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ABSTRACT
Model transformation (MT) of very large models (VLMs), with mil-
lions of elements, is a challenging cornerstone for applying Model-
Driven Engineering (MDE) technology in industry. Recent research
efforts that tackle this problem have been directed at distributing
MT on the Cloud, either directly, by managing clusters explicitly, or
indirectly, via external NoSQL data stores. In this paper, we draw at-
tention back to improving efficiency of model transformations that
use EMF natively and that run on non-distributed environments,
showing that substantial performance gains can still be reaped on
that ground.

We present Yet AnotherModel Transformation Language (YAMTL),
a new internal domain-specific language (DSL) of Xtend for defin-
ing declarative MT, and its execution engine. The part of the DSL for
defining MT is similar to ATL in terms of expressiveness, including
support for advanced modelling contructs, such as multiple rule
inheritance and module composition. In addition, YAMTL provides
support for specifying execution control strategies. We experimen-
tally demonstrate that the presented transformation engine outper-
forms other representative MT engines by using the batch transfor-
mation component of the VIATRA CPS benchmark. The improve-
ment is, at least, one order of magnitude over the up-to-now fastest
solution in all of the assessed scenarios. The software artefacts
accompanying this work have been approved by the artefact evalu-
ation committee and are available at http://remodd.org/node/585.
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• Software and its engineering→Model-driven software en-
gineering; Specialized application languages; Software performance;
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1 INTRODUCTION
Over the past decade the application of MDE technology in indus-
try has led to the emergence of very large models (VLMs), with
millions of elements, that may need to be updated using model
transformation (MT). This situation is characterized by important
challenges [26], starting from model persistence using XMI serial-
ization with the Eclipse Modeling Framework (EMF) [31] to scalable
approaches to apply model updates.

An important research effort to tackle these challenges was
performed in the European project MONDO [19] by scaling out
efficient model query and MT engines, such as VIATRA [3] and
ATL/EMFTVM [46], building on Cloud technology either directly,
by using distributed clusters of servers explicitly, or indirectly, by
using NoSQL stores, which streamline the deployment and man-
agement of clusters. Among the first type, there are approaches
that distribute model queries, e.g. IncQuery-D [32], others paral-
lelize [40] and distribute [2] MT. Among the second type, some ap-
proaches compile model transformations to external data stores, e.g.
Gremlin-ATL [15], others circumvent the XMI serialization problem
by using NoSQL stores, e.g. NeoEMF [16] and MORSA [17].

In this work, we address the problem of transforming VLMs
efficiently by scaling up core MT techniques instead. In particular,
we introduce Yet Another Model Transformation Language (YAMTL)
as an internal DSL of Xtend [18] and compare it with the core MT
engines that are scaled out in the MONDO project, namely VIA-
TRA3 (VIATRA in the rest of the paper) and ATL/EMFTVM, along
two dimensions: a qualitative one based on their expressiveness, and
a quantitative one based on their performance.

Regarding expressiveness, we discuss that the language is, at
least, as expressive as ATL for batch MT, including declarative rules
with several input/output elements, control mechanisms with lazy
rules, priorities and an efficient operation fetch, which implements
an object resolution strategy based on internal traceability links.
In addition, we show that YAMTL provides support for advanced
modelling constructs for reuse such as multiple rule inheritance
and module composition.

To analyse performance, we focus on batch MTs that are executed
on demand, instead of being incremental or reactive, by using the
batch MT component of the VIATRA CPS benchmark [3, 43]. We
demonstrate, via a controlled experiment, that YAMTL substantially
outperforms the up-to-now fastest solution of the benchmark by
using all of its scenarios. Furthermore, we show that YAMTL is
able to perform the benchmark transformation involving more
than 10M objects and 27.5M references in about 32s . most of the
times. A Github repository with all of the software artefacts used in
the experiments, including the different solutions, the benchmark
harness used and raw results, is available at [13] for the sake of
reliability of the empirical study.

http://remodd.org/node/585
https://doi.org/10.1145/3239372.3239386
https://doi.org/10.1145/3239372.3239386
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By being an Xtend DSL, YAMTL lives in symbiotic relationship
with Xtend, enabling the integration of declarative batch (both out-
place and in-place) MT with Xtend model-to-text transformation in
memory, while benefiting from its tool ecosystem and language ex-
pressiveness. This includes Xtend’s IDE, typechecker and debugger.
YAMTL is available at https://yamtl.github.io.

