency and event contrast to give higher priority to
rare or specific events. We now present these steps in more detail.2
Log abstraction: This step removes runtime-specific information
that is assumed to create artificial differences between logs. For
example, most logs report timestamps that add such differences.
Abstraction represents all timestamps using the same token, so the
algorithm can focus on more salient aspects of the logs instead. Lin
et al. [8] use the automatic abstraction mechanism developed by
Fu et al. [9]. In our work, we use a log abstraction tool provided by
our industrial collaborator, Cisco Systems Norway.

Next, each log is represented as a sequence of event identifiers.
This assumes that the log file is a series of event reports delineated
in a predictable manner, for example a newline followed by a date,
time and timezone designator. After abstraction of runtime-specific
information, many of these event descriptions will be identical.
Thus, by giving each of these identical event descriptions the same
unique identifier, logs can be compactly represented as sequence of
event identifiers, which benefits the next steps of the pipeline.

2 Note that we do not adopt the LogCluster scheme [8] wholesale. In particular, the
use of a database of previously seen Log Sequences to save computational costs and
increase performance is an orthogonal extension that is beyond the scope of this paper.

Log Vectorization: The logs must be represented in a way that
enables reasoning about the differences between them. A com-
mon representation strategy for text documents is the bag-of-words
model [10]. In this model, every document is represented as a vector,
the length of which is determined by the number of unique words
in the corpus to be represented, as each cell in the vector represents
a specific word. For a document, each cell in the vector tracks the
number of times its corresponding word occurs in that document.
LogCluster employs a similar strategy, but uses the event identifiers
that were uncovered in the log abstraction step instead of words.
Event frequency weighting: When employing a bag-of-words-
style representation strategy, it is common to transform the ob-
tained vectors with an inverse document frequency scheme [10].
The goal is to give higher weight to words (or in LogCluster’s
case, events) that are rare in the documents to be clustered, and
proportionally lower weight to frequently occurring words. In Log-
Cluster [8], the event frequency weightwf (e) of an event e is given
by: wf (e) = S(log N

ne ) where N is the number of logs to be clus-
tered, ne is the number of logs where the event e appears, and S is
the Sigmoid function 1/(1 + exp[−x]) which normalizes the vector
by ensuring that all values are between 0 and 1.
Contrast-based event weighting: Given separate sets of "inter-
esting" logs (in our case, logs from failing CE runs) and "uninterest-
ing" logs (i.e. the passing CE runs), Lin et al. [8] propose to give a
lower weight to those events which occur in both the interesting
and uninteresting sets. They refer to this scheme as contrast-based
event weighing, and it works as follows: First, determine the set of
events ∆S that only occur in the interesting set of logs, and then
use ∆S to assign a contrast weight wcon (e) to each event such that
wcon (e) = 1 if e ∈ ∆S , andwcon (e) = 0 otherwise.
The final weight of each event is determined by combining contrast
weight with the inverse document frequency weight. LogCluster
assigns equal weight to the inverse document frequency weight
and the contrast-based weight, so that the final event weightw(e)
becomesw(e) = 0.5 ∗wcon (e) + 0.5 ∗wf (e).
Clustering and selecting representatives: LogCluster employs
the cosine distance dissimilarity metric and Hierarchical Agglom-
erative Clustering (HAC) to cluster the logs. The clustering stops
when the calculated merge distance between two candidate cluster
exceeds a given threshold θ , which LogCluster sets to 0.5. Finally,
a representative for each cluster is chosen by finding the log with
the smallest average cosine distance to the other logs in the cluster.

3 VARIATIONS ON LOGCLUSTER
This section motivates and discusses the variations on the LogClus-
ter pipeline (Section 2) that we investigate in our work. A high level
overview of the variations is presented in Section 1.

3.1 Dimensionality reduction
Recall that if there are n unique events in a collection of logs, each
log will be represented by an n-dimensional vector. For diverse
collections, n can quickly grow enormous. Since the clustering algo-
rithm reasons about distances between vectors in an n-dimensional
space, the algorithm is vulnerable to Bellman’s curse of dimensional-
ity: As the number of dimensions n grows, it becomes increasingly
difficult to properly discriminate between points [11, 12].

2



Improving Problem Identif. via Automated Log Clustering w. Dimensionality Reduction Published in ESEM’18

clusteringdimensionality 
reductionabstraction

abstraction

vectorization representative
selection

passing logs

failing logs (none)

linkage criterion
PCA

LSI

NMF

single

complete

average

weighted

Figure 1: Overview of the variations in the clustering
pipeline investigated in this paper.

A strategy to combat the curse of dimensionality is to apply
dimensionality reduction, a transformation of the data that exploits
correlations among dimensions to create a reduced space that cap-
ture most of the variance in the data [11]. Note that dimensionality
reduction can improve the ability to discriminate between points,
but there is also a risk of removing too much information.

We investigate the impact of applying one of the following di-
mensionality reduction techniques: Principal Component Analysis
(PCA), Latent Semantic Indexing (LSI) or Non-Negative Matrix
Factorization (NMF). While PCA is heavily used as a dimensional-
ity reduction technique in all domains, LSI and NMF have shown
particular promise in text applications. LSI has been shown to be
particularly effective on text collections plagued by polysemy (when
words have multiple meanings) and synonymy (when several words
have the same meaning) [10]. NMF has been shown to be especially
effective when the data is sparse and non-negative, which is the
case for textual data in the bag-of-words model [11]. All entries in
a bag-of-words vector will be either zero or some positive value
as they track word frequencies. Since a document typically only
contains a fraction of the words occurring throughout the collection
of documents, the vectors tend to be sparse, i.e. most cells will be 0.
Estimating the number of components: To use these dimen-
sionality reduction techniques, one must typically specify a number
of components k such that the data gets reduced to a k-dimensional
space, and one of the outcomes is an estimate of the explained vari-
ance with respect to the original data. For PCA, each component
has a known contribution to the overall explained variance (evar),
and components are typically ordered by decreasing contribution.
This allows us to determine how many components are needed to
reach a desired explained variance, by first performing an uncon-
strained PCA, and then iteratively accumulating components (and
evar contributions) until the desired value is exceeded.

