
1

Can App Changelogs Improve Requirements Classification from
App Reviews? An Exploratory Study

Chong Wang, Fan Zhang, Peng Liang
School of Computer Science

Wuhan University, China
{cwang, liangp}@whu.edu.cn

Maya Daneva, Marten van Sinderen
School of Computer Science

University of Twente, The Netherlands
{m.daneva, m.j.vansinderen}@utwente.nl

ABSTRACT
[Background] Recent research on mining app reviews for
software evolution indicated that the elicitation and analysis of
user requirements can benefit from supplementing user reviews by
data from other sources. However, only a few studies reported
results of leveraging app changelogs together with app reviews.
[Aims] Motivated by those findings, this exploratory experimental
study looks into the role of app changelogs in the classification of
requirements derived from app reviews. We aim at understanding
if the use of app changelogs can lead to more accurate
identification and classification of functional and non-functional
requirements from app reviews. We also want to know which
classification technique works better in this context. [Method]
We did a case study on the effect of app changelogs on automatic
classification of app reviews. Specifically, manual labeling, text
preprocessing, and four supervised machine learning algorithms
were applied to a series of experiments, varying in the number of
app changelogs in the experimental data. [Results] We compared
the accuracy of requirements classification from app reviews, by
training the four classifiers with varying combinations of app
reviews and changelogs. Among the four algorithms, Naïve Bayes
was found to be more accurate for categorizing app reviews.
[Conclusions] The results show that official app changelogs did
not contribute to more accurate identification and classification of
requirements from app reviews. In addition, Naïve Bayes seems to
be more suitable for our further research on this topic.

CCS CONCEPTS
• Software and its engineering → Requirements analysis

KEYWORDS
App reviews, app changelogs, requirements analysis, machine
learning, data-driven requirements engineering

ACM Reference format:
Chong Wang, Fan Zhang, Peng Liang, Maya, Daneva, Marten van
Sinderen. 2018. Can App Changelogs Improve Requirements
Classification from App Reviews? An Exploratory Study. In Proceedings
of 12th International Symposium on Empirical Software Engineering and
Measurement (ESEM’18). ACM, Oulu, Finland, 4 pages.
https://doi.org/10.1145/3239235.3267428

1 INTRODUCTION
Rapid growth of Mobile Internet has resulted in massive sets of
data provided by the crowds. App reviews, a type of implicit
feedback from the users, have been recognized as an important
source of user requirements for app updating and maintenance [1-
3]. Until now, researchers [1-2] mainly concentrated on how to
extract features or topics from a large number of app reviews and
then classify these topics into categories relevant to software
evolution. Several studies [4-7] also explored the use of user
feedback from other sources in requirements elicitation. For
example, [4] employed user reviews of packaged software in
Amazon to pre-extract phrases for mining user opinions from app
reviews, while [5] combined product reviews from Amazon with
app reviews as the research data. These authors observed that user
reviews of software have similar characteristics to app reviews:
(1) the number of reviews is increasing rapidly every day; (2)
review texts contain lots of noise words, including emoji, non-
English words, misspelled words, user-defined abbreviations; and
(3) most reviews are non-informative (as reported in [6], only
around one-third of app reviews are informative for app updates).
Previous research had to make great manual efforts to preprocess
app reviews before applying supervised machine learning
algorithms for the automatic extraction and classification of
software aspects or user requirements from numerous app
reviews. To reduce manual effort in filtering out non-informative
samples and identify valuable information for developers, this
emerging results paper intends to explore if other information of
apps, especially the pieces with higher value density, namely app
changelogs, could be a significant help.

App changelogs are posted by software vendors regularly in
weeks or months. These official texts are written in a standardized
way and comprise primary changes of the releases. A 2018 ICSE
study [7] has successfully employed app changelogs to identify
emerging issues in app reviews. Moreover, our preliminary
findings revealed that the changelogs of a certain released app
partially reflected user demands addressed in the app reviews of
its succeeding version. We were motivated by these findings, and

∗ This work is supported by the National Basic Research Program of China under
grant No. 2014CB340404, and the National Natural Science Foundation of China
under grant Nos. 61702378 and 61672387.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ESEM’18, October 11-12, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5823-1/18/10…$15.00
https://doi.org/10.1145/3239235.3267428.

