1808.09753v1 [cs.SE] 29 Aug 2018

arxXiv

Vulnerable Open Source Dependencies: Counting Those That Matter

[PRE-PRINT]

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, Fabio Massacci

ABSTRACT

Background: Vulnerable dependencies are a known problem in today’s open-source software ecosystems because OSS libraries are highly
interconnected and developers do not always update their dependencies.

Aims: In this paper we aim to present a precise methodology, that combines the code-based analysis of patches with information on build,
test, update dates, and group extracted from the very code repository, and therefore, caters to the needs of industrial practice for correct
allocation of development and audit resources.

Method: To understand the industrial impact of the proposed methodology, we considered the 200 most popular OSS Java libraries used by
SAP in its own software. Our analysis included 10905 distinct GAVs (group, artifact, version) when considering all the library versions.
Results: We found that about 20% of the dependencies affected by a known vulnerability are not deployed, and therefore, they do not
represent a danger to the analyzed library because they cannot be exploited in practice. Developers of the analyzed libraries are able to fix
(and actually responsible for) 82% of the deployed vulnerable dependencies. The vast majority (81%) of vulnerable dependencies may be fixed
by simply updating to a new version, while 1% of the vulnerable dependencies in our sample are halted, and therefore, potentially require a
costly mitigation strategy.

Conclusions: Our case study shows that the correct counting allows software development companies to receive actionable information
about their library dependencies, and therefore, correctly allocate costly development and audit resources, which is spent inefficiently in
case of distorted measurements.

Citing this paper
This is a pre-print of the paper that appears in the proceedings of the 12th International Symposium on Empirical Software Engi-
neering and Measurement, 2018.
If you wish to cite this work, please refer to it as follows:

Q@INPROCEEDINGS{pashchenko2018esem,
author={Ivan Pashchenko and Henrik Plate and Serena Elisa Ponta and Antonino Sabetta and Fabio Massacci},

booktitle={Proceedings of the 12th International Symposium on Empirical Software Engineering and Measurement (ESEM)},

title={Vulnerable Open Source Dependencies: Counting Those That Matter},
year={2018},
month={0ct},

Accepted at ESEM’18, October 2018, Oulu, Finland

Pashchenko et al.

Vulnerable Open Source Dependencies:
Counting Those That Matter

Ivan Pashchenko Henrik Plate Serena Elisa Ponta
University of Trento, IT SAP Security Research, FR SAP Security Research, FR
ivan.pashchenko@unitn.it henrik.plate@sap.com serena.ponta@sap.com

Antonino Sabetta
SAP Security Research, FR
antonino.sabetta@sap.com

ABSTRACT

Background: Vulnerable dependencies are a known problem in
today’s open-source software ecosystems because OSS libraries are
highly interconnected and developers do not always update their
dependencies.

Aims: In this paper we aim to present a precise methodology,
that combines the code-based analysis of patches with information
on build, test, update dates, and group extracted from the very code
repository, and therefore, caters to the needs of industrial practice
for correct allocation of development and audit resources.

Method: To understand the industrial impact of the proposed
methodology, we considered the 200 most popular OSS Java libraries
used by SAP in its own software. Our analysis included 10905
distinct GAVs (group, artifact, version) when considering all the
library versions.

Results: We found that about 20% of the dependencies affected
by a known vulnerability are not deployed, and therefore, they
do not represent a danger to the analyzed library because they
cannot be exploited in practice. Developers of the analyzed libraries
are able to fix (and actually responsible for) 82% of the deployed
vulnerable dependencies. The vast majority (81%) of vulnerable
dependencies may be fixed by simply updating to a new version,
while 1% of the vulnerable dependencies in our sample are halted,
and therefore, potentially require a costly mitigation strategy.

Conclusions: Our case study shows that the correct counting
allows software development companies to receive actionable infor-
mation about their library dependencies, and therefore, correctly
allocate costly development and audit resources, which is spent
inefficiently in case of distorted measurements.

KEYWORDS

Vulnerable Dependency, Open-Source Software, Mining Software
Repositories

ACM Reference Format:

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. . Vulnerable Open Source Dependencies: Counting Those That
Matter. In Accepted at ESEM’18. This is a pre-print.. ACM, New York, NY,
USA, 12 pages. https://doi.org/

Accepted at ESEM’18, October 2018, Oulu, Finland

Fabio Massacci
University of Trento, IT
fabio.massacci@unitn.it

1 INTRODUCTION

The inclusion of free open-source software (OSS) components in
commercial products is a consolidated practice in the software
industry: as much as 80% of the code of the average commercial
product comes from OSS [13]. SAP is an active user of and contrib-
utor to OSS!. In this paper we report our hands-on experience on
the industry relevant measurement of vulnerable dependencies in
Oss.

Current dependency analysis methodologies are based on as-
sumptions that are not valid in an industrial context. They may not
distinguish dependency scopes [8] (which may lead to reporting
non-exploitable vulnerabilities), or consider only direct dependen-
cies [4] (although security issues may be introduced transitively [9]).
On the other hand, dependency analysis methodologies miss several
important factors at all. For example, we could not find studies that
distinguish dependencies, whose development had been suspended
for unspecified time, although they may still introduce bugs and se-
curity vulnerabilities transitively. Additionally, current dependency
management practices do not consider the fact that some depen-
dencies are maintained and released simultaneously, and therefore,
should be treated as a singular unit, while constructing dependency
trees and reporting results of a dependency study.

These issues lead to an inefficient allocation of costly develop-
ment and audit resources due to the distorted measurements of
vulnerable dependencies.

Hence, we make the following contributions:

o A precise methodology, that caters to the needs of industrial
practice, for reliable measurement of vulnerable dependen-
cies in open-source software;

e A tool to perform large-scale studies of (Maven-based) OSS
libraries and to determine whether any of their dependencies
are affected by known vulnerabilities

e An empirical study of 10905 library instances of the 200 Java
Maven-based open-source libraries that are most frequently
used in SAP software.

We found that as many as 20% of the dependencies affected by a
known vulnerability are not deployed, and therefore, do not intro-
duce vulnerabilities in the dependent library instances. Also, we
found that the developers of the analyzed libraries could directly fix
82% (45% more comparing to a traditional approach) of their vulner-
able dependencies. Our study indicates that, under a conservative
model to characterize halted dependencies, 14% of the total number

!https://archive.sap.com/documents/docs/DOC-29056

https://doi.org/

Vulnerable Open Source Dependencies:
Counting Those That Matter

of dependencies are halted, and therefore, do not receive updates
(including security fixes). Such dependencies should be used with
caution, since mitigations of their vulnerabilities are costly.