We conjecture that this PCA-based computation also provides an
appropriate estimate for the components needed by LSI and NMF
to achieve the same explained variance. We aim at an explained
variance of 80%, a value commonly used in the literature [13], use
the PCA and LSI implementations from scikit-learn [14], and the
NMF implementation provided by Nimfa [15].

3.2 Alternative merge criteria in HAC
Another point of variation that we investigate is the criterion that
is used to merge clusters in the clustering step of LogCluster. The
Complete Linkage merge criterion that is used in LogCluster is
known to be sensitive to outliers, which could prevent creation
of the most intuitive clusters [10, Sec. 17.2]. For this reason, we
investigate the impact of using one of the following alternative
merge criteria: Single Linkage, Average Linkage, and Weighted

Linkage. We give a short overview of the intuitions behind the
various merge criteria, and refer to Müllner [16] for details:
Single Linkage merges the two distinct clusters for which the
smallest distance between a pair of elements from either cluster is
the global minimum for all pairs of clusters.
Complete linkage merges the two distinct clusters for which the
maximum distance between a pair of elements from either cluster
is the global minimum for all pairs of clusters.
Average Linkage (UPGMA) merges the two distinct clusters for
which the average distance between all pairs of elements from either
cluster is the global minimum for all pairs of clusters.
Weighted Linkage (WPGMA) merges a previously merged clus-
ter A ∪ B and merge candidate C for which the average distance
between sub-cluster pairs (A,C) and (B,C) is the global minimum.

Our experiments use the HAC implementations from SciPy [17],
which implement Müllner’s algorithm and merge criteria [16].

4 EXPERIMENTAL DESIGN
We conduct an empirical study to assess whether logs of CE runs
that failed for the same underlying reasons can be automatically
grouping using automated log clustering, and what improvements
can be achieved in terms of accuracy and robustness. Specifically,
we set out to answer the following research questions:
RQ1 Can the application of LogCluster [8] be generalized to iden-

tifying problems in continuous deployment log files?
RQ2 To what extent does applying dimensionality reduction im-

pact the results of automated log clustering?
RQ3 To what extent does the merge criterion in HAC impact the

results of automated log clustering?
Next, we detail the experimental design to answer these questions.

4.1 Datasets
We use a dataset provided by Cisco Systems Norway consisting of
CDt logs and associated meta-data for 18 different comprehensive
integration tests. The logs are loosely structured execution outputs
that capture the process of building, deploying and testing vari-
ous scenarios, not unlike the output of running a make command.
Table 1 summarizes the main features of the data.

The dataset is constructed so that every failing run is associated
with one (and only one) known issue. Thus, we have a ground truth
for how the logs should be clustered together so that each cluster
only contains logs concerning the same issue. This allows us to
evaluate the accuracy of proposed clusterings. The ground truth is
derived from handcrafted regular expressions developed by Cisco
Systems Norway to identify whether a log concerns a known issue.

4.2 Accounting for Parameter Sensitivity
Recall from Section 2 how the contrast-based event weighting in
LogCluster [8] assigns equal weight to the inverse document fre-
quency weight and the contrast-based weight. We submit that it is
unlikely that an equal split between the contrast weight and the
inverse document frequency weight is suitable for all scenarios and
inputs. To include a wider range of splits in our study, we introduce
the contrast parameter γ such that the event weightw(e) is given
by:w(e) = γ ∗wcon (e) + (1 − γ ) ∗wf (e). Observe that the original
LogCluster approach is equivalent to γ = 0.5.

3



Published in ESEM’18 Carl Martin Rosenberg and Leon Moonen

Table 1: Overview of datasets used in this investigation.

dataset failing passing dimensions avg. dims. a/red.

1 45 4189 164 9.50
2 102 4182 192 8.00
3 103 1315 850 15.00
4 8 4277 70 1.00
5 41 297 118 5.50
6 23 2421 352 6.50
7 50 1591 71 2.50
8 78 3213 605 2.00
9 52 461 177 8.00
10 342 3152 201 17.83
11 15 3816 23 2.00
12 74 2811 133 9.00
13 106 572 181 8.00
14 60 613 162 9.50
15 140 3247 204 15.50
16 132 3238 213 16.50
17 36 530 201 7.50
18 29 344 171 6.00

The number of dimensions indicates the number of unique events
in the dataset. The rightmost column shows the average number
of dimensions after dimension reduction with PCA.

A second parameter to consider is the threshold θ used by the
clustering algorithm to decide when to stop merging clusters. Log-
Cluster sets this to 0.5. Also for this parameter we argue that it is
unlikely that a single choice is suitable for all scenarios and inputs.

Low sensitivity to parameter choices implies the pipeline has
increased robustness for handling different inputs, a desirable char-
acteristic for an unsupervised approach such as automated log
clustering [11]. To assess the sensitivity of different choices of di-
mensionality reduction and merge criteria to changes in parameters
θ and γ , we execute each of the 16 configurations discussed in Sec-
tion 3 on each of the 18 datasets with 21 choices of γ from 0 up to
and including 1 in increments of 0.05, and 17 different choices of θ
from 0.1 up to and including 0.9 in increments of 0.05. Thus, we
execute each configuration (a choice of dimensionality reduction
and merge criterion) a total of 357 times, each run representing a
different choice of the γ and θ parameters on a specific dataset.

4.3 Quality Measures
We evaluate the performance of all runs with the various configu-
rations using the following quality measures:
Adjusted Mutual Information: Lin et al. [8] use Normalized Mu-
tual Information (NMI) [10] to benchmark LogCluster. However,
NMI has a systematic bias in favor of clustering algorithms that
group data into many small clusters, as those are more likely to
have many agreements solely due to chance [18]. For this reason,
we use Adjusted Mutual Information (AMI), which corrects for this
bias [18]. It is used to compare two ways of partitioning the input,
in our case the ground truth and the clustering result. An AMI score
can maximally be 1, indicating a perfect correspondence between
the proposed clustering and the ground truth. Conversely, an AMI
near 0 indicates that the proposed clustering performs as one would
expect from a solution based on random guessing.3

3 A caveat for inspecting our results is that an AMI score of 0.5 does not correspond
to random guessing, in contrast to many other accuracy measures (e.g., the F1 score).