ESEM’18, October, 2018, Oulu, Finland C.Wang et al.

2

set out to explore whether the use of app changelogs can improve
the accuracy of requirements classification from app reviews.

In the next sections, we first present related works, and
describe our research questions, method, and data. We then report
and discuss the results, and treat validity threats. Finally, we
conclude with future directions.

2 RELATED WORK
Regarding the automatic classification of app reviews, Maalej et
al. [1] introduced several probabilistic techniques to classify app
reviews into four categories, namely bug reports, feature requests,
user experience, and text rating, while [2] proposed seven other
categories relevant to software evolution. However, these authors
did not consider the categories from the perspective of
requirements types. In our previous works [8-9], we employed
classical machine learning algorithms to extract and classify
functional and non-functional requirements (NFRs) from app
reviews in which app reviews were the only type of research data
to apply and compare specified classifiers. Another similar study
in [10], concentrating on elicitation and prioritization of quality
requirements, also performed automatic analysis on app reviews.

To the best of our knowledge, only a few studies analyzed app
reviews with the supplement of research data from other sources,
such as user reviews of software [4] or products [5]. However,
both [4, 5] aimed to extract and cluster user opinions, rather than
classifying requirements into different categories. Gao et al. [7]
took app changeslogs as the ground truth to identify emerging
issues from app reviews, instead of identifying and classifying
requirements. In contrast to these sources [4-5, 7-10], the focus of
our work is mainly on the effect of app changelogs on classifying
functional and non-functional requirements from app reviews.

3 RESEARCH DESIGN

3.1 Research Questions
The goal of this work is to explore whether app changelogs can
improve the automatic classification of requirements from app
reviews. To this end, we formulate two research questions (RQs):

RQ1: Will requirements classification of app reviews be
improved if we train the classifier with app changelogs?

RQ2: Which among four classical classification algorithms
(Naïve Bayes vs. Bagging vs. J48 vs. KNN) leads to better results?

Considering the characteristics of app reviews and changelogs,
the answer to RQ1 is needed to understand the impact of the
official dataset with no noise words (i.e. app changelogs) on the
automatic classification of requirements from app reviews. Next,
since several classical classification algorithms have been applied
in the automatic classification of app reviews, RQ2 is expected to
investigate which classification techniques performs better when
using app changelogs to train the classifiers. The answer of RQ2
would help evaluate the accuracy of different classifiers and
identify the best one for the further research on this topic.

3.2 Research Method and Data

To answer the two RQs, we followed [12] and designed a series of
experiments, which were conducted in four phases:

3.2.1 Data Collection. The experiment data is composed of
two datasets. More specifically, app reviews were collected from
iBooks in the category ‘Books & Reference’ in Apple App Store,
WhatsApp in the category ‘Communication’ in Google Play, and
TripAdvisor in the category ‘Travel & Local’ in Google Play.
6000 sentences in these user reviews were included as the dataset
of app reviews. The dataset of app changelogs was crawled from
Apple App Store, containing 2005 changelogs of 30 apps
(3 categories × 10 apps) released till May 2018, as shown in
Table 1. Note that these three categories are the same as those
which the aforementioned three apps belong to, since we assumed
that the changelogs of the same app or the apps from the same
category may improve the accuracy of app reviews classification.

Next, we observed that the changes in the ‘recent updates’ of
an app changelog are (partially) duplicated with the ones in the
‘latest updates’ of its preceding changelogs. By excluding 4233
duplicates from the crawled changes in Table 1, a final set of 2024
changes forms the dataset of app changelogs for our experiments.

Table 1: Overview of Crawled App Changelogs

Category No. of
Apps

No. of
Changelogs

No. of
Changes

Communications 10 749 2352
Books &
References 10 568 1930

Travel & Local 10 688 1975
Total: 30 2005 6257

3.2.2 Sample Selection and Labeling. To explore the impact
of app changelogs on the requirements classification, all the 2024
changes in the dataset of app changelogs were sampled.