In the rest of the paper, the presentation of algorithms has a
marked functional scent, and readers accustomed to lambda ex-
pressions in programming languages with side effects, e.g. as in
Java and Xtend, or closures, as in Groovy, should find no trouble.
Our findings are presented as follows: a brief introduction to the
benchmark transformation and YAMTL are presented in section 2;
YAMTL’s matching algorithm is presented in section 3; the opera-
tional semantics of rules is presented in section 4; the analysis on
the language expressiveness and performance of YAMTL is given
in sections 5 and 6, resp.; concluding remarks and future work are
given in section 7.

2 YAMTL
In this section, YAMTL is introduced by providing its concrete
syntax and an outline of its semantics by using the batch transfor-
mation of the VIATRA CPS benchmark [3, 43], which is available
as a third-party public resource [36], including thorough documen-
tation about the models involved and about the mapping rules. The
source domain describes a generic infrastructure for cyber-physical
systems (CPS) where applications (services) are dynamically allo-
cated to connected hosts. The target domain represents system de-
ployment configurations (DEP) with stateful applications deployed
on hosts. The batch transformation derives the initial deployment
model from a CPS model. Parts of this transformation are used
to present YAMTL but, due to space limitations, a complete def-
inition will not be provided and is available in the experiments
repository [13]. Additional YAMTL examples are available in [11].

2.1 Concrete Syntax
The declaration of the YAMTL transformation starts by creating
an Xtend class that extends the class YAMTLModule. Within its con-
structor, the header() of the transformation defines its signature,
declaring its input and output models and is declared in the con-
structor method of the transformation class. Input models that are
transformed in place are declared with the keyword .inOut() in-
stead of .in(), and the clause .out() has to be skipped. An excerpt
of the transformation for the benchmark is shown in Listing 1. In
the following, we present the syntax for defining YAMTL rules1:

new Rule(RNAME)[.inheritsFrom(RNAME_LIST)][.abstract]
[.lazy |.uniqueLazy][.transient]
{.in(ENAME,TYPE)[.with(ENAME_LIST)]

[(.filter(FILTER) |.derivedWith(QUERY))].build}+
[.filter(FILTER)]
{.using(VNAME,QUERY)}∗

{.out(ENAME,TYPE,ACTION)[.overriding()][.drop].build}+

[.endWith(ACTION)][.priority(P)].build

1The following EBNF notational conventions have been used: () for grouping ele-
ments, | for denoting alternatives, [] for denoting optionality (0..1), { }∗ for denoting
repetition (0..*), and { }+ for denoting repetition (1..*)

Rules are declared in a list, enclosed in #[], in the ruleStore.
A rule is declared with a name RNAME and it consists of: input
elements, defining the input pattern (or left-hand side) of the rule; a
filter condition; output elements, defining the output pattern (or
right-hand side); using elements initializing local variables and an
endWith block defining actions to be performed at the end of the
rule execution.
class Cps2DepYAMTL extends YAMTLModule {

val CPS = CyberPhysicalSystemPackage.eINSTANCE

val DEP = DeploymentPackage.eINSTANCE

new () { // constructor of the transformation module

header ().in('cps', CPS).out('dep', DEP)

ruleStore (#[

new Rule('CyberPhysicalSystem_2_Deployment ')

.in('cps', CPS.cyberPhysicalSystem).build

.out('dep', DEP.deployment , [

val cps = 'cps'.fetch as CyberPhysicalSystem

val dep = 'dep'.fetch as Deployment

out.hosts += cps.hostTypes

.flatMap[instances ].fetch as List <DeploymentHost >

]).build // initialize an output element

.build , // initialize a rule

// other rules

])

helperStore (#[

new Helper('waitingTransitions ') [

val Map <String ,List <Transition >> map = newHashMap

CPS.transition.allInstances.forEach[ transition |

// initialization of map

]

return map

].build])}

def isWaitSignal(String action) {

action.startsWith("waitForSignal") }

// other helpers here ...