Effort Reduction: We measure how much less effort the opera-
tor has to exert after clustering by computing an effort reduction
measure ER = 1 − (distinct proposed clusters/n) for each dataset,
where n is the number of logs to be clustered. We also record the
effort reduction a perfect solution would achieve by computing
IER = 1 − (distinct ground-truth clusters/n).
Homogeneity and Completeness: These represent two compet-
ing quality concerns [19]. Homogeneity measures the extent to
which members of a proposed cluster come from the same ground-
truth class. Completeness, on the other hand, measures to what
extent all members of a given ground-truth class are put in the same
cluster. Perfect Homogeneity can trivially be achieved by putting
each data-point in an individual cluster, but this solution will score
low on Completeness. Conversely, perfect Completeness can be
achieved by putting every data-point in a single cluster, but such
a solution would obtain a very low Homogeneity score. Thus, in
order to achieve high accuracy a clustering algorithm must score
high on both Homogeneity and Completeness.

These four quality metrics gives us a nuanced view of a configu-
ration’s performance. If accuracy is low, we can determine whether
it lacks Homogeneity, Completeness or both, and we can assess
whether it has a bias towards either Homogeneity and Complete-
ness. We expect Completeness to be heavily correlated with effort
reduction, as both favor large clusters. Homogeneity, furthermore,
serves as a risk indicator: A high Homogeneity score indicates that
each log in a cluster can serve as a good representative for the
issues in its cluster (i.e., few false positives or mis-clustered logs).

4.4 Statistical Procedures
To compare the configurations, we first run a Friedman test [20],
as recommended by Dems̆ar [21]. We let each combination of di-
mensionality reduction technique and merge criterion represent a
distinct treatment, and every distinct combination of dataset, γ and
θ represent a block, as illustrated in Table 2.

The Friedman test checks the null hypothesis that the treatments
are equally effective against the alternative that at least one pair of
treatments differ. With twenty-one choices of contrast γ , seventeen
choices of threshold value θ , 18 different datasets and 16 competing
configurations, our scheme has 16 different treatments and 18×21×
17 = 6426 blocks. If the Friedman test rejects the null hypothesis of
equal effectiveness at significance level α = 0.05, we proceed with
a post-hoc analysis consisting of a paired Wilcoxon signed-rank
test [22] on each pair of treatments, as recommended by Benavoli
et al. [23]. Thus, when comparing treatment a against treatment b,
the paired Wilcoxon test will for every block (i.e. choice of data-set,
γ and θ ) pair the measurement made for a and the measurement
made for b on that block. We apply the the Pratt correction [24]
to the Wilcoxon signed-rank tests to handle ties, and control the
family-wise error rate resulting from multiple comparisons with
Holm’s procedure [25]. We measure the effect size of each pairwise
comparison in terms of Vargha-Delaney A12 and A21 [26].

We use the stats.wilcoxon and stats.friedmanchisquare proce-
dures from SciPy [17] to implement our statistical tests.

4



Improving Problem Identif. via Automated Log Clustering w. Dimensionality Reduction Published in ESEM’18

Table 2: Overview of our experimental design. Each configuration is used as treatment (a row in the table), and every distinct
choice of γ , θ and data-set as a block (a column in the table). The earlier work by Lin et al. [8] is indicated as ■, new data as △.

configurations results (AMI)

dimension. HAC 1 . . . 18 . . . 1 . . . 18 . . . 1 . . . 18 dataset
reduction merge 0.00 . . . 0.05 . . . 0.5 . . . 0.5 . . . 0.95 . . . 1.0 γ
technique criterion 0.10 . . . 0.15 . . . 0.5 . . . 0.5 . . . 0.95 . . . 1.0 θ

none complete △ △ △ △ ■ ■ ■ △ △ △ △
single △ △ △ △ △ △ △ △ △ △ △
average △ △ △ △ △ △ △ △ △ △ △
weighted △ △ △ △ △ △ △ △ △ △ △

PCA . . . △ △ △ △ △ △ △ △ △ △ △
LSI . . . △ △ △ △ △ △ △ △ △ △ △
NMF . . . △ △ △ △ △ △ △ △ △ △ △

5 RESULTS AND DISCUSSION
This section first addresses RQ1 by assessing the performance of
LogCluster on our dataset with respect to the quality measures
discussed earlier (Section 4.3). Next, we present the results of the
simultaneous empirical evaluation of all 16 configurations that arise
from the variations for both dimensionality reduction and merge
criterion. Finally, we use these results to answer RQ2 and RQ3.

5.1 RQ1: Generalization of LogCluster to CE
The performance of LogCluster is reported in Table 3. We observe
a median AMI of 0.509 and a wide spread: LogCluster achieves a
perfect AMI score on datasets 4 and 11, but scores below 0.22 on
datasets 3, 5, 6 and 13. The perfect scores are obtained on small
datasets (see Table 1). On datasets 3, 8 and 13, LogCluster achieves
relatively high Homogeneity, but very low Completeness. Con-
versely, dataset 6 yields perfect Completeness but rather low Homo-
geneity (0.327). Performance on dataset 5 is poor on all accounts.

For over two-thirds of the data, the obtained effort reduction
(ER) is slightly below the ideal effort reduction (IER). Exceptions

Table 3: Results for LogCluster’s exact configuration

Dataset AMI H C ER IER

1 0.383 0.775 0.537 0.733 0.844
2 0.673 0.853 0.747 0.853 0.873
3 0.201 0.676 0.251 0.883 0.951
4 1.000 1.000 1.000 0.875 0.875
5 0.085 0.171 0.135 0.927 0.927
6 0.211 0.327 1.000 0.870 0.609
7 0.676 0.705 1.000 0.920 0.900
8 0.341 0.722 0.494 0.808 0.859
9 0.623 0.708 0.815 0.846 0.827
10 0.569 0.645 0.677 0.936 0.912
11 1.000 1.000 1.000 0.933 0.933
12 0.453 0.734 0.574 0.797 0.892
13 0.200 0.539 0.317 0.887 0.887
14 0.263 0.562 0.445 0.817 0.817
15 0.734 0.855 0.808 0.836 0.857
16 0.565 0.734 0.722 0.803 0.826
17 0.628 0.780 0.796 0.722 0.722
18 0.281 0.607 0.506 0.759 0.724