All four classification techniques used in our study are
supervised machine learning approaches, which need to be trained
using a labeled truth set. The training set contained already
classified instances to classify the instances in the test set. For the
truth set creation, we conducted a manual content analysis and
labeling for all the sampled 6000 app review sentences and 2024
changes. First, three coders (two were computer science master
students, and one - the second author, was a computer science
bachelor student) were asked to conduct two groups (two coders
in each group) of pilot labeling on 300 app review sentences
(100 sentences × 3 apps) and 150 changes (5 changes ×
 30 apps) respectively. One of the two master students has richer
experience on labeling requirements in app reviews, and worked
in the two groups. Before that, we briefed these three coders in a
meeting to introduce the task and explain the NFR standard (ISO
25010 [11]) used for labeling NFRs with some examples. Two
pilot labeling tasks resulted in 88% agreements on app review
sentences and 87% on app changes respectively. After discussing
and resolving all the disagreements, we developed a coding guide
to precisely define each type and increase the quality of manual
labeling. Finally, these two master students completed labeling on
6000 app review sentences, and the second author and one master
student came to an agreement on the labels for 2024 app changes.

ESEM’18, October, 2018, Oulu, Finland C.Wang et al.

3

Table 2: Impact of App Changelogs on App Reviews Classification using Naïve Bayes (R = app reviews, C = app changelogs)

Training set 1 Test set 1: 500R Training set 2
(no ‘Others’- labeled R)

Test set 2: 500R (no ‘Others’-labeled R)
Precision Recall F1 Precision Recall F1

2000C 0.550 0.529 0.539 2000C 0.618 0.599 0.608
1500C+500R 0.597 0.588 0.592 1500C+500R 0.638 0.620 0.629

1000C+1000R 0.601 0.592 0.596 1000C+1000R 0.628 0.620 0.624
500C+1500R 0.605 0.598 0.601 500C+1500R 0.629 0.628 0.628

2000R 0.612 0.588 0.600 2000R 0.629 0.627 0.628

Note that ISO 25010 treats eight types of NFRs: Functional
suitability, Performance efficiency, Compatibility, Usability,
Reliability, Security, Maintainability, and Portability. During the
pilot labeling, however, we found that functional suitability,
compatibility, maintainability, and security were seldom observed
in either app reviews or changelogs. Therefore, we included only
four types of NFRs (Usability, Reliability, Portability, and
Performance) in this research, plus the type of functional
requirements (FR) and a requirements type that we labeled
‘Others’ to refer to those requirements that are neither FR nor fit
the four NFRs indicated above.

3.2.3 Text Preprocessing. To improve classifier training and
the accuracy of requirements classification from app reviews,
Natural Language Processing techniques, including stopword
removal, stemming, and lemmatization, were applied to the text of
app review sentences and changes. Specifically, we employed: (1)
Stanford CoreNLP to preprocess the texts of sampled app review
sentences and changes; (2) TF-IDF (Term Frequency - Inverse
Document Frequency) to count the frequency and evaluate the
importance of a word extracted from the text of the sample; and
(3) StringToWordVector in Weka to implement TF-IDF technique
and extract keywords from app reviews and changelogs.

3.2.4 Classifier Training and Evaluation. Based on the size
of the truth set, especially the size of app changes, we set the ratio
of the data for the training set to that for the test set as 8:2, i.e.,
the four classifiers evaluated in Section 4 will by trained by 80%
of the random app review sentences and/or app changes. In
addition, we adopted the standard metrics Precision, Recall, and
F-measure (F1) to evaluate and compare the accuracy of the four
classification algorithms (Naïve Bayes, Bagging, J48, and KNN),
on the automatic classification of app reviews.