2 TERMINOLOGY

In this paper we rely on the terminology established among prac-
titioners and used in well-known dependency management tools
such as Apache Ivy? and Apache Maven®:

o A library is a separately distributed software component,
which typically consists of a logically grouped set of classes
(objects) or methods (functions). To avoid any ambiguity, we
refer to a specific version of a library as a library instance.

e A dependency* is a library instance, some functionality of
which is used by another library instance (the dependent
library instance).

o A dependency is direct if it is directly invoked from the
dependent library instance.

e A dependency tree® is a representation of a software library
instance and its dependencies where each node is a library
instance and edges connect dependent library instances to
their direct dependencies.

o A transitive dependency is connected to the root library in-
stance of a dependency tree through a path with more than
one edge.

o A project is a set of libraries developed and/or maintained
together by a group of developers. Dependencies belonging
to the same project of the dependent library instance are own
dependencies, while library instances maintained by other
projects are third-party dependencies.

o A deployed dependency is actually delivered with the applica-
tion or system that uses it, while a non-deployed dependency
is only needed at the time of development (e.g., for testing)
but is not a part of the artifact that is eventually released
and operated in a production environment.

o A library instance is outdated if there exists a more recent
instance of this library at the time of analysis. A halted library
is such that the next estimated release time has been passed
by far based on the interval of past releases (see §3 and §4.2).

To illustrate how this terminology is used in practice, we refer to
Figure 1, which depicts the dependency tree for a library instance
mj. The library instance under analysis m; is the root, my, x1, and
yj are direct dependencies, while u1, y, and z; are transitive depen-
dencies. Library instances mj, my and y1, y2 are own dependencies
of projects M and Y respectively, while library instances x1, y1, y2,
u1, and z; are third-party dependencies of project M.

3 PROBLEM STATEMENT

The construction of the complete bill of materials (BoM) of a project
is a necessary preliminary step to determining which dependencies

Zhttp://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
3https://maven.apache.org/pom html#Dependencies

4For the sake of consistency with the terminology used in Maven, we use the term
‘dependency’ to denote a node (not an edge) of a dependency tree.

SWe use the term dependency tree rather than dependency graph to be consistent with
Maven, where the resolved graph of dependencies never contains cycles and each
dependency appears once.

Accented at ESEM’18. October 2018. Oulu. Finland
root: my

direct dependencies: mo, X4, Y1

transitive dependencies: uq, yo,

Z1

projects: M, U, X, Y, Z

own dependencies: mq, mo

3rd party dependencies: x1, Y1,

ly2, U1, 24

v .
7 oo Z4N
A

Figure 1: Dependency tree

of a project are vulnerable and assessing the risk they represent
and the effort needed to mitigate it.

Several approaches exist for analyzing software dependencies
(Table 4). However, they do not provide a reliable measurement
of the situation with software dependencies, because they do not
consider several key aspects:

¢ a non-negligible number of dependencies that appear in the
BoM could not be possibly exploited because they are only
used at development time (e.g., for testing purposes) and are
not delivered with the actual software system in operation;

e libraries from the same project should be treated differently
than third-party libraries (the former should be maintained
by the same team, which should fix them rather than wait
for another project team to release a new non-vulnerable
version);

o the mitigation strategy that should be used to deal with each
vulnerable library depends on the above two and on the fact
that the library might not be maintained any longer (halted).

RQ1: How many actually vulnerable
dependencies does a library have?

A dependency tree for a library may include dependencies that are
used only for testing or development purposes and are not deployed
in the released version. Since they are not shipped with the product,
they cannot possibly be exploited. Hence, allocating resources to
fix or mitigate these vulnerabilities is pointless. This is well-known
to software developers [8]:

“...In this case, it’s a test dependency, so the vulnera-
bility doesn’t really apply ...”

“...1t’s only a test scoped dependency which means
that it’s not a transitive dependency for users of XXX
so there is no harm done ...”

Several recent works [3, 4, 8] do not mention explicitly that
they consider only deployed dependencies (we discuss this further
in Section 8). Indeed, the very quotes above in [8] show that the
paper actually included such dependencies in its study. As a result
vulnerable dependency count may become severely over-inflated.

RQ2: Who is responsible for vulnerable
dependencies?

A key question for the user of a vulnerable library is to attribute
responsibility for fixing it (or avoiding projects with bad security
discipline altogether). Developers of a software project are respon-
sible for own code of their project and its direct dependencies (i.e.,

http://ant.apache.org/ivy/history/latest-milestone/ivyfile/dependency.html
https://maven.apache.org/pom.html#Dependencies

Accepted at ESEM’18, October 2018, Oulu, Finland

to keep them up-to-date). Although the concept seems intuitively
simple, the following issues may occur:

e Own vs third-party dependencies: Failure to distinguish them
may incorrectly present as an insecure ecosystem with sev-
eral vulnerable dependencies (a “dependency hell” [10]) what
in reality is just a project that has broken its components
into several libraries and did not fix its own vulnerable code.

e Direct vs transitive dependencies: A dependency tree may
include several library instances that belong to the same
project. Such dependencies should not be considered sepa-
rately, since an update of one of those dependencies would
automatically bring the new versions of all other dependen-
cies from the same project. Hence, some transitive depen-
dencies may actually be controlled directly from the project
under analysis.

To illustrate these issues, we refer to the example of a depen-
dency tree shown in Figure 1. Both library instances m; and my
belong to the same project M. They are maintained and released
simultaneously by the same team: if developers wanted to fix a
bug in mgy, then they include the fix within the new release of the
project M and, at the same time, should update the versions of all
their own libraries of project M (m; and my). If they don’t do so
this might be a sign of a poor management within the project.

Suppose now that my, y2, and z; are affected by known security
vulnerabilities.

e Library instance mjy is an own dependency of m; because
mj and my belong to the same project M, and therefore, the
source code of my is under the control of developers of that
project. Hence, the vulnerability should be fixed as part of the
development of the project itself, i.e., by directly changing its
source code. While from the perspective of the build system,
mg is just a dependency, in practice it is a piece of vulnerable
code developers are shipping as part of their project.

e Dependency y; does not appear within configuration files of
project M, but it comes together with y; (since both y; and
y2 belong to project Y), which, in turn, is a direct dependency
of project M. Hence, developers of M can control the version
of y2 by selecting a suitable y;: if a newer version of y; is
released, they should update project M to use it.

e Dependency z; appears within the dependencies of project
M, since it is introduced transitively through project Y (via
y2). Usage of dependency z; cannot be controlled without
changing M and transforming the (transitive) dependency
zj into a direct dependency of the project. Since this would
break the “black-box” dependency management principle,
such a solution is not likely to be adopted. As a matter of
fact, it is a responsibility of the developers of project Y to
keep the version of z; up-to-date.

Proper distinction of these cases is very important for selec-
tion of an appropriate mitigation strategy and correct allocation
of development resources for fixing security issues introduced by
vulnerable dependencies.

Pashchenko et al.

w1 V2
: : my
> ; s X1
vi
—> E T uq

Library my has a halted dependency x1. In case a vulnerability is discovered in x; or its
dependency uy, there would be no version of x; that fixes such a vulnerability or adopts
a fixed version of uy.

Figure 2: Halted dependency

RQ3: How many direct dependencies can be
actually fixed?