}

Listing 1: Excerpt of Benchmark Transformation in YAMTL

There are two types of input elements:matched, which are initial-
ized by means of YAMTL’s matching algorithm; and derived, which
are initialized bymeans of a contextual query, dependent on, at least,
one matched element. Rules are declared with, at least, one matched
input element, declaring the name of the object variable ENAME
and its type TYPE (an EClass instance, where EClass embodies
the concept class in EMF). An optional local filter condition can be
defined for a matched input element by using the clause .filter()

with a lambda expression FILTERwith type () => boolean. An input
element can be declared as derived with the clause .derivedWith(),
where aQUERY lambda expression with type () => EObject is used
to compute the value of the match. When several input elements are
declared, a common filter condition, involving all input elements,
can be declared using the clause .filter( FILTER). Dependencies
among matched input elements can be declared with the clause
.with(), enabling the use of objects matched in previous input
elements in the filter expression of subsequent input elements.

Local variables to be used in the evaluation of both output el-
ements and the .endWith() block are initialized with elements
.using() by declaring the name of the variable VNAME and a
QUERY lambda expression with type ()=>Object.

Output elements are declaredwith the clause .out() by providing
a name ENAME, a type TYPE (an instance of EClass), and a lambda
expression, with type ()=>void, representing the procedure to be
used to initialize/update the output element. The rule that creates a

https://yamtl.github.io
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deployment root object from a cyberphysical system object, shown
in Listing 1, is defined with an input element cps with no filter
condition andwith an output element dep, whose lambda expression
is defined between []. In the lambda expression, rule elements
can be accessed with the operation fetch. The logic of the rule
is simple in this case, the instances belonging to all hostTypes
in the input element cps correspond to DeploymentHost objects,
which are obtained using the operation fetch. That is, the operation
fetches the output objects to which input objects have beenmapped
using another rule. For matched rules, the user does not need to
provide any hint as rules are declarative and applied internally by
theMT engine. The operation fetch lays at the core of the execution
semantics of YAMTL and will be presented in detail in section 4.

The clause .endWith() defines an optional ACTION lambda ex-
pression with type ()=>void, which can refer to any element of
the rule and to local variables. The clause endWith is not strictly
required and is provided for convenience only, facilitating grouping
the initialization of different output elements in one single block,
which may help in achieving a concise presentation of rules.

By default, rules are matched using input elements, which may
have local filter conditions, and the rule filter condition. However, a
rule that is either lazy or uniqueLazy will not be matched automati-
cally. Lazy rules can only be applied when the match for matched
input elements is explicitly provided by using the fetch command
as explained in the following section. A rule that is uniqueLazy is
applied only if it has not been applied already for the same input
match. Such constraint does not apply to a rule that is lazy.

A rule that is abstract can neither be matched automatically nor
applied. A rule can specialize multiple parent rules using the clause
.inheritsFrom(RNAME_LIST), where the order of inheritance as
specified in the list RNAME_LIST is important. Rules can also be
annotated with the clause .priority(P), where P is a long value.
The YAMTLmatching algorithmwill apply rules with lower priority
first. A rule that, in addition, is transient does not persist its output
elements when the target model is flushed to physical storage.

On the other hand, YAMTL provides the operation allInstances,
defined for all of the EClass instances of the in (or inOut) model,
facilitating the creation of OCL-like queries in Xtend lambda ex-
pressions. YAMTL also allows users to define attribute helpers in
transformations for computing values during the initialization of
the model transformation. Such helpers are defined in the construc-
tor of the transformation and are linked to the YAMTL module
with the operation helperStore. An attribute helper consists of a
name and a QUERY lambda expression. In the example of Listing 1,
the attribute caches all transitions whose attribute action value is
waitForSignal using a map. Operation helpers, like isWaitSignal,
are defined using normal Xtend methods.

2.2 Semantics Outline
The execution semantics of YAMTL is defined by using configu-
rations C, which form the execution context that is used to apply
a transformation. YAMTL’s configurations involve: the input and
output models (or only one if the transformation is executed in
place); a map locations associating each type involved in the trans-
formation with its extent of objects, providing potential locations
of the model where rules may be applied; an environment Γ as

a, possibly empty, set of variable assignments; a rule store as a
non-empty list of rules; a helper store as a, possibly empty, list of
attribute helpers; amatchPool with matched rules; and an eventPool
tracking the order in which transformation steps are applied. A
component c of a configuration C can be accessed using the prefix
form c (C).