Median 0.509 0.715 0.700 0.850 0.866
Mean 0.494 0.689 0.657 0.845 0.846

are datasets 6, 7, 9, 10 and 18 where ER exceeds IER, suggesting
fewer clusters were created than required by the ground truth.
Trade-offs: Recall that Homogeneity can be seen as a risk measure,
reflecting the probability that a cluster element accurately repre-
sents all the issues of its cluster. Likewise, Completeness can serve
as proxy for effort reduction, as Completeness rewards creating
large clusters. Depending on preferences, a user could choose to
adopt LogCluster in scenarios where the overall AMI score is low,
but either the Homogeneity or Completeness score is high. For
dataset 3 for example, a risk-averse user could elect to use Log-
Cluster at a Homogeneity score of 0.676, and accept that the effort
reduction achieved is 88% rather than 95%. In this case one basically
trades off dealing with a few more clusters for the assurance that
they do not contain false positives.
Answer to RQ1: Based on our study using data from our indus-
trial partner, our answer to RQ1 is that the LogCluster approach
generalizes to problem identification in continuous deployment
logs. Moreover, a user can make a trade-off between risk and effort
reduction, for example by choosing to deal with a few more clusters
for the assurance that they ate less likely to contain false positives.

5.2 Analysis of LogCluster and its Variations
Our blocked design yields 6426 results for each of the 16 configura-
tions. Figure 2 shows boxplots of the AMI for each configuration.

●

●

●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●
●
●●●●●●
●
●●●●●●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●
●

●

●

●●●●●

●

●

●

●●●

●●

●
●●●●●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●●

●●

●●●
●
●
●
●●●
●●●●●●●

Average Complete Single Weighted

no
ne

PC
A

LS
I

N
M

F
no

ne
PC

A
LS

I

N
M

F
no

ne
PC

A
LS

I

N
M

F
no

ne
PC

A
LS

I

N
M

F

0.00

0.25

0.50

0.75

1.00

dimensionality reduction technique

A
M

I

Figure 2: Boxplots of AMI scores for each configuration.

5



Published in ESEM’18 Carl Martin Rosenberg and Leon Moonen

Table 4: Summary of post-hoc comparisons (A v. B) forwhich
the null hypothesis could not be rejected.

A B
dimr crit dimr crit T VDAAB VDABA p

NMF Average PCA Complete 10026913 0.5411 0.4589 0.0450
NMF Weighted PCA Weighted 10295318 0.5570 0.4430 0.8419

The Friedman test reported a chi square statistic of 19593.623 at a
p-value lower than 2.2e − 16. We thus reject the null hypothesis
that the configurations are equally performant at significance level
α = 0.05, and proceed with the post-hoc analysis.

Our post-hoc analysis consists of
(16
2
)
= 120 paired Wilcoxon

Signed-Rank tests: One test for each combination of configurations.
All comparisons were found to be significant after the Holm cor-
rection, except for the two comparisons shown in Table 4. Due
to the presence of insignificant comparisons we cannot impose a
total order on the competing configurations. Table 5 reports the
variants by their Rank-Sum groups, including multiple alternatives
in the same group when the Wilcoxon Signed-Rank test found no
significant differences. We make the following observations from
Table 5, which are corroborated by the boxplots in Figure 2:
(1) NMF with Complete Linkage scores significantly better on both

mean and median AMI than all other considered configurations.
(2) LSI is the worst performing dimensionality reduction technique.

While LSI with complete linkage scores better than no dimen-
sionality reduction with weighted or average linkage, this is
likely due to complete linkage rather than LSI, as no dimension-
ality reduction with complete linkage performs better.

(3) For any choice of dimensionality reduction technique, Complete
linkage is the best performing cluster merge criterion.

(4) Single linkage is the worst performing cluster merge criterion,
regardless of dimensionality reduction technique.

(5) Average and Weighted linkage have very similar performance
characteristics, with the strongest difference obtained when
used in combination with NMF.

(6) For all merge criteria besides single linkage, PCA and NMF
obtain a better result than no dimensionality reduction and
complete linkage, which is LogCluster’s configuration [8].

Effect sizes: For each pairwise comparison, we measure the effect
size in terms of VDA = max(A12,A21). Recall that 118 of the 120
comparisons obtained statistically significant results, with the two
remaining comparisons shown in Table 4. The majority of the 118
comparisons indicate small or small-to-medium effects. Concretely,
84 of the 118 significant comparisons yielded small effect sizes at
or below 0.64, while the remaining 34 comparisons exceeded this
threshold. Unsurprisingly, the large effects sizes occur when one of
the six poorest performers (as indicated by Table 5) is compared to
one of the ten best performers. When comparing the best performer
(NMF + Complete) against the poorest performer (LSI + Single), we
measure a VDA score of 0.796 (a large effect). We present the effect
sizes of the more performant configurations with respect to the
LogCluster baseline (no dimensionality reduction with complete
linkage) in Table 6. The improvements over the baseline are statis-
tically significant but modest. The largest effect (a VDA effect size
of 0.5687) is obtained when using NMF with complete linkage.

Table 5: Overall performance of the 16 configurations. Log-
Cluster’s baseline configuration is indicated in bold.

Groups* Dim. Red. HAC Median AMI Mean AMI

a NMF Complete 0.4634 0.4488
b NMF Average 0.4319 0.4287
b PCA Complete 0.3990 0.3692
c NMF Weighted 0.4252 0.4157
c PCA Weighted 0.3698 0.3452
d PCA Average 0.3714 0.3537
e none Complete 0.3432 0.3909
f LSI Complete 0.2898 0.3718
g none Weighted 0.2806 0.3544
h none Average 0.2629 0.3426
i LSI Weighted 0.1995 0.3029
j LSI Average 0.1963 0.3024
k NMF Single 0.1525 0.2719
l none Single 0.1420 0.2745
m PCA Single 0.1284 0.2037
n LSI Single 0.0000 0.1831

* Two configurations belong to the same group if the Wilcoxon Signed-
Rank Test could not establish a significant difference between them.