If an outdated direct dependency is affected by a known vulner-
ability, the simplest solution to mitigate this vulnerability is to
update the dependent library to use the fixed version of the depen-
dency [16]. However, this becomes impossible, if an OSS library
becomes inactive [8]:

“...our project has been inactive and production has
been halted for indefinite time”

If a security vulnerability is discovered in a no longer actively de-
veloped library, there would be no version of this library that fixes
the vulnerability. Hence, being a dependency, this library will intro-
duce the vulnerability to all its dependents. Additionally, a halted
dependency may transitively introduce outdated dependencies and
expose the root library instance to bugs and security vulnerabilities
(Figure 2): the root library instance m; depends on the last version
of halted dependency x1, which, in turn, uses an “alive” dependency
uy. Although both versions v1 and v2 of library m; technically use
the latest available version of direct dependency x1, there would al-
ways present outdated transitive dependency u;. Hence, the halted
dependencies should be considered separately.

Clearly, the presence of halted dependencies has a major impact
on a company maintenance strategy. Indeed, any user of library x;
would not obtain any benefit from switching to its latest version.
The vulnerable version of u; would always be present. A different
mitigation strategy might be needed: (i) contribute to the halted
library, i.e., to develop its new release; or (ii) fork the halted library
and continue its maintenance as part of the dependent library.

Observation: Name-Based vs Code-Based
vulnerability matching

The main source of vulnerabilities in software components is the
National Vulnerability Database (NVD®) that uses the Common
Platform Enumeration (CPE) standard for enumerating the affected
components. The NVD represents the most complete, public source
of vulnerabilities” albeit it does not cover all OSS projects with the
same accuracy. Moreover, CPE names, used to denote the affected
software, use a different granularity and convention than software
package repository coordinates.

®https://nvd.nist.gov/

7Other sources of vulnerabilities are software-specific advisories and bug tracking
systems which are used to report and solve security issues. Some of them might be
product or vendor specific, e.g. MSFA for Mozilla’s Firefox browser.

https://nvd.nist.gov/

Vulnerable Open Source Dependencies:
Counting Those That Matter

Most approaches for the identification of vulnerable dependen-
cies use the NVD and try to map CPE names to the language-specific
naming, e.g., Maven coordinates. This is, for example, the case for
OWASP Dependency Check®. Such approaches suffer from both
false positives and false negatives. In particular, many false posi-
tives come out of the fact that CPE names are more coarse grained
than Maven coordinates: a vulnerability only affecting the poi-ooxml
artifact within the Apache Poi project, would be assigned to the
entire project in the NVD, thereby resulting in false positives when-
ever an application only uses ‘Poi’ artifacts other than poi-ooxml.
This might be further exacerbated since the NVD might use an
over-approximation rule "X and all previous versions’ for mark-
ing vulnerable versions (See, for example, [11, 12] for the study of
browser vulnerabilities and the large presence of false positives).

4 METHODOLOGY

The methodology that we present in this section is language in-
dependent and it only relies on the availability of a dependency
management mechanism, such as those provided for Java (Maven,
Gradle), Javascript (npm), Python (pip), PHP (pear), and so forth.
Considering the popularity and industrial relevance of Java’, in
the following we demonstrate our methodology on Java projects.
Over the past decade, Apache Maven established itself as a stan-
dard solution in the Java ecosystem for dependency management
and other tasks related to build processes. Other solutions exist,
such as Apache Ivy '° and Gradle (which is gaining popularity)!?,
however Maven!? still has the largest share of users!3. Hence, we
use it to demonstrate the proposed mitigations for each problem
described in Section 3, although the concepts presented below can
be easily extended to other dependency management systems.
In Maven the name of a component is standardized'* and repre-
sented as groupld:artifactld:version. Hence:
e a “project” may be referenced as Maven groupld
e a “library” corresponds to groupld:artifactld (GA)
e a “library instance” corresponds to the name of Maven com-
ponent groupld:artifactld:version (GAV)

4.1 Dependency resolution

For each of the library instances in our sample, we use Maven to
determine the complete set of dependencies. Before doing so, Maven
requires that the Project Object Model (POM) files be installed in
the local repository. Once a POM is installed locally, we use the
standard Maven goals'® dependency:tree and dependency:resolve to
construct the dependency tree of each POM and to resolve conflicts
and duplications.

Shttps://www.owasp.org/index.php/OWASP_Dependency_Check

9Java is estimated to be the most popular programming language since 2004, according
to the two indexes used by IEEE Spectrum (http://spectrum.ieee.org/) to assess popu-
larity of a programming language: (i) Tiobe index (http://www.tiobe.com/tiobe-index/),
which combines data about search queries from 25 most popular websites of Alexa; and
(i1) PYPL index (http://pypl.github.io/PYPL.html), which uses Google search queries.
Ohttp://ant.apache.org/ivy/

https://gradle.org/

2https://maven.apache.org/
3https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
“https://maven.apache.org/guides/mini/guide-naming- conventions.html

15Tn Maven terminology, goal can be thought of as a synonym of a command.

Accepted at ESEM’18, October 2018, Oulu, Finland

4.2 Post-processing of the results

The next step of our data collection process is a post-processing of
the data obtained after the dependency resolution step to address
the problems discussed in Section 3.

Filter non-deployed dependencies. To control whether a depen-
dency is deployed with an artifact, Maven provides a possibility for
a software developer to specify the scope. The dependencies with
scopes provided and test are used only for development purposes
and are not shipped with a released artifact, hence, we do not con-
sider them for the further analysis as non-deployed dependencies.
Dependency grouping. The Maven dependency resolution pro-
cess starts from the POMs under analysis as the major source of the
necessary information to build the dependency trees. However, at
the final step of our analysis, the vulnerable dependency represents
the most valuable asset. Hence, we perform the final aggregation
of the results in the opposite direction, i.e., considering the paths
from vulnerable dependencies to libraries under analysis:

o we group all GAVs with the same groupld within one path
and substitute them in the path with the GAV, closest to the
vulnerable GAV

Consider the example of a dependency tree from Figure 1: let de-

pendencies x; and z; be affected by known security vulnerabilities.
Initially there are two paths from vulnerable dependencies to the
analyzed root library: (x1, m1) and (z1, y2, y1, m1). In the second
path library instances y; and y, belong to the same project Y, hence,
they are grouped. So, the analysis results in two vulnerable paths:
(1, m1) and (21, Y2, my).
Identification of halted dependencies. Public software package
repositories keep all published library instances, since there is a pos-
sibility to break a build of a library in case of a library dependency
is removed [7]. So, even a certain library is no longer maintained,
it would still be available from a software package repository.

At the same time, when selecting a mitigation strategy, software
developers need to know that a fixed version of a vulnerable depen-
dency is going to appear (otherwise, a costly mitigation strategy is
required). Some projects publish information about their decision
to stop maintenance of certain libraries. Monitoring these sources
of information requires tracking notifications for every dependency
separately; some projects do not publish such data frequently, or
stop publishing it at all. At this time, there is no systematic and
scalable approach to determine if an OSS component has reached
the end of its lifetime.

