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ABSTRACT 
[Background] Recent research on mining app reviews for 
software evolution indicated that the elicitation and analysis of 
user requirements can benefit from supplementing user reviews by 
data from other sources. However, only a few studies reported 
results of leveraging app changelogs together with app reviews. 
[Aims] Motivated by those findings, this exploratory experimental 
study looks into the role of app changelogs in the classification of 
requirements derived from app reviews. We aim at understanding 
if the use of app changelogs can lead to more accurate 
identification and classification of functional and non-functional 
requirements from app reviews. We also want to know which 
classification technique works better in this context. [Method] 
We did a case study on the effect of app changelogs on automatic 
classification of app reviews. Specifically, manual labeling, text 
preprocessing, and four supervised machine learning algorithms 
were applied to a series of experiments, varying in the number of 
app changelogs in the experimental data. [Results] We compared 
the accuracy of requirements classification from app reviews, by 
training the four classifiers with varying combinations of app 
reviews and changelogs. Among the four algorithms, Naïve Bayes 
was found to be more accurate for categorizing app reviews. 
[Conclusions] The results show that official app changelogs did 
not contribute to more accurate identification and classification of 
requirements from app reviews. In addition, Naïve Bayes seems to 
be more suitable for our further research on this topic.  
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1 INTRODUCTION 
Rapid growth of Mobile Internet has resulted in massive sets of 
data provided by the crowds. App reviews, a type of implicit 
feedback from the users, have been recognized as an important 
source of user requirements for app updating and maintenance [1-
3]. Until now, researchers [1-2] mainly concentrated on how to 
extract features or topics from a large number of app reviews and 
then classify these topics into categories relevant to software 
evolution. Several studies [4-7] also explored the use of user 
feedback from other sources in requirements elicitation. For 
example, [4] employed user reviews of packaged software in 
Amazon to pre-extract phrases for mining user opinions from app 
reviews, while [5] combined product reviews from Amazon with 
app reviews as the research data. These authors observed that user 
reviews of software have similar characteristics to app reviews: 
(1) the number of reviews is increasing rapidly every day; (2) 
review texts contain lots of noise words, including emoji, non-
English words, misspelled words, user-defined abbreviations; and 
(3) most reviews are non-informative (as reported in [6], only 
around one-third of app reviews are informative for app updates). 
Previous research had to make great manual efforts to preprocess 
app reviews before applying supervised machine learning 
algorithms for the automatic extraction and classification of 
software aspects or user requirements from numerous app 
reviews. To reduce manual effort in filtering out non-informative 
samples and identify valuable information for developers, this 
emerging results paper intends to explore if other information of 
apps, especially the pieces with higher value density, namely app 
changelogs, could be a significant help.  

App changelogs are posted by software vendors regularly in 
weeks or months. These official texts are written in a standardized 
way and comprise primary changes of the releases. A 2018 ICSE 
study [7] has successfully employed app changelogs to identify 
emerging issues in app reviews. Moreover, our preliminary 
findings revealed that the changelogs of a certain released app 
partially reflected user demands addressed in the app reviews of 
its succeeding version. We were motivated by these findings, and 
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set out to explore whether the use of app changelogs can improve 
the accuracy of requirements classification from app reviews. 

In the next sections, we first present related works, and 
describe our research questions, method, and data. We then report 
and discuss the results, and treat validity threats. Finally, we 
conclude with future directions.   

2 RELATED WORK 
Regarding the automatic classification of app reviews, Maalej et 
al. [1] introduced several probabilistic techniques to classify app 
reviews into four categories, namely bug reports, feature requests, 
user experience, and text rating, while [2] proposed seven other 
categories relevant to software evolution. However, these authors 
did not consider the categories from the perspective of 
requirements types. In our previous works [8-9], we employed 
classical machine learning algorithms to extract and classify 
functional and non-functional requirements (NFRs) from app 
reviews in which app reviews were the only type of research data 
to apply and compare specified classifiers. Another similar study 
in [10], concentrating on elicitation and prioritization of quality 
requirements, also performed automatic analysis on app reviews.  

To the best of our knowledge, only a few studies analyzed app 
reviews with the supplement of research data from other sources, 
such as user reviews of software [4] or products [5]. However, 
both [4, 5] aimed to extract and cluster user opinions, rather than 
classifying requirements into different categories. Gao et al. [7] 
took app changeslogs as the ground truth to identify emerging 
issues from app reviews, instead of identifying and classifying 
requirements. In contrast to these sources [4-5, 7-10], the focus of 
our work is mainly on the effect of app changelogs on classifying 
functional and non-functional requirements from app reviews. 