Parameter sensitivity: To analyze the sensitivity of the config-
urations against variations in the choice of parameters θ and γ ,
we draw heatmaps of the quality metrics AMI, Completeness and
Homogeneity in Figure 3. We show data for the pipelines using
PCA, NMF and without dimensionality reduction (all with Com-
plete linkage), and the differences of respectively PCA and NMF
with respect to the baseline (no dimensionality reduction). The
performance of the original LogCluster approach is indicated by
the black box. Higher values are indicated by darker tones. For the
difference heatmaps, the positive values (in red) indicated where
PCA resp. NMF outperform the baseline, the negative values (in
blue) show where the baseline outperforms PCA resp. NMF.

All heatmaps, except those for PCA (3b, 3g and 3l), show that
variations in the merge threshold θ have more impact than vari-
ations in the relative contrast γ . When not using dimensionality
reduction, θ must be in a particular range (roughly [0.25 − 0.6]) to
achieve an adequate AMI score. The plots also shows that without
dimensionality reduction, increasing γ is almost always beneficial:
The score will either increase or stay the same. A few exceptions
can be found for the very lowest values of θ (see especially the AMI
scores in 3c). This effect is less pronounced for PCA and NMF.

Moreover, the heatmaps show how Homogeneity and Complete-
ness are competing concerns. This is especially pronounced in the
heatmaps without dimensionality reduction (3h and 3m), where a
high θ increases Completeness and decreases Homogeneity, and
vice versa.We also see the impact of dimensionality reduction on the

Table 6: Effect sizes (VDA) with respect to the baseline.

Dim. Red. HAC T VDA v. baseline p

NMF Complete 6390965 0.5687 < 0.00001
NMF Average 6917540 0.5448 < 0.00001
NMF Weighted 7786880 0.5289 < 0.00001
PCA Weighted 8714866 0.5263 < 0.00001
PCA Average 8264239 0.5164 < 0.00001
PCA Complete 8350632 0.5029 < 0.00001

6



Improving Problem Identif. via Automated Log Clustering w. Dimensionality Reduction Published in ESEM’18

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 -0.1 0.0 0.1 0.2
difference

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 -0.1 0.0 0.1 0.2
difference

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.0 0.1 0.2 0.3 0.4 0.5
mean AMI

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.0 0.1 0.2 0.3 0.4 0.5
mean AMI

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.0 0.1 0.2 0.3 0.4 0.5
mean AMI

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 -0.1 0.0 0.1 0.2
difference

A
M
I

(a) PCA - none (b) PCA (c) none (d) NMF (e) NMF - none

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 -0.1 0.0 0.1 0.2
difference

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 0.0 0.2
difference

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.00 0.25 0.50 0.75 1.00
mean C

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.00 0.25 0.50 0.75 1.00
mean C

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ
co
nt
ra
st
γ

0.00 0.25 0.50 0.75 1.00
mean C

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 0.0 0.2
difference

Com
pleteness

(f) PCA - none (g) PCA (h) none (i) NMF (j) NMF - none

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.2 -0.1 0.0 0.1 0.2
difference

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.25 0.00 0.25
difference

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.00 0.25 0.50 0.75 1.00
mean H

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.00 0.25 0.50 0.75 1.00
mean H

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

0.00 0.25 0.50 0.75 1.00
mean H

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75

threshold θ

co
nt
ra
st
γ

-0.25 0.00 0.25
difference

H
om

ogeneity

(k) PCA - none (l) PCA (m) none (n) NMF (o) NMF - none

Figure 3: Heatmaps of parameter sensitivity in terms of quality metrics for clustering pipelines using PCA, NMF and without
dimensionality reduction (all with Complete linkage) and their differences. LogCluster is indicated by the black box.

trade-off between Homogeneity and Completeness: No dimension-
ality reduction has a relatively stable performance for Completeness,
while Homogeneity varies drastically, especially as a function of
θ . PCA performs smoothly on both measures, but scores signifi-
cantly better on Homogeneity than Completeness. NMF, on the
other hand, achieves a consistent and high score on both measures.

Overall, both PCA and NMF show a more consistent perfor-
mance across variations in γ and θ . PCA scores worse than no
dimensionality reduction on Completeness (3f), but very closely on
Homogeneity. Overall, no dimensionality reduction outperforms
PCA in terms of mean AMI (shown by 3a, and confirmed in Table 5).
Nevertheless, PCA scores a higher median AMI than no dimension-
ality reduction when using Complete Linkage, and the Wilcoxon
Signed-rank test established the two variants as significantly differ-
ent. NMF clearly beats no dimensionality reduction on all measures,
and PCA on most (corroborated by Table 5).

Analysis of LSI performance: As shown in Table 5, LSI performs
markedly worse than PCA and NMF. To investigate, we checked
if the method for estimating the number of components (see Sec-
tion 3.1) could be to blame. We record what is the actual explained
variance whenever dimensionality reduction is applied. Figure 4
shows a boxplots of these. We see that a requested explained vari-
ance of 80% always results in an actual explained variance of 80% or
higher for NMF and PCA. For LSI, however, the requested explained
variance systematically is below the requested percentage.

We ran an additional experiment for LSI where we requested
a 90% explained variance. As seen in Figure 4, this increased the
actual explained variance, but again did not bring it above the
requested threshold. This indicates that our PCA-based predictor
of the number of components is not appropriate for LSI, which is
somewhat unexpected, given that PCA and LSI are both based on

7



Published in ESEM’18 Carl Martin Rosenberg and Leon Moonen

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.80

0.90

0.00

0.25

0.50

0.75

1.00

LSI (80%) LSI (90%) NMF (80%) PCA (80%)

dimensionality reduction technique

o
b

ta
in

e
d

 e
x
p

la
in

e
d

 v
a

ri
a

n
c
e

Figure 4: Explained variance after dimensionality reduction.
The percentages in labels show desired explained variance.

Singular Value Decomposition. We leave the search for a better
predictor to future work.

As was to be expected, increasing the requested explained vari-
ance to 90% did increase LSI’s median AMI scores to 0.31 for Com-
plete Linkage, 0.23 for Weighted Linkage, 0.22 for Average linkage,
and 0.029 for Single Linkage. However, these still put LSI below the
baseline in Table 5 and (far) below PCA and NMF with correspond-
ing merge criteria. As such, our conclusions remain unchanged.