We propose to consider the amount of time library developers
require to release a new version for determining whether a library
development becomes halted.

Some libraries may have varying time intervals between releases
due to different release strategies adopted within development
teams, as well as the maturity of a certain library: at earlier stages
of development it needs to have more updates than an established
library with a long development history. An example of a mature
library is the Apache commons-logging package. Released on 2007-
11-26 version 1.1.1 was the latest available version for more than 5
years till the release of version 1.1.2 on 2013-03-16.

https://www.owasp.org/index.php/OWASP_Dependency_Check
http://spectrum.ieee.org/
http://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
http://ant.apache.org/ivy/
https://gradle.org/
https://maven.apache.org/
https://zeroturnaround.com/rebellabs/java-tools-and-technologies-landscape-2016/
https://maven.apache.org/guides/mini/guide-naming-conventions.html

Accepted at ESEM’18, October 2018, Oulu, Finland

Since the time difference between recent releases should have
bigger impact on the Last release interval comparing to the time dif-
ference between older releases, the typical statistical model that de-
scribes such a process is a simple Exponential Smoothing model [2]:

Last release interval = « {(1 — a)' Release timen,i}

n
i=0
Expected release date = Last release + Last release interval

where Release time; is the time needed to release the i-th version
of a library, 0 < a < 1 is the smoothing parameter that shows
how fast the influence of previous time intervals decreases'®. We
estimate the Expected release date for a library by adding the Last
release interval to the release date of the latest available version of
the library. Then we determine the status of the library as follows:

o next release date < TIME: the library is halted

o next release date > TIME: the library is alive

TIME represents the date, for which the library status is cal-
culated. In our study, for each analyzed library instance we will
identify its release date and use it to calculate whether any of the
dependencies were halted. To know the current status, TIME should
be equal to the current date.

The proposed model based on release dates is conservative, since
it provides the lower bound for the estimation of the Expected release
date for a library. Hence, it is more likely to be affected by false
positives, i.e., to classify a library as halted, when it is still under
development. However, such finding would mean, that a library
does not receive a fix for a long period of time, which increases
chances of a zero day vulnerability to be exploited. Hence, even in
case of “false positives”, our model provides a valuable information
for a software developer.

To examine the reliability of the proposed model, we randomly
selected 100 distinct library instances identified to be halted. Then
we manually looked for any available information of whether a
new version of a halted library is planned to be released. For this
purpose, for every halted library we checked (when possible) (i)
their software repositories, (ii) release pages, or (iii) other available
resources returned by Google searches. The manual analysis did
not reveal any libraries falsely reported to be halted.

4.3 Identification of vulnerabilities

Once all the dependencies of each subject project are determined,
we lookup any known vulnerabilities associated with them. As
we mentioned, an obvious implementation relies on a database
that lists the known security vulnerabilities and the exact library
instances that are affected. Unfortunately, this information is not
readily available from standard sources, such as the NVD, where
vulnerabilities are assigned to components that are designated at a
much coarser level of granularity than we need.

To improve our precision we leverage on code based approaches
to vulnerability detection such as Ponta et al. [15] and Dashevskyi

180Our hands-on experience (which is also supported by the observation of released
dates for the analyzed libraries) suggest, that the last three releases have the major
impact on the Expected release date of a library, and therefore, in this paper we count
a = 0.6. For libraries with less than 3 releases, we take the Last release interval equal
3 months.

Pashchenko et al.

Table 1: Descriptive statistics of the library sample

We considered the 200 most popular OSS Java libraries used by SAP in its own software,
which resulted in 10905 distinct GAVs when considering all library versions.

mu median | sigma | min max Q1 Q3

#GAVs 54.52 35.0 49.24 1.0 248 15.0 | 87.0
#dependencies | 11.89 3.0 18.54 0.0 131 0.0 | 16.0
#direct deps 4.26 2.0 6.80 0.0 51 0.0 6.0
#transitive deps 7.63 1.0 13.56 0.0 92 0.0 11.0
#usages 55.96 5.0 508.41 1.0 29 472 1.0 23.0

et al. [5]. Starting from known vulnerabilities from the NVD, ad-
visories, bug tracking systems, etc., the commit fixing the vulner-
ability is identified manually and analyzed resulting in a list of
code changes. All software constructs (e.g., constructors, methods)
included in such list are the so-called vulnerable code. The cre-
ation of such knowledge is a one-time effort for each vulnerability.
Then, for every analyzed project, the list of all own libraries of the
project and all its dependencies is collected by performing a code-
level matching of the vulnerable fragment following the approach
of [15]. Whenever the vulnerable code fragment is contained within
a dependency, the corresponding vulnerability is automatically re-
ported for our analysis. Additional details on the procedure are
reported in [15].

4.4 Dependency resolution tool

To automate our dependency study we implemented a tool that:

e wraps dependency:tree and dependency:resolve Maven com-
mands, which helps us get a more manageable (and a machine-
readable) representation of the results of the resolution mech-
anism. This allows us to construct the resolved dependency
tree for each analyzed library instance.

e uses the code-based approach of [15] to annotate dependency
trees with the vulnerability data at our disposal. In particu-
lar, when a vulnerable library instance is found among the
dependencies of one of the analyzed root libraries, our tool
produces in the output (i) the identifier of the vulnerability,
(ii) the library instance importing it, and (iii) the complete
dependency path leading from the root library to the vulner-
able dependency.

e applies path simplifications and produces the results in the
form of a human-readable report.

5 DATA COLLECTION

Processing of a full Maven Central repository with almost 2,7 mil-
lion GAVs would be impractical and especially would include arti-
facts of no relevance in industrial practice. Hence, for this paper
we take a sample from Maven Central, as explained below.
Library selection - incorrect way. Initially, we followed the ap-
proach of [17] and selected the number of usages of a library in-
stance as a proxy for its popularity. By usage we understood the
number of direct dependent library instances of a library instance
of interest!’.

However, when we extracted the list of top 100 most used li-
braries, the resulted list had an unbalanced usage distribution: scala
and spring-framework projects were over-represented, while some
well-known projects, like Apache Tomcat, were not present in the

7We used the data from MVNrepository (https://mvnrepository.com/).

https://mvnrepository.com/

Vulnerable Open Source Dependencies:
Counting Those That Matter

i x Allvulns
2500 - ‘ —-= Allvulns_fitted
'\ DeployedVulns
“ —-- Deployedvulns_fitted
§ 2000 \
& v
2]
2 1500 4 v i
[a] \ '\
o 3)
3 Voo
© 1000 1 v
o \ \
E o
> N A
500 _\ -
. '\ x
X~
T~ S,
04 L LT R R —

T T T T T T T T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Total dependencies in a root library

Significant amount of vulnerabilities are coming from non-deployed dependencies. How-
ever, these vulnerabilities are not exploitable, and therefore, do not introduce any danger
to the analyzed library instances.