3 RESEARCH DESIGN 

3.1 Research Questions 
The goal of this work is to explore whether app changelogs can 
improve the automatic classification of requirements from app 
reviews. To this end, we formulate two research questions (RQs): 

RQ1: Will requirements classification of app reviews be 
improved if we train the classifier with app changelogs? 

RQ2: Which among four classical classification algorithms 
(Naïve Bayes vs. Bagging vs. J48 vs. KNN) leads to better results? 

Considering the characteristics of app reviews and changelogs, 
the answer to RQ1 is needed to understand the impact of the 
official dataset with no noise words (i.e. app changelogs) on the 
automatic classification of requirements from app reviews. Next, 
since several classical classification algorithms have been applied 
in the automatic classification of app reviews, RQ2 is expected to 
investigate which classification techniques performs better when 
using app changelogs to train the classifiers. The answer of RQ2 
would help evaluate the accuracy of different classifiers and 
identify the best one for the further research on this topic. 

3.2 Research Method and Data 

To answer the two RQs, we followed [12] and designed a series of 
experiments, which were conducted in four phases:  

3.2.1 Data Collection. The experiment data is composed of 
two datasets. More specifically, app reviews were collected from 
iBooks in the category ‘Books & Reference’ in Apple App Store, 
WhatsApp in the category ‘Communication’ in Google Play, and 
TripAdvisor in the category ‘Travel & Local’ in Google Play. 
6000 sentences in these user reviews were included as the dataset 
of app reviews. The dataset of app changelogs was crawled from 
Apple App Store, containing 2005 changelogs of 30 apps 
(3 categories ×  10 apps) released till May 2018, as shown in 
Table 1. Note that these three categories are the same as those 
which the aforementioned three apps belong to, since we assumed 
that the changelogs of the same app or the apps from the same 
category may improve the accuracy of app reviews classification.  

Next, we observed that the changes in the ‘recent updates’ of 
an app changelog are (partially) duplicated with the ones in the 
‘latest updates’ of its preceding changelogs. By excluding 4233 
duplicates from the crawled changes in Table 1, a final set of 2024 
changes forms the dataset of app changelogs for our experiments. 

Table 1: Overview of Crawled App Changelogs 

Category No. of 
Apps 

No. of 
Changelogs 

No. of 
Changes 

Communications 10 749 2352 
Books & 
References 10 568 1930 

Travel & Local 10 688 1975 
Total: 30 2005 6257 

3.2.2 Sample Selection and Labeling. To explore the impact 
of app changelogs on the requirements classification, all the 2024 
changes in the dataset of app changelogs were sampled.  

All four classification techniques used in our study are 
supervised machine learning approaches, which need to be trained 
using a labeled truth set. The training set contained already 
classified instances to classify the instances in the test set. For the 
truth set creation, we conducted a manual content analysis and 
labeling for all the sampled 6000 app review sentences and 2024 
changes. First, three coders (two were computer science master 
students, and one - the second author, was a computer science 
bachelor student) were asked to conduct two groups (two coders 
in each group) of pilot labeling on 300 app review sentences 
( 100 sentences ×  3 apps ) and 150 changes ( 5 changes ×
 30 apps) respectively. One of the two master students has richer 
experience on labeling requirements in app reviews, and worked 
in the two groups. Before that, we briefed these three coders in a 
meeting to introduce the task and explain the NFR standard (ISO 
25010 [11]) used for labeling NFRs with some examples. Two 
pilot labeling tasks resulted in 88% agreements on app review 
sentences and 87% on app changes respectively. After discussing 
and resolving all the disagreements, we developed a coding guide 
to precisely define each type and increase the quality of manual 
labeling. Finally, these two master students completed labeling on 
6000 app review sentences, and the second author and one master 
student came to an agreement on the labels for 2024 app changes.  
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Table 2: Impact of App Changelogs on App Reviews Classification using Naïve Bayes (R = app reviews, C = app changelogs) 

Training set 1 Test set 1: 500R Training set 2 
(no ‘Others’- labeled R ) 

Test set 2: 500R (no ‘Others’-labeled R) 
Precision Recall F1 Precision Recall F1 