When loading a YAMTL MT definition, YAMTL initializes trans-
formation rules by inserting their abstract representation, presented
in section 3.1, in the rule store. The initialization of a rule involves
the computation of references that are encoded through names
in the concrete syntax, e.g. the list of parent and children rule
names become lists of references to the objects representing them
internally. Additional derived references, which are used in the ex-
ecution semantics of rules, are computed, e.g. all parents/children
of a rule. In specialized rules, derived input elements whose query
expression is given in a parent rule are updated with it, and output
elements are updated by building the list of actions to be performed
in leftmost, top-down order along the rule inheritance hierarchy
for that rule.

Once the rule store is initialized, rules are typechecked both for
rule inheritance, considering the constraints in [48], and for with
dependency cycles. If no error arises, computation is performed
as follows: (1) the map locations is initialized; (2) rules in the rule
store are ordered using declared priorities; (3) an environment Γ is
initialized with the value of attribute helpers; (4) the matchPool is
initialized with all rule matches; (5) the objects of the input model
are transformed by applying rules to scheduled matches.

Dispatch Semantics. In the following, an informal description
of the matching process of a rule is provided. This process is de-
scribed more precisely in section 3. YAMTL finds a match for a
rule by first mapping matched input elements to objects that sat-
isfy the corresponding filter condition in the order defined in with

dependencies − e.g. in the clause .inElement(V1,T1).with(#[V2]),
the element with name V2, from the singleton list #[V2], is matched
earlier than V1. If no dependency is defined, the elements are or-
dered by the size of their type extent. If such a partial match exists,
YAMTL attempts to complete the total match by evaluating query
expressions for derived elements in the order in which they were
declared. If a query cannot be resolved to an object, the match for
the rule is considered invalid. If a total match is found, the satis-
faction of that match is finally asserted by the rule filter condition,
which is [true] by default. The user is to keep in mind the order
of precedence declared among input elements using with clauses
and YAMTL will throw a run-time exception when trying to fetch
an input element that has not been matched yet. To use YAMTL
efficiently, two design principles need to be applied: matched input
elements should only be defined for matching objects that are not
related to each other via references (when they should be defined as
derived elements); and rule filter conditions should be pushed down
as element filter conditions as much as possible in order to help the
matching algorithm prune invalid matches as soon as possible.

Execution Semantics. In the following, an outline of the execution
semantics of a rule is given. Such operational semantics is detailed
in section 4. An output element with a new name prescribes the
creation of a new instance and the expression ACTION is a proce-
dure describing how to initialize it. On the other hand, when the
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output element refers to an input element, the input element is
taken as the output element − i.e. the input element is also an out-
put element,− in which case the expression ACTION is a procedure
describing how to update it but no object is created afresh. In both
cases, the mapping from input match to output match is traced as
a transformation step. ACTION expressions, which can refer both
to input/output elements and to local variables, should only define
assignments for features of output elements. That means that all
objects should be created as output elements. If an ad-hoc object
is created manually (by using, e.g. an object factory) in an action
expression and assigned to an output object, the ad-hoc object is
not traced. The only inconvenience that this creates is that non-
traceable objects cannot be fetched from a different rule. Moreover,
elements that are used as both input and output can be removed
using the clause .drop, which denotes delete cascade semantics −
both the object and its contents following containment references
are removed.