Another potential explanation for LSI’s poor performance is
that it is geared more towards natural language corpora, which
easily have bag-of-words having 20 000 dimensions, and suffer
from polysemy and synonymy [10]. Our largest bag-of-events has
850 dimensions (Table 1), and it is unlikely that polysemy and
synonymy play a role (unless there is an issue with log abstraction).
LSI may just fit better with problems whose dimensionality is at
least an order of magnitude greater than what we observe.

5.3 RQ2: impact of dimensionality reduction
Overall, the impact of applying dimensionality reduction in the form
of either PCA or NMF is increased robustness: While the baseline
scenario requires a sensible choice of θ for adequate performance,
especially NMF gives a much wider range of performant parameter
choices, as seen in Figure 3c and d.

However, the choice of dimensionality reduction strategy is cru-
cial. As discussed in the previous section, LSI performs worse than
the baseline for all merge criteria.While both PCA andNMF provide
highly stable performance, the statistical analysis (Table 5) clearly
establishes NMF as the superior choice (confirmed by Figure 3).
Answer to RQ2: Our study suggests that using either NMF or
PCA yields more performant solutions that are more robust against
changes in γ and θ . NMF is clearly superior to PCA for the dataset
considered in this study, while LSI performs worse than the baseline.

5.4 RQ3: impact of merge criteria
The results presented in Table 5 and Figure 2 show that Complete
Linkage is the best performer for every choice of dimensionality re-
duction, while Single Linkage is unanimously the poorest performer.
Weighted and Average Linkage show roughly similar performance.

The strong performance of Complete Linkage may indicate that
our dataset has few outliers, as discussed in Section 3.2. The poor
performance of Single Linkage may indicate that a chaining effect, a
known drawback of Single Linkage [10, Sec. 17.2], may be adversely
affecting the results for that criterion. Our current study cannot
conclusively establish whether this is indeed the case.
Answer to RQ3: Our study suggests that using Complete Linkage
yields the most performant solutions, which is consistent with the
choice for this merge criterion in the work of Lin et al. [8] that was
the starting point of our investigation.

5.5 Threats to Validity
We identified the following threats that could affect the construct,
internal, and external validity of our experimental results.
Threats to Construct Validity: The ground truth used for evalu-
ation was established using regular expressions handcrafted by our
industrial collaborator to identify whether a log concerns a known
issue. One threat to validity is that these patterns do not cover all
issues encountered in the full dataset (which also motivates our
research). This is mitigated by creating the ground truth from the
subset of data that is fully covered. Another threat is that we can
not guarantee or check the absence of matching errors in these
patterns. This is, to some extent, mitigated by the fact that they
have been used to satisfaction by our partner. A final threat to
construct validity is that a hard clustering approach like LogCluster
or its variants cannot distinguish between multiple issues in a log
file. At best, a new cluster is formed of all logs sharing the same
set of issues. This is mitigated by limiting the dataset to logs that
match with only one known issue.
Threats to Internal Validity: We implemented and thoroughly
tested all algorithms and statistical procedures used in this paper
in Python, with the help of widely used libraries such as NumPy
and SciPy. However, we can not guarantee the absence of imple-
mentation errors which may have affected our evaluation.
Threats to External Validity:We evaluated the applicability and
efficacy of the LogCluster algorithm and its variations on logs that
resulting from CDt activities at our industrial partner. These logs
varied considerably in size and events covered, which should pro-
vide a good picture of the behavior that can be expected in various
contexts. However, we are likely not to have captured all possible
variation, and cannot rule out that different logging practices in
other systems or organizations would lead to different results.

Moreover, as discussed in Section 4.1, we are left with a ground
truth that is below half the size of the original dataset, which limits
the strength of statements that can be made about generalizability.

6 RELATEDWORK
We distinguish the following categories of related work:
Need for support to handle CE results: The literature on adopt-
ing continuous software engineering practices, such as CI, CDy,
and CDt, frequently alludes to the challenges and needs concerning
systematic and integrated analysis of the wealth of data resulting
from the automated build, test, and deployment steps [1–6].

Hilton et al. [2] interviewed developers from various industries
on how they debug test failures detected in CI, and report: “ our
participants told us that they get the output logs and start their search

8



Improving Problem Identif. via Automated Log Clustering w. Dimensionality Reduction Published in ESEM’18

there. These output logs can be quite large in size though, [which] can
create quite a challenge when trying to find a specific failure.”

Shanin et al. [7] identify the lack of transparency and aware-
ness regarding test and build results as one of the main threats to
adopting CDy, together with the need for measures that improve
coordination and collaboration on addressing such results.

These findings were echoed in discussions with our industrial
collaborator Cisco Systems Norway, who developed an in-house
tool to match CDt logs against hand-crafted regular expressions
to identify recurring issues. The work described in this paper in-
vestigates to what extent this identification can be automatically
supported, and what effort reductions can be achieved by clus-
tering similar failing runs. It removes the need for hand-crafting
regular expressions by utilizing IR-based clustering techniques and
exploiting the contrast between events in passing and failing logs.
Analysis of CE results: Brandtner et al. propose SQA-Mashup [3],
a quality awareness framework that integrates information from
the entire CI-toolchain. They create a single service to monitor
data that would otherwise be scattered over various locations. In
subsequent work, the same authors propose SQA-Profiles [4], a rule-
based mechanism for the dynamic composition of CI dashboards
based on stakeholder activities in the environment.

Nilsson et al. propose CiVIT [27], a technique to visualize testing
activities to support CI. They distinguish several types of testing
and indicate the coverage for these types. In addition, the scope and
periodicity of various testing efforts are used to plot an integrated
overall view of the testing status of a system.

Ståhl and Bosch propose Cinders [28], an architecture framework
designed specifically to meet the needs of CI and CDy environments.
Based on an analysis of CI and CDy literature, they phrase twelve
requirements that such an architectural framework should support.
Cinders offers four separate viewpoints of the same underlying data
model, with six optional layers of additional information which can
be used to adjust the focus and level of detail within each of those
viewpoints. It uses CiVIT [27] to visualize the testing status.