2000C 0.550 0.529 0.539 2000C 0.618 0.599 0.608 
1500C+500R 0.597 0.588 0.592 1500C+500R 0.638 0.620 0.629 

1000C+1000R 0.601 0.592 0.596 1000C+1000R 0.628 0.620 0.624 
500C+1500R 0.605 0.598 0.601 500C+1500R 0.629 0.628 0.628 

2000R 0.612 0.588 0.600 2000R 0.629 0.627 0.628 
 

Note that ISO 25010 treats eight types of NFRs: Functional 
suitability, Performance efficiency, Compatibility, Usability, 
Reliability, Security, Maintainability, and Portability. During the 
pilot labeling, however, we found that functional suitability, 
compatibility, maintainability, and security were seldom observed 
in either app reviews or changelogs. Therefore, we included only 
four types of NFRs (Usability, Reliability, Portability, and 
Performance) in this research, plus the type of functional 
requirements (FR) and a requirements type that we labeled 
‘Others’ to refer to those requirements that are neither FR nor fit 
the four NFRs indicated above.  

3.2.3 Text Preprocessing. To improve classifier training and 
the accuracy of requirements classification from app reviews, 
Natural Language Processing techniques, including stopword 
removal, stemming, and lemmatization, were applied to the text of 
app review sentences and changes. Specifically, we employed: (1) 
Stanford CoreNLP to preprocess the texts of sampled app review 
sentences and changes; (2) TF-IDF (Term Frequency - Inverse 
Document Frequency) to count the frequency and evaluate the 
importance of a word extracted from the text of the sample; and 
(3) StringToWordVector in Weka to implement TF-IDF technique 
and extract keywords from app reviews and changelogs. 

3.2.4 Classifier Training and Evaluation. Based on the size 
of the truth set, especially the size of app changes, we set the ratio 
of the data for the training set to that for the test set as 8:2, i.e.,  
the four classifiers evaluated in Section 4 will by trained by 80% 
of the random app review sentences and/or app changes. In 
addition, we adopted the standard metrics Precision, Recall, and 
F-measure (F1) to evaluate and compare the accuracy of the four 
classification algorithms (Naïve Bayes, Bagging, J48, and KNN), 
on the automatic classification of app reviews.  

4 Results 

4.1  Impact of App Changelogs on App Reviews 
Classification 

To answer RQ1, we designed a series of experiments to calculate 
the accuracy of automatic requirements classification from app 
reviews, varying in the proportion of app changelogs in the 
training sets. These experiments run on a training set of 2000 
instances (app review sentences, app changes, or both) and a test 
set of 500 app review sentences. First, ‘Others’-labeled instances 
were included when we randomly selected specified numbers of 
app review sentences and changes to form training set 1 and test 
set 1. Next, we observed that (1) app changes were seldom labeled 

as ‘Others’ and (2) almost all the ‘Others’-labeled app sentences 
were non-informative for app updating. To reduce the noise and 
enhance the accuracy of the app reviews classification, training set 
2 and test set 2 were constructed to exclude app review sentences 
labeled as ‘Others’. Table 2 summarizes the results of app reviews 
classification only using Naïve Bayes, since this classifier has 
been reported to outperform other classification algorithms [1, 9]. 

As shown in Table 2, when the classifier was only trained by 
app changes, the results of requirements classification from app 
reviews were the worst regardless whether we included ‘Others’-
labeled instances or not. Once app reviews were added into the 
training set, the accuracy of Naïve Bayes was obviously increased 
(at least by 9.8% in test set 1 and 2.6% in test set 2) and then 
remained stable with the varying proportion of app changes in the 
training sets. We also observed that F1 score was increased by at 
least 4.7% after excluding ‘Others’-labeled app review sentences 
in both the training and test sets. In the case that training set 2 is 
composed of only app changes, the classifier is much more 
accurate (i.e., F1 score was increased by 12.8%) for predicting 
requirements types from app reviews. The reason could be that 
experimental data with less noise normally provide higher quality 
samples for more accurate prediction. 

Figure 1: Influence of the proportion of each type of 
requirements on the accuracy of Naïve Bayes. 

Furthermore, we analyzed the relationship between the 
proportion of each type of requirements in the experimental data 
and the accuracy of applying Naïve Bayes on the data. Due to 
space limitation, we only show the results of running Naïve Bayes 
on the data in the third row of Table 2, where training set 2 
contains 1000 app changes and 1000 review sentences. As shown 
in Fig.1, for the four types of requirements - Usability, Portability, 
Reliability, and FR, the higher proportion of instances labeled as a 
certain requirements type leads to more accurate prediction for the 



ESEM’18, October, 2018, Oulu, Finland C.Wang et al. 
 