Figure 3: All vs Non-deployed vulnerable dependencies

list. A possible reason may be in the large difference in numbers of
own libraries in different projects: if a project has 100 own libraries
and they directly depend on a certain library instance, then this
library instance would be “used” 100 times, while in reality there is
only one usage.

This approach may have potentially allowed us to receive a

“good” list of libraries, if as a proxy for popularity we used the
number of dependent projects. However, such information is not
easily available (to obtain it, we would have to build dependency
trees for all GAVs in Maven Central), so we had to find another way
to construct the list of libraries for our study.
Library selection - the way we followed. To ensure industrial
relevance of our study, we selected the top 200 OSS libraries used by
a set of more than 500 Java projects developed at SAP; these include
actual SAP products and software developed by the company for
internal use. Those libraries comprise, for instance, org.slf4j:slf4j-api
and org.apache.httpcomponents:httpclient, and correspond to 10905
library instances when considering all versions (see Table 1 for
descriptive statistics of the selected sample).

6 RESULTS AND DISCUSSION

In this Section we answer the research questions and present how
each step in our methodology influences the results of a depen-
dency study for the complete sample of selected libraries. Then we
show the impact of the proposed methodology on the results of
a dependency analysis for an average industrial software library.
Below we present the results from the perspective of developers of
the analyzed libraries.

RQ1: How many actually vulnerable dependencies does a library
have? To answer RQ1 we collected both direct and transitive depen-
dencies without applying other simplification steps. The left part of
Table 2 shows the total amount of both vulnerable and safe depen-
dencies in our sample. We found that non-deployed dependencies
represent 45% of direct and 34% of transitive dependencies, wherein
22% of transitive and 20% of direct vulnerable dependencies are
non-deployed.

Accepted at ESEM’18, October 2018, Oulu, Finland

£ % Grouped
2000 i —-- Grouped_fitted
'\ NotGrouped
“ —-- NotGrouped_fitted
1500 - 1
\ !
© g \
2 \ i
3 1000 1 A\ ;
g SR
i \ \
N
~
500 R
~.
%._\
S
f—
ol M‘___u__A._,,__T__x
0 2 4 6 8 10

#Direct vulnerable dependencies and vulnerable own libraries

The grouping step allows us to report many vulnerable cases that software developers
of the analyzed libraries are actually in direct control of, since those vulnerabilities are
present in either direct dependencies or own libraries of the analyzed projects.

Figure 4: The cases when developers of analyzed libraries are
actually responsible for fixing vulnerable dependencies

Figure 3 shows the distributions of the total number of vulner-
able dependencies and the number of vulnerable dependencies of
an analyzed library that are actually deployed. We observe, that
those distributions are different: the number of actually deployed
dependencies is significantly smaller than the total number of de-
pendencies in a library (p-value=1.467 * 1071%°, Wilcoxon test).
In some cases only 22% of vulnerable dependencies are released
with the library, while the majority of the analyzed libraries in our
sample have up to 12 vulnerable dependencies, three of which are
non-deployed (25%).

We observe that non-deployed dependencies are a significant
share of vulnerable libraries: every fifth dependency affected by
a known vulnerability is non-deployed, and does not bring
any danger to the analyzed library. Hence, they should be ex-
cluded (or separately marked) from the results of a dependency
study.

RQ2: Who is responsible for vulnerable dependencies? To make an
application safe, its developers need to be sure that they address all
the vulnerable dependencies. Direct dependencies and own libraries
of a software project are within the full control of its developers
but fixing vulnerabilities in transitive dependencies may require
opening the “black-box” approach for dependency management,
and may be significantly more expensive. To answer the RQ2 we
need to determine the following:

o the difference between the “true” number of own libraries
and direct dependencies in the dependency trees of analyzed
libraries;

e the actual number of vulnerable dependencies that develop-
ers of analyzed libraries are responsible for fixing.

To do this, firstly, we filtered out non-deployed dependencies. Then
we identified the own dependencies and compared the number of
direct dependencies before and after the grouping procedure.

The effect of the grouping procedure on the aggregated num-
bers of dependencies for the studied library sample is shown in
the right part of Table 2. We found that paths of 148 (out of 10905)
analyzed library instances include own dependencies of the ana-
lyzed projects. However, those own dependencies are not affected

Accepted at ESEM’18, October 2018, Oulu, Finland

Pashchenko et al.

Table 2: The effects of considering only deployed dependencies (RQ1) and grouping dependencies by software projects (RQ2)

The left part of the table shows the number of vulnerabilities within all and deployed dependencies. Non-deployed dependencies represent significant part within both vulnerable (45% of
direct and 34% of transitive) and non-vulnerable (20% direct and 22% transitive) dependencies. The right part of the table shows the effect of the grouping step, which allowed us to reveal
that developers of analyzed libraries could directly fix 82% of deployed vulnerable dependencies (direct vulnerable dependencies). Moreover, dependency trees of 148 analyzed library
instances included own dependencies. Although they are not affected from known vulnerabilities, they may still introduce some noise, while planning allocation of development resources.

Not vuln Vuln Not vuln Vuln Not vuln Vuln
Direct | Trans. | Direct | Trans. Direct | Trans. | Direct | Trans. | Own | 3rdParty | Own | 3rdParty
dep. dep. dep. dep. dep. dep. dep. dep. lib. dep. lib. dep.
Deployed | 22 464 | 42519 | 3078 5282 Grouped 40 865 | 22478 | 6879 1481 148 63 343 0 8 360
Alldep. | 42590 | 65753 | 3868 | 6788 Not grouped | 22464 | 42519 | 3078 | 5282 NA NA

by known vulnerabilities. This most probably reflects the quality
of the selected OSS library sample: the OSS libraries used by SAP
belong to well-organized software projects. However, these own
dependencies may still introduce some noise while creating a bill
of materials to plan allocation of development resources.

Besides own dependencies, software developers are also respon-
sible for fixing their direct dependencies (See section 3 for detailed
discussion). After the grouping step we observe the surprising in-
crease of the number of direct dependencies by as much as 87%.
This most likely happens because the dependency grouping pro-
cedure shortens the dependency paths (by grouping dependencies
belonging to same projects), and therefore, it reduces the appalling
feeling of an unmanageable ‘dependency hell’.

Figure 4 shows the difference between the distributions of the
number of vulnerable dependencies that developers of analyzed
libraries are in direct control of (own libraries and direct dependen-
cies) before and after application of the grouping step (the difference
is statistically significant, p-value=1.648 * 10728%). The dependency
grouping allows us to reveal up to eight additional vulnerable de-
pendencies under the direct control of the developers of an analyzed
library instance.

We observe that developers of the analyzed libraries could fix
(either by directly correcting a bug in the library instances belong-
ing to their project or by updating direct dependencies to newer
versions) the major part of vulnerable dependencies, because these
are under their responsibility. Without the dependency group-
ing, it may seem that developers of the analyzed libraries
have direct control of only 37% of the vulnerable dependen-
cies, while in reality they are responsible for fixing 82% of
the deployed vulnerable dependencies.