4 Results

4.1 Impact of App Changelogs on App Reviews
Classification

To answer RQ1, we designed a series of experiments to calculate
the accuracy of automatic requirements classification from app
reviews, varying in the proportion of app changelogs in the
training sets. These experiments run on a training set of 2000
instances (app review sentences, app changes, or both) and a test
set of 500 app review sentences. First, ‘Others’-labeled instances
were included when we randomly selected specified numbers of
app review sentences and changes to form training set 1 and test
set 1. Next, we observed that (1) app changes were seldom labeled

as ‘Others’ and (2) almost all the ‘Others’-labeled app sentences
were non-informative for app updating. To reduce the noise and
enhance the accuracy of the app reviews classification, training set
2 and test set 2 were constructed to exclude app review sentences
labeled as ‘Others’. Table 2 summarizes the results of app reviews
classification only using Naïve Bayes, since this classifier has
been reported to outperform other classification algorithms [1, 9].

As shown in Table 2, when the classifier was only trained by
app changes, the results of requirements classification from app
reviews were the worst regardless whether we included ‘Others’-
labeled instances or not. Once app reviews were added into the
training set, the accuracy of Naïve Bayes was obviously increased
(at least by 9.8% in test set 1 and 2.6% in test set 2) and then
remained stable with the varying proportion of app changes in the
training sets. We also observed that F1 score was increased by at
least 4.7% after excluding ‘Others’-labeled app review sentences
in both the training and test sets. In the case that training set 2 is
composed of only app changes, the classifier is much more
accurate (i.e., F1 score was increased by 12.8%) for predicting
requirements types from app reviews. The reason could be that
experimental data with less noise normally provide higher quality
samples for more accurate prediction.

Figure 1: Influence of the proportion of each type of
requirements on the accuracy of Naïve Bayes.

Furthermore, we analyzed the relationship between the
proportion of each type of requirements in the experimental data
and the accuracy of applying Naïve Bayes on the data. Due to
space limitation, we only show the results of running Naïve Bayes
on the data in the third row of Table 2, where training set 2
contains 1000 app changes and 1000 review sentences. As shown
in Fig.1, for the four types of requirements - Usability, Portability,
Reliability, and FR, the higher proportion of instances labeled as a
certain requirements type leads to more accurate prediction for the

ESEM’18, October, 2018, Oulu, Finland C.Wang et al.

4

corresponding type of requirements from app reviews. Regarding
the requirements typed as ‘performance’, however, less samples
resulted in higher accuracy. The reason could be that the extracted
words characterizing ‘performance’ are not only easier to be
identified for grouping this type of requirements, but also harder
to be confused with other types of requirements from app reviews.

4.2 Classification Techniques
Table 3 shows the results of comparing Naïve Bayes, Bagging,
J48, and KNN. Note that for RQ2, all the experiments were
conducted on the instances without ‘Others’-labeled app reviews,
according to the preliminary results obtained in Sect. 4.1. In Table
3, the numbers in bold represent the highest F1 scores of the
evaluated classification technique when running on the specified
dataset. Finally, the results reveal that Naïve Bayes and Bagging
performed better than either J48 or KNN. While in most cases,
Naïve Bayes is more accurate for predicting different types of
requirements than Bagging.

Table 3: F1 score of the Evaluated Classification Techniques

Training
set 2

Test
set 2

Classification technique
Naïve
Bayes Bagging J48 KNN

2000C 500R 0.608 0.627 0.575 0.534
1500C+

500R 500R 0.629 0.628 0.529 0.500

1000C +
1000R 500R 0.624 0.580 0.522 0.496

500C
+1500R 500R 0.628 0.599 0.577 0.597

2000R 500R 0.628 0.610 0.577 0.539

4.3 Discussion
For RQ1, we found that although app changelogs contained less
noise words and provided high-quality training texts for the
classifiers, they did not add up to more accurate classification of
different types of requirements from app reviews. The findings
were not encouraging, leading to the conclusion that employing
higher-quality data from the different source (e.g., app
changelogs) cannot improve the automatic classification of lower-
quality instances from another source (e.g., app reviews). One
reason could be that the proportion of various requirements types
in app changelogs is quite different from that in app reviews. It is
necessary to explore the impact of unbalanced datasets on the
accuracy of requirements classification. Another reason could be
that the words used to identify a certain type of requirements in
official app changelogs might not be the same as that used in app
reviews. It is meaningful to improve feature identification and
selection for requirements classification.