4 

corresponding type of requirements from app reviews. Regarding 
the requirements typed as ‘performance’, however, less samples 
resulted in higher accuracy. The reason could be that the extracted 
words characterizing ‘performance’ are not only easier to be 
identified for grouping this type of requirements, but also harder 
to be confused with other types of requirements from app reviews. 

4.2  Classification Techniques 
Table 3 shows the results of comparing Naïve Bayes, Bagging, 
J48, and KNN. Note that for RQ2, all the experiments were 
conducted on the instances without ‘Others’-labeled app reviews, 
according to the preliminary results obtained in Sect. 4.1. In Table 
3, the numbers in bold represent the highest F1 scores of the 
evaluated classification technique when running on the specified 
dataset. Finally, the results reveal that Naïve Bayes and Bagging 
performed better than either J48 or KNN. While in most cases, 
Naïve Bayes is more accurate for predicting different types of 
requirements than Bagging.  

Table 3: F1 score of the Evaluated Classification Techniques  

Training 
set 2 

Test 
set 2 

Classification technique 
Naïve 
Bayes Bagging J48 KNN 

2000C 500R 0.608 0.627 0.575 0.534 
1500C+

500R 500R 0.629 0.628 0.529 0.500 

1000C + 
1000R 500R 0.624 0.580 0.522 0.496 

500C 
+1500R 500R 0.628 0.599 0.577 0.597 

2000R 500R 0.628 0.610 0.577 0.539 

4.3  Discussion 
For RQ1, we found that although app changelogs contained less 
noise words and provided high-quality training texts for the 
classifiers, they did not add up to more accurate classification of 
different types of requirements from app reviews. The findings 
were not encouraging, leading to the conclusion that employing 
higher-quality data from the different source (e.g., app 
changelogs) cannot improve the automatic classification of lower-
quality instances from another source (e.g., app reviews). One 
reason could be that the proportion of various requirements types 
in app changelogs is quite different from that in app reviews. It is 
necessary to explore the impact of unbalanced datasets on the 
accuracy of requirements classification. Another reason could be 
that the words used to identify a certain type of requirements in 
official app changelogs might not be the same as that used in app 
reviews. It is meaningful to improve feature identification and 
selection for requirements classification.  

For RQ2, we observed that Naïve Bayes worked best for the 
automatic classification of requirements from app reviews. This 
finding agrees with the results in [1, 9]. Thus, Naïve Bayes can be 
an appropriate classification technique to achieve high accuracy in 
multiclass case in our further research. 

5 LIMITATIONS 
We evaluated the potential threats to the validity [12] of our 
results as follows. First, the collected app changelogs and reviews 
were analyzed by three coders independently, on the premise that 
they had a consistent understanding on different types of 
requirements, especially on NFR types defined in ISO 25010. To 
reduce the risk of inconsistent understanding and mislabeling, a 
brief meeting and two pilot studies were conducted to exchange 
their understandings, resolve conflicts, and finally get a consensus 
on the categorization of specified types of requirements before 
labeling the remaining samples. Second, all the experiments were 
implemented in Weka, a suite of machine learning tool written in 
Java. The results of this exploratory study may vary if the 
evaluated classification algorithms are programmed in a different 
language, such as Python. Therefore, how to improve the 
implementation of those classifiers remains to be studied.   

6 CONCLUSIONS AND FUTURE WORK 
This emerging results paper explored the effect of app changelogs 
on the automatic classification of requirements from app reviews. 
For this purpose, multiple training sets containing different 
numbers of app changes were constructed as the inputs of 
evaluated classifiers. The results indicate that the employment of 
app changelogs did not contribute much to more accurate 
classification of FRs and four types of NFRs from app reviews. 
Naïve Bayes is suggested as an appropriate supervised machine 
learning algorithm for the automatic classification of app reviews. 

Since the current findings are not encouraging, our next steps 
are: (1) to re-evaluate the influence of using app changelogs on 
requirements classification from app reviews by leveraging the 
proportions of different types of requirements in the samples, and 
(2) to investigate how to improve the accuracy of classifying 
requirements from app reviews by introducing other methods for 
feature extraction.  
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