These approaches all focus on the visual analysis of integrated
CI results in dashboards to address the transparency and awareness
needs discussed above. The work that we present in this paper is
complementary: We focus on integrating CI or CDy results into
actionable clusters that can be treated more cost-effectively. Infor-
mation derived from these clusters could in turn be incorporated
in dashboards similar to the ones proposed by these authors.
Analysis of crash reports: Several authors have worked on an-
alyzing the crash reports that modern software systems offer to
send to their developers upon detecting a runtime failure.

Podgurski et al. [29] use a combination of supervised and unsu-
pervised pattern classification to cluster software failure reports
for prioritization and diagnosis. They first train a classifier to iden-
tify the features that distinguish crash reports from normal non-
crashing behavior, and then use automated clustering on those
features to classify the crash reports. The initial classifier is used as
a form of domain-specific dimensionality reduction.

Kim et al. [30] use supervised machine learning to learn the
features of top crash reports from previous releases and predict the
top potential crashes before a new release is made.
Clustering of system logs: The work presented in this paper
explores to what extent techniques developed for the clustering of

system logs can be used in a CE context. Oliner et al. [31] give an
overview of the advances and challenges in system log analysis.

In Section 2 we already presented an in-depth overview of the
LogCluster approach by Lin et al [8] that forms the basis of our
investigation. Shang et al. [32] propose an approach that uses the
difference between small controlled runs and real-life data from
a cloud environment to analyze Hadoop logs. This insight that
the contrast between passing and failing runs can be exploited to
improve clustering accuracy is also used in LogCluster.

He et al. [33] present an experience report on using system log
analysis for anomaly detection. They describe six state-of-the-art
log-based anomaly detection methods but do not draw conclusions
on which method performs best. Their focus on anomaly detection
is different from ours, as we aim to group logs that fail for the same
underlying issue in order to handle those issues more efficiently.
Parameter Tuning: Recent research highlighted that the success-
ful application of machine learning and data mining algorithms
in concrete domains is highly impacted by the selection of their
configuration parameters [34]. We are not aware of any other work
in a software engineering context that shares our goal of investigat-
ing the impact of particular dimensionality reduction techniques or
clustering parameters such as the linkage criterion on the quality
of clustering software logs or crash reports.

7 CONCLUDING REMARKS
7.1 Contributions
Our study considers the challenge of automatically grouping logs
of runs that failed for the same underlying reasons, so that they
can be treated more effectively. We replicate and extend earlier
work on clustering system log files [8] to assess its efficacy for the
analysis of continuous deployment logs. We consider optional inclu-
sion of one of three dimensionality reduction techniques: Principal
Component Analysis (PCA), Latent Semantic Indexing (LSI), and
Non-negative Matrix Factorization (NMF). Moreover, we consider
three alternative cluster merge criteria (Single Linkage, Average
Linkage, and Weighted Linkage), in addition to the Complete Link-
age criterion used in the earlier work. We empirically evaluate the
16 resulting configurations on continuous deployment logs pro-
vided by our industrial collaborator to answer the following three
research questions:
(1) Can the application of LogCluster [8] be generalized to identi-

fying problems in continuous deployment log files?
(2) To what extent does applying dimensionality reduction impact

the results of automated log clustering?
(3) To what extent does the merge criterion in HAC impact the

results of automated log clustering?
The study results allow us to answer these questions as follows:
(ad 1) The LogCluster approach generalizes to problem identifica-

tion in continuous deployment logs.
(ad 2) Including an NMF-based dimension reduction step results

in significantly better overall performance and robustness.
(ad 3) Complete Linkage performs best of all the merge criteria

that were considered.
Conclusion: We conclude that problem identification via auto-
mated log clustering is improved by including dimensionality re-
duction, as it decreases the pipeline’s sensitivity to parameter choice,

9



Published in ESEM’18 Carl Martin Rosenberg and Leon Moonen

thereby increasing its robustness for handling different inputs, a
desirable characteristic for an unsupervised approach such as auto-
mated log clustering [11].

7.2 Future Work
We see several directions in which this work can be extended. First
and foremost, these techniques should be evaluated on a wider
range of case studies. A challenge in that respect is establishing
a good ground truth for the qualitative evaluation of results, as
fully labelled sets of log files are rare. One option to address this
challenge could be to programmatically synthesize labelled log files
with known characteristics.

Another area for future work is in finding better predictors for
the number of components used by LSI, and possibly NMF. Al-
though our intuition to use the amount needed by PCA as predictor
for NMF worked well, it underperformed for LSI, even though both
PCA and LSI are based on singular value decomposition.

A final direction for future work is (support for) the in-depth
analysis of the cluster merging behavior using dendrograms and
merge distances. Such an analysis could help understand why some
of the merge criteria (like Single Linkage) performed poorly, and
why others (such as Complete Linkage) performed well, despite
their known pitfalls.

ACKNOWLEDGMENTS
We thank Marius Liaaen and Thomas Nornes of Cisco Systems
Norway for extensive discussions, help with obtaining and un-
derstanding the data set, and for developing the log abstraction
mechanisms. This work is supported by the Research Council of
Norway through the Certus SFI (#203461/030).

REFERENCES
[1] E. Laukkanen, J. Itkonen, and C. Lassenius. “Problems, causes and solutions

when adopting continuous delivery - A systematic literature review.” In: IST
82 (2017), pp. 55–79.

[2] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. “Trade-offs in contin-
uous integration: assurance, security, and flexibility.” In: Joint Meeting of the
European Software Engineering Conference and the Symp. Foundations of Softw.
Engineering. ACM, 2017, pp. 197–207.

[3] M. Brandtner, E. Giger, and H. Gall. “SQA-Mashup: A mashup framework for
continuous integration.” In: IST 65 (2015), pp. 97–113.

[4] M. Brandtner, S. C. Muller, P. Leitner, and H. C. Gall. “SQA-Profiles: Rule-based
activity profiles for Continuous Integration environments.” In: Int’l Conf. Softw.
Analysis, Evolution, and Reengineering. IEEE, 2015, pp. 301–310.

[5] A. Debbiche, M. Dienér, and R. Berntsson Svensson. “Challenges When Adopt-
ing Continuous Integration: A Case Study.” In: Lecture Notes in Computer Science
(LNCS). Vol. 8892. Springer, 2014, pp. 17–32.