RQ3: How many direct dependencies can be actually fixed? To
answer RQ3 we considered only deployed dependencies, grouped
according to the software projects they belong to. We found that 13%
of the overall number of direct dependencies and 16% of transitive
dependencies are halted. Some of them (69 direct and 5 transitive
out of 9047 halted dependencies) are affected by known security
vulnerabilities. Although this number is not big, each case of a
halted dependency is very important. Such dependencies do not
have a fixed version, and therefore, a costly mitigation is needed to
fix such vulnerabilities.

Additionally, within the sample of 10905 analyzed libraries, we
found five library instances that have transitive vulnerable depen-
dencies via a halted direct dependency. All these dependencies are
outdated and there exist safe versions of them. However, these safe
versions would not be adopted by halted libraries, and therefore,

developers of analyzed libraries have to apply a non-trivial mitiga-
tion strategy: to artificially convert those dependencies into direct
dependencies of their libraries.

The proposed methodology allowed us to identify that 14% of
the dependencies in our sample are halted, while 1% of them
are affected by known security vulnerabilities. Moreover, di-
rect halted dependencies also transitively introduced 565 de-
pendencies, 7 of which are vulnerable. All these vulnerabilities
require specific costly mitigation strategies.

Effect of the proposed methodology on an individual soft-
ware library. To identify a typical industrial software library, we
have extracted the number of direct dependencies for each SAP
software library in the proprietary Nexus repository. We assume
that the number of direct OSS dependencies in a typical industrial
library is equal to the mean number of direct dependencies that
SAP projects have, which we found to be equal 12.

Then we have artificially constructed dependency trees for 100
software projects:

(1) From the overall sample of analyzed libraries we randomly

select 12 libraries

(2) For each selected library in the step 1, we randomly pick its

version

(3) We calculate the difference between the results received

according to the “standard” dependency study methodology
(used, for example, in [8]) and the proposed methodology

(4) We repeat steps 1-3 100 times to receive the data for the

specified number of simulated projects

Figure 5 shows the effect of the proposed methodology for a
typical industrial library. We observe that the number of deployed
vulnerable dependencies is always lower, than the total number
of vulnerable dependencies (Figure 5a). At the same time we see
that the proposed methodology allows us to distinguish additional
dependencies that developers of the simulated industrial libraries
are responsible for (own and direct dependencies). Additionally,
we found that an average library in our simulation have a 9,5 %
chance to have a vulnerable halted dependency (o = 0.252) with a
maximum number of 2 vulnerable halted dependencies.

Hence, we can conclude that the proposed methodology has
a positive impact on the correct resolution of dependency
analysis results of a single industrial library.

7 IMPLICATIONS ON INDUSTRIAL
PRACTICE

In an industrial setting, the practical negative impact of using an
inadequate measurement method can be substantial. Ensuring a

Vulnerable Open Source Dependencies:
Counting Those That Matter

Accepted at ESEM’18, October 2018, Oulu, Finland

Table 3: The effect of halted dependencies (RQ3)

14 % of dependencies of the analyzed library instances are halted, while 1 % of them are affected by known vulnerabilities. Moreover, the right part of the table shows, that direct halted

dependencies introduced 7 vulnerable dependencies transitively.

Not vuln Vuln Not vuln Vuln
Direct | Transitive | Direct | Transitive Halted | Outdated | Up-to-date | Halted | Outdated | Up-to-date
Transitive
Halted | 5369 3678 69 5 . 187 378 0 0 7 0
via halted
All dep. | 40 865 22 478 6 879 1481 All dep. 9 047 54 836 1731 74 8 286 0
6 X x AlVulns 84 % % NotGrouped
== AllVulns_fitted —-- NotGrouped_fitted
54 Deployedvulns Grouped
\ —-=- Deployedvulns_fitted . —-- Grouped_fitted
, A
4 Y W,
. W
= \ \ > T
g LN g, VA
g 31 - g4 N
g [N g \ N
Py \.\ xo N x = N
N \\. 2 \, >
., \'\ \.\ ~
1 o ~% o % ~ ~e .
\'\‘ '\'--... ~ \'\"—
0 x Toxe ok Swelx 01 " @R e =
0 1 2 3 a 5 6 0 1 2 3 2 5

#Vulnerabilities

(a) RQ1 for a typical industrial library

#Vulnerabilties that developers are responsible for

(b) RQ2 for a typical industrial library

The proposed methodology has a positive impact on the dependency analysis results of a typical industrial library, since it allows us to distinguish deployed vulnerable dependencies from all
vulnerable dependencies for a typical industrial library (Figure 5a), as well as, to report the actual number of dependencies in direct control of developers of industrial libraries (Figure 5b).

Figure 5: Effect of the proposed methodology for a typical industrial library

healthy supply chain of third-party dependencies (of which the
large majority is OSS) is a continuing effort that spans the develop-
ment and the operational phases of a product lifetime.

As part of SAP’s secure development life-cycle, all development
projects go through several validation steps and each single finding
has to be audited, assessed, and mitigated. After the product is
released to customers, and for its entire operational lifetime, its
own security and the security of its third-party dependencies are
continuously monitored. When a vulnerability is detected in one
of the dependencies, timely mitigations need to be developed and
deployed to all affected systems. In the case of OSS dependencies,
these mitigations may consist of dependency updates, or in ad-hoc
fixes in the product that relies on the affected library or in the
dependency itself (through a company-internal fork that can be
temporary or persistent). When the product portfolio of a company
includes thousands of products, whose support period can extend
to decades, wrong assessments lead to inadequate risk management
and inefficient allocation of resources, which ultimately translate
to increased chances of security incidents and financial loss.

The distinction between deployed and non-deployed compo-
nents allows quick and reliable pre-filtering of not exploitable vul-
nerable dependencies, since they are not part of the deployed prod-
uct. From our analysis of a sample of over 550 OSS libraries used
by SAP projects, as many as 20% of all the dependencies are non-
deployed. Any metrics reporting the “danger” of using OSS libraries
that do not discriminate between those two classes would lead to a
wrong allocation of costly development and audit resources.

The granularity at which dependencies are analyzed and the
reliability with which vulnerabilities affecting them are detected

are essential to obtaining a meaningful view of the (security) health
of the dependencies of a project. Approaches that use imprecise
vulnerability detection methods and that ignore the interdepen-
dencies among the individual nodes of the dependency tree yield a
distorted view, which requires tedious, manual reviews to be cor-
rectly interpreted and that cause precious resources to be wasted.
Failing to group dependency nodes that belong to the same group
(e.g., to the same OSS project), and that are updated together, makes
the update of certain libraries appear more problematic than it is.
The vulnerability may affect a node that is deep in the dependency
tree, while the node that the application developer would need to
update might be much shallower (e.g., it could even be a direct
dependency). More in general, imprecise approaches to vulnerabil-
ity management undermine the trust of developers on automated
analysis because the dependencies identified as problematic do not
correspond to those that must be actually acted upon to address the
reported issues. As a consequence, despite the promises of automa-
tion, considerable additional human effort and expert judgment is
required to determine the appropriate mitigation strategy.