For RQ2, we observed that Naïve Bayes worked best for the
automatic classification of requirements from app reviews. This
finding agrees with the results in [1, 9]. Thus, Naïve Bayes can be
an appropriate classification technique to achieve high accuracy in
multiclass case in our further research.

5 LIMITATIONS
We evaluated the potential threats to the validity [12] of our
results as follows. First, the collected app changelogs and reviews
were analyzed by three coders independently, on the premise that
they had a consistent understanding on different types of
requirements, especially on NFR types defined in ISO 25010. To
reduce the risk of inconsistent understanding and mislabeling, a
brief meeting and two pilot studies were conducted to exchange
their understandings, resolve conflicts, and finally get a consensus
on the categorization of specified types of requirements before
labeling the remaining samples. Second, all the experiments were
implemented in Weka, a suite of machine learning tool written in
Java. The results of this exploratory study may vary if the
evaluated classification algorithms are programmed in a different
language, such as Python. Therefore, how to improve the
implementation of those classifiers remains to be studied.

6 CONCLUSIONS AND FUTURE WORK
This emerging results paper explored the effect of app changelogs
on the automatic classification of requirements from app reviews.
For this purpose, multiple training sets containing different
numbers of app changes were constructed as the inputs of
evaluated classifiers. The results indicate that the employment of
app changelogs did not contribute much to more accurate
classification of FRs and four types of NFRs from app reviews.
Naïve Bayes is suggested as an appropriate supervised machine
learning algorithm for the automatic classification of app reviews.

Since the current findings are not encouraging, our next steps
are: (1) to re-evaluate the influence of using app changelogs on
requirements classification from app reviews by leveraging the
proportions of different types of requirements in the samples, and
(2) to investigate how to improve the accuracy of classifying
requirements from app reviews by introducing other methods for
feature extraction.

REFERENCES
[1] W. Maalej, Z. Kurtanovic, H. Nabil, C. Stanik. 2016. On the automatic

classification of app reviews. Requirements Engineering, 21, 3, 311-331.
[2] E. Guzman, M. El-Haliby, B. Ensemble Methods for App Re-view

Classification: An Approach for Software Evolution. ASE’15, 771-776.
[3] S. Panichella, A. Di Sorbo, et al. How Can I Improve My App? Classifying

User Reviews for Software Maintenance and Evolution. ICSME’15, 281-290.
[4] P.M. Vu, H.V. Pham, T.T. Nguyen, T. T. Nguyen. Phrase-based extraction of

user opinions in mobile app reviews. ASE’16, Singapore, 726-731.
[5] W. Jiang, H. Ruan, et al, For User-Driven Software Evolution: Requirements

Elicitation Derived from Mining Online Reviews. PAKDD’14, 584-595.
[6] N. Chen, J. Lin, S.C.H. et al, AR-miner: Mining Informative Reviews for

Developers from Mobile App Marketplace. ICSE’14, 767-778.
[7] C. Gao, J. Zeng, M. R. Lyu and I. King. Online App Review Analysis for

Identifying Emerging Issues. ICSE’18, 48-58.
[8] H. Yang and P. Liang. Identification and Classification of Requirements from

App User Reviews. SEKE’15, 7-12.
[9] M. Lu and P. Liang. Automatic Classification of Non-Functional Requirements

from Augmented App User Reviews. EASE’17, 344-353.
[10] E.C. Groen, S. Kopczynska, et al, Users-The Hidden Software Product Quality

Experts?, RE’17, 80-89.
[11] ISO. 2011. ISO/IEC 25010, Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models. FDIS.

[12] R. Wieringa. 2014. Design Science Methodology for Information Systems and
Software Engineering. Springer, ISBN 978-3-662-43838-1.