[6] H. H. Olsson, H. Alahyari, and J. Bosch. “Climbing the Stairway to Heaven - A
Mulitiple-Case Study Exploring Barriers in the Transition from Agile Develop-
ment towards Continuous Deployment of Software.” In: Euromicro Conf. Softw.
Engineering and Advanced Applications. IEEE, 2012, pp. 392–399.

[7] M. Shahin, M. Ali Babar, and L. Zhu. “Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices.” In: IEEE Access 5 (2017), pp. 3909–3943.

[8] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen. “Log Clustering Based
Problem Identification for Online Service Systems.” In: Int’l Conf. Software
Engineering - Softw. Engineering in Practice. ACM, 2016, pp. 102–111.

[9] Q. Fu, J.-G. Lou, Y.Wang, and J. Li. “ExecutionAnomalyDetection inDistributed
Systems through Unstructured Log Analysis.” In: Int’l Conf. Data Mining. IEEE,
2009, pp. 149–158.

[10] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[11] C. C. Aggarwal. Data Mining. Springer, 2015.

[12] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. “What is the nearest neighbor
in high dimensional spaces?” In: 26th Int’l Conf. Very Large Data Bases. 2000,
pp. 506–515.

[13] T. Korenius, J. Laurikkala, and M. Juhola. “On principal component analysis, co-
sine and Euclidean measures in information retrieval.” In: Information Sciences
177.22 (2007), pp. 4893–4905.

[14] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.” In: J. Machine
Learning Research 12 (2011), pp. 2825–2830.

[15] M. Zitnik and B. Zupan. “Nimfa: A Python Library for Nonnegative Matrix
Factorization.” In: J. Machine Learning Research 13 (2012), pp. 849–853.

[16] D. Müllner. “Modern hierarchical, agglomerative clustering algorithms.” ArXiv:
1109.2378 [stat.ML]. 2011.

[17] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python. 2017.

[18] N. X. Vinh, J. Epps, and J. Bailey. “Information theoreticmeasures for clusterings
comparison.” In: Int’l Conf. Machine Learning (ICML). ACM, 2009, pp. 1073–
1080.

[19] A. Rosenberg and J. Hirschberg. “V-measure: A conditional entropy-based
external cluster evaluationmeasure.” In: Joint Conf. empirical methods in natural
language processing and computational natural language learning (EMNLP-
CoNLL). Association for Computational Linguistics, 2007, pp. 410–420.

[20] M. Friedman. “The Use of Ranks to Avoid the Assumption of Normality Implicit
in the Analysis of Variance.” In: J. American Statistical Association 32.200 (1937),
pp. 675–701.

[21] J. Demšar. “Statistical Comparisons of Classifiers over Multiple Data Sets.” In:
J. Machine Learning Research 7 (2006), pp. 1–30.

[22] F. Wilcoxon. “Individual Comparisons by Ranking Methods.” In: Biometrics
Bulletin 1.6 (1945), pp. 80–83.

[23] A. Benavoli, G. Corani, and F. Mangili. “Should we really use post-hoc tests
based on mean-ranks?” In: J. Machine Learning Research 17.5 (2016), pp. 1–10.

[24] J. W. Pratt. “Remarks on Zeros and Ties in the Wilcoxon Signed Rank Proce-
dures.” In: J. American Statistical Association 54.287 (1959), p. 655.

[25] S. Holm. “A Simple Sequentially Rejective Multiple Test Procedure.” In: Scandi-
navian J. Statistics 6.2 (1979), pp. 65–70.

[26] A. Vargha and H. D. Delaney. “A Critique and Improvement of the CL Common
Language Effect Size Statistics of McGraw and Wong.” In: J. Educational and
Behavioral Statistics 25.2 (2000), pp. 101–132.

[27] A. Nilsson, J. Bosch, and C. Berger. “Visualizing Testing Activities to Support
Continuous Integration: A Multiple Case Study.” In: Agile Processes in Softw.
Engineering and Extreme Programming. Springer, 2014, pp. 171–186.

[28] D. Ståhl and J. Bosch. “Cinders: The continuous integration and delivery archi-
tecture framework.” In: IST 83 (2017), pp. 76–93.

[29] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, Jiayang Sun, and Bin
Wang. “Automated support for classifying software failure reports.” In: Int’l
Conf. Softw. Engineering. Vol. 6. IEEE, 2003, pp. 465–475.

[30] D. Kim, X. Wang, S. Kim, A. Zeller, S. C. Cheung, and S. Park. “Which crashes
should i fix first?: Predicting top crashes at an early stage to prioritize debugging
efforts.” In: IEEE TSE 37.3 (2011), pp. 430–447.

[31] A. Oliner, A. Ganapathi, and W. Xu. “Advances and challenges in log analysis.”
In: Communications of the ACM 55.2 (2012), pp. 55–61.

[32] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and P. Martin.
“Assisting developers of Big Data Analytics Applications when deploying on
Hadoop clouds.” In: Int’l Conf. Softw. Engineering. IEEE, 2013.

[33] S. He, J. Zhu, P. He, and M. R. Lyu. “Experience Report: System Log Analysis
for Anomaly Detection.” In: Int’l Symp. Softw. Reliability Engineering. IEEE,
2016, pp. 207–218.

[34] O. Maimon and L. Rokach. Data Mining and Knowledge Discovery Handbook.
Springer, 2010, p. 1383.

10


	Abstract
	1 Introduction
	2 Background
	3 Variations on LogCluster
	3.1 Dimensionality reduction
	3.2 Alternative merge criteria in HAC

	4 Experimental Design
	4.1 Datasets
	4.2 Accounting for Parameter Sensitivity
	4.3 Quality Measures
	4.4 Statistical Procedures

	5 Results and Discussion
	5.1 RQ1: Generalization of LogCluster to CE
	5.2 Analysis of LogCluster and its Variations
	5.3 RQ2: impact of dimensionality reduction
	5.4 RQ3: impact of merge criteria
	5.5 Threats to Validity

	6 Related Work
	7 Concluding Remarks
	7.1 Contributions
	7.2 Future Work

	Acknowledgments