Finally, determining precisely whether a dependency could be
upgraded to a non-vulnerable version or not (because such a version
does not exist, and perhaps will never exist, if the dependency is
no longer maintained) is the key to choosing the correct mitigation
strategy. Addressing vulnerabilities in OSS components that are
alive, but for which a fixed release does not exist yet, requires to
act fast, so that an emergency solution can be rolled-out as fast
as possible to all customers. Being temporary and urgent, such
mitigation might not be optimal. An upgrade to a non-vulnerable
version of the dependency will eventually be done. Conversely, if

Accepted at ESEM’18, October 2018, Oulu, Finland

a vulnerability affects a dependency that is no longer maintained,
fixing the code of the dependency would effectively mean creating
a company-internal fork, whose long-term support could require
substantial additional investments and maintenance effort.

8 RELATED WORK

8.1 Dependency Studies

Williams and Dabirsiaghi [18] report that 26% of open-source li-
braries downloaded by organizations from Maven Central to have
known vulnerabilities and average software projects to contain at
least one vulnerable dependency. The authors refer to a lack of
meaningful controls of the components used in the proprietary
software projects as a possible reason for such a high number of
usage of vulnerable dependencies.

Hejderup [6] studied the npm registry of JavaScript modules and
found that one-third of all modules use vulnerable dependencies.
Besides the lack of awareness of developers, the study suggests
context usage of a module and breaking changes to be the possible
reasons for not fixing vulnerable dependencies. However, the au-
thors did not distinguish deployed and non-deployed dependencies,
hence the results may be reported for low-priority libraries.

The first large scale study of JavaScript open source projects was
done by Lauinger et al. [9]. The authors underline the finding that
transitive dependencies of a project are more likely to be vulner-
able, since developers (i) may not be aware about their existence
and (ii) they have less control on them. However, this relation be-
tween direct and transitive dependencies seems to be specific for
the JavaScript environment, since it allows different versions of
the same dependency to be included several times. Moreover, the
authors say that main sources of transitive dependencies in the web
sites are advertisement, tracking or social widget code, security
side of which is not very well maintained. The other dependency
management system may not have such problems by design. For
example, Maven allows a project to use only one version of a de-
pendency, while open-source Java projects typically do not include
advertisement or social widget contents.

The authors investigate the relation between outdated dependen-
cies and dependencies with known vulnerabilities. However, Cox
et al. [4] extract dependencies from project pom.xml files, which
means that the study report results only for direct dependencies
and do not apply Maven version resolution procedure. Although
the latter does not have a high impact while working with direct
dependencies, it may introduce errors when transitive dependen-
cies are involved. Moreover, the study might include low-priority
findings, since it does not explicitly mention that non-deployed
dependencies were filtered out. We propose to use Maven resolu-
tion procedure and consider results for both direct and transitive
dependencies. Cox et al. [4] rely on name-based matching of CVEs
onto library dependencies, which may have a high number of false
positives [3]. Instead, we propose a precise matching approach,
which relies on code-level matching.

Kula et al. [8] report 81,5% of the studied projects to have out-
dated dependencies, and 69% of the project owners to be unaware
of vulnerable dependencies in their projects. Although the authors
provide a thorough insight into developers’ motivation of keeping

Pashchenko et al.

Table 4: Aspects considered in the related works

RQ1: onl RQ2: RQ3: Vuln.
Related work dgﬂoyedy? gmqued? halteg deps matching
Dxlllrl:;;;f?f 8] No No No Name-based
Hejderup [6] No NA No Name-based
Lauinger et al. [9] Yes NA No Manual
Cox et al. [4] No No No Name-based+
manual
Kula et al. [8] No No No Manual
OWASP Dep Check NA NA NA Name-based
Cadariu et al. [3] No No No Name-based
Algahtani et al. [1] No No No Semantic-web
Ponta et al. [15] NA NA NA Code-based

dependencies outdated, the study uses manual analysis to map secu-
rity advisories onto affected project versions, and therefore, cannot
be easily applied to a large number of software projects (also, the
study provides insights for only nine versions of three libraries).
For the study of dependencies with known vulnerabilities Kula et
al. [8] used security advisories for just five CVEs of two types -
Denial of Service and “man in the middle”. Hence, the results of the
study might not cover important aspects of the problem of outdated
dependencies. Also, as the reported developer comments reveal,
the study did not filter out non-deployed dependencies and did not
consider grouping dependencies by projects.

8.2 Identification of Vulnerable Dependencies

OWASP Dependency Check!® is a tool, which provides the func-
tionality to automatically extract a list of project dependencies and
check if this list contains any libraries with known security vul-
nerabilities. The tool allows automatic matching of a library with
an associated CVE by comparing the name of a library with a CPE
version indicated in the description of a vulnerability (CVE) in NVD.
Although such approach has high performance, it fully relies on
the information present in the NVD.

Cadariu et al. [3] enhanced the OWASP Dependency Check tool
to create a Vulnerability Alert Service (VAS) to provide the informa-
tion about vulnerable dependencies used by clients of the Software
Improvement Group (SIG). However, the authors discovered that
the matching mechanism based on comparing library names with
CPEs yields many false positives. Moreover, at the time of publica-
tion of [3] VAS was capable only to provide information regarding
direct dependencies, while vulnerabilities may be also introduced
via transitive dependencies [6].

Alqahtani et al. [1] used a semantic-web approach for mapping
CVE descriptions from NVD database to the corresponding Maven
library identifiers. However, the precision of the approach is 5%
lower when compared to OWASP Dependency Check (and conse-
quently to VAS). Hence, the results reported in [1] may provide
inaccurate estimation of the number of vulnerable dependencies in
the open-source projects being affected by both FP and FN.

We rely on the works from Plate et al. [14] and Ponta et al. [15],
who propose a precise approach to use the patch-based mapping of
vulnerabilities onto the affected components (see Section 4.3).

9 THREATS TO VALIDITY

Threats to internal validity concern the external factors not consid-
ered in our study:

Bhttps://www.owasp.org/index.php/OWASP_Dependency_Check

https://www.owasp.org/index.php/OWASP_Dependency_Check

Vulnerable Open Source Dependencies:
Counting Those That Matter

The selection of OSS libraries is based on the number of usages
from within SAP. Such selection criterion may yield a sample not
representative of what libraries are most relevant for other indus-
trial companies or OSS developers. To check the popularity of the
studied libraries within the OSS community, we obtained the infor-
mation about library usages from MVNRepository and the number
of OSS contributors that claimed to use the selected libraries from
BlackDuck Openhub!®. The results obtained from both sources
suggested us that selected libraries are popular within the OSS de-
velopers. Since SAP is a large multinational software development
company with a significant number of Java projects, we believe
that the threat of industrial non-representativeness is minimal.

The vulnerability database used for our study may not cover all
known vulnerabilities. To minimize this threat SAP conducted an
internal study of the vulnerability dataset, which concluded that
it covers 90% of all NVD vulnerabilities reported for OSS projects
developed in Java. The coverage is closer to 100% when considering
the OSS projects most relevant for SAP. Hence, we believe that this
threat has minimal influence on the results of our analysis.

Threats to external validity concern the generalization of results:

Currently we support only Maven based projects. We used Maven,
because it provides very comfortable way to handle dependency
management and is wildly used within both OSS and commercial
projects. Clearly, dependency analysis can be enlarged to other
build automation systems, like Ant or Gradle. Although our tool
depends significantly on Maven, the methodology itself may be
applied to study projects using other build automation systems.

We use Maven grouplds as an approximation for a project. This
may potentially lead to an incorrect grouping of libraries because
some projects may use the same cross-project grouplds, or con-
versely, different grouplds to identify their components. The former
threat has a minimal impact, since the Maven naming convention of
assigning different group identifiers to distinct projects is quite well
established. We observed the latter case for test or example libraries,
e.g., org.apache.activemgq has a subgroup org.apache.activemg.tooling.
We considered two grouplds as equal if one of the two includes
the other groupld (as in the activemq example). The projects that
cannot be distinguished only by groupld could be distinguished
using additional atributes, such as Repository, ProjectID, and others
(which might be specific to certain language ecosystems).

10 CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a methodology for reliable measure-
ment of vulnerable dependencies in OSS libraries. To demonstrate
our methodology, we selected 200 most used OSS Maven based
libraries from within SAP. However, the concepts underlined in our
methodology apply to any dependency management system.

To perform the analysis we have built a tool that leverages the
functionality of Apache Maven to extract the library dependencies
and applies code-level matching approach to identify the known
vulnerabilities affecting them. We have also performed several post-
processing steps, such as (i) filtering non-deployed dependencies,
(ii) grouping dependencies on their belonging to software projects,
and (iii) determining whether a certain dependency is halted.

Phttps://www.openhub.net/

Accepted at ESEM’18, October 2018, Oulu, Finland

The results of our study demonstrate that all the suggested post-
processing steps have a positive impact:

e every fifth dependency affected by a known vulnerability
is non-deployed, hence our methodology allows reported
results of a dependency study to be free from a significant
number of vulnerable dependencies that do not introduce
any harm to the analyzed libraries;

e the grouping step of the proposed methodology allows us
to reveal 82% (45% more comparing to a regular approach)
of vulnerable dependencies the developers of the analyzed
libraries are responsible for fixing;

o the results of the dependency study suggest that 14% of the
total number of dependencies are halted, and therefore, do
not receive updates (including security fixes). Such depen-
dencies should be used with caution, since mitigations of
their bugs and bugs of their dependencies are costly;

o the library simulation shows that the proposed approach has
a positive impact on the correct resolution of dependency
analysis results of a single industrial library.

As future directions of our research we take the following steps:

e to investigate the situation outside of the Maven ecosystem,
for example targeting npm or pip.

o to extend this study to analyze all the existing libraries in
Maven Central;

e to identify a precise model for automatic identification of
whether a certain library is halted;

e to complement the existing studies on the reasons why devel-
opers do not update dependencies with an investigation of
developers’ behavior with regard to security-related updates.

REFERENCES

[1] S.S. Alqahtani, E. E. Eghan, and J. Rilling. Tracing known security vulnerabilities
in software repositories—a semantic web enabled modeling approach. Sci. Comp.
Program., 121:153-175, 2016.

[2] R. G.Brown. Statistical forecasting for inventory control. McGraw/Hill, 1959.

[3] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen. Tracking known security
vulnerabilities in proprietary software systems. In Proc. of SANER’15, pages
516-519. IEEE, 2015.

[4] J.Cox,E.Bouwers, M. van Eekelen, and J. Visser. Measuring dependency freshness
in software systems. In Proc. of ICSE’15, ICSE 15, pages 109-118, Piscataway, NJ,
USA, 2015. IEEE Press.

[5] S. Dashevskyi, A. D. Brucker, and F. Massacci. A screening test for disclosed
vulnerabilities in foss components. TSE, 2018.

[6] J. Hejderup. In dependencies we trust: How vulnerable are dependencies in
software modules? 2015.

[7] R.Kikas, G. Gousios, M. Dumas, and D. Pfahl. Structure and evolution of package
dependency networks. In Proc. of MSR’17, pages 102-112. IEEE, 2017.

[8] R. G.Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do developers update
their library dependencies? Emp. Soft. Eng. Journ., May 2017.

[9] T.Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and E. Kirda. Thou
shalt not depend on me: Analysing the use of outdated javascript libraries on the
web. In Proc. of NDSS’17, 2017.

[10] D. Merkel. Docker: lightweight linux containers for consistent development and
deployment. LJ, 2014(239):2, 2014.

[11] V.H.Nguyen, S. Dashevskyi, and F. Massacci. An automatic method for assessing
the versions affected by a vulnerability. Emp. Soft. Eng. Journ., 21(6):2268-2297,
2016.

[12] V. H. Nguyen and F. Massacci. The (un) reliability of nvd vulnerable versions
data: An empirical experiment on google chrome vulnerabilities. In Proc. of
ASIACCS’13, pages 493-498. ACM, 2013.

[13] M. Pittenger. Open source security analysis: The state of open source security in
commercial applications. Technical report, Black Duck Software, 2016.

[14] H. Plate, S. E. Ponta, and A. Sabetta. Impact assessment for vulnerabilities in
open-source software libraries. In Proc. of ICSME’15, pages 411-420. IEEE, 2015.

[15] S.E.Ponta, H. Plate, and A. Sabetta. Beyond metadata: Code-centric and usage-
based analysis of known vulnerabilities in open-source software. In 2018 IEEE

Accepted at ESEM’18, October 2018, Oulu, Finland Pashchenko et al.

International Conference on Software Maintenance and Evolution (ICSME), 2018.

[16] D.]. Reifer, V. R. Basili, B. W. Boehm, and B. Clark. Eight lessons learned during
cots-based systems maintenance. IEEE Softw. Journ., 20(5):94-96, 2003.

[17] H. Sajnani, V. Saini, J. Ossher, and C. V. Lopes. Is popularity a measure of quality?
an analysis of maven components. In Proc. of ICSME’14, pages 231-240. IEEE,
2014.

[18] J. Williams and A. Dabirsiaghi. The unfortunate reality of insecure libraries. Asp.
Sec., pages 1-26, 2012.

	Abstract
	1 Introduction
	2 Terminology
	3 Problem Statement
	4 Methodology
	4.1 Dependency resolution
	4.2 Post-processing of the results
	4.3 Identification of vulnerabilities
	4.4 Dependency resolution tool

	5 Data collection
	6 Results and Discussion
	7 Implications on Industrial Practice
	8 Related Work
	8.1 Dependency Studies
	8.2 Identification of Vulnerable Dependencies

	9 Threats to Validity
	10 Conclusions and Future Work
	References