Multiple Rule Inheritance. When using rule inheritance, rules
are expected to be covariant both in input elements and in output
elements with respect to inheritance relationships. The seman-
tics of rule with respect to inheritance is as follows: in matched
input elements, filter expressions are inherited using a leftmost
top-down evaluation strategy w.r.t. the inheritance hierarchy de-
fined in clauses inheritsFrom; in derived input elements, derivation
expressions for derived input elements are overriden if declared
or simply inherited otherwise; in output elements, action expres-
sions are also inherited following a leftmost top-down evaluation
strategy w.r.t. the inheritance hierarchy by default, and they can
be overriden by using the qualifier overriding in the corresponding
output element of a descendant rule. In a specialized rule, YAMTL
expects: the elements of the parent rule to be declared in the de-
scendant rule; abstract rules to be specialized; and concrete rules to
have elements in the output pattern that are typed with concrete
classes. A declaration error is thrown if those constraints are vi-
olated. When a specialized rule inherits the same output element
from two different parent rules, situation known as the diamond
problem [33], YAMTL detects the situation and warns the user but
the model transformation proceeds using inheritance semantics as
explained above.

Module Composition. A YAMTL module can be imported in other
Xtend/Java classes by instantiating its main class. On the other hand,
a YAMTL module can import any JVM library. Moreover, YAMTL
modules can be composed by using the Xtend extends clause, i.e. by
creating a subclass of another module. So, we distinguish between
module import, for reusing a YAMTL MT as a library, and module
extension for composing modules.

When other YAMTL modules are extended, the initialization of
rules and attribute helpers starts from the leaf modules, which do
not extend othermodules, and proceeds along the extends hierarchy
from parent to descendant. When a specializing module declares
a rule that is already defined in the super-module, the existing
rule is redefined by the new rule if they have compatible signatures.
That is, the rule in the importing module only defines all of the
elements of the rule in the imported module, and for each of such
elements, the type of the element in the importing module must be a
subtype of the type of the element in the imported module. Attribute

helpers are simply redefined as they do not have parameters. Other
helpers defined as Xtend operations follow the usual specialization
semantics in Xtend. Imported rules and attribute helpers that are
redefined cannot be accessed any longer.

3 DISPATCH SEMANTICS
In this section, the algorithm for matching YAMTL rules is pre-
sented. First, we introduce notation for representing input element
matches and rule matches internally. Then, we provide the notion
of valid match both for input elements and for the input pattern of
a rule. We continue by describing the matching procedure to find
matches for a given rule.

3.1 Abstract Syntax
The execution of a rule, including its matching, always requires the
presence of an environment Γ in the current YAMTL configuration
C. During the matching process, it is used to evaluate filter condi-
tions and derivation expressions that may refer to variables that
have been initialized while evaluating other input elements. This
is the reason why with dependencies usually need to be declared
among input elements if they exist − with dependencies can be
avoided if all conditions are defined in the rule filter, as opposed to
be in an input element filter.

We use the vector notation −→c for denoting variables that range
over collections, for both lists and sets, of components c . We will
disambiguate the type of collection used when accessing its ele-
ments. For lists, given a list L, we will use [] to denote the empty
list, h :: L for accessing the head of a list, and L :: l for accessing
the last element of a list. For sets, given a set S , we will use ∅ to
denote the empty set, and {e} ·∪ S for accessing an element from a
set. Note that in expressions of the form c :: −→c there is no confusion:
c refers to the head of the list and −→c refers to the tail of the list.
Similarly, in the expression {c} ·∪ −→c , c is an element of the set and
−→c denotes a set variable. The imperative assignment operation :=
is used to update variables, and can be used in lambda expressions.
The sequencing operation ; is also valid in a lambda expression.

Definition 3.1 (Rule (abstract syntax)). A YAMTL rule r is inter-
nally declared as

r : (mod, abstract, trans, parents, children,
−→
in, f ,−→u ,−−→out, endWith)

where r is the name of the rule, mod is one of the modifiers in
{matched, lazy, uniqueLazy}, abstract and trans are a boolean flags
indicating whether the rule is abstract or transient, resp., parents
is the list of parent rule names, children is the list of children rule
names, in ∈ Input is an input element, f ∈ (Env)=>boolean is
the global filter of the rule, u ∈ Using is a variable declaration,
out ∈ Output is an output element, and endWith ∈ (Env) => void

is the procedure that is executed at the end of the rule.

Given a rule r , its components are accessed using the name of the
component c in prefix form. For example: abstract (r ) determines
whether the rule is abstract or not. In addition, wewill use the helper
function isTopRule(r ) for checking whether the rule has no parents.
As an additional remark, the type of lambda expressions used in the
internal abstract representation of rules use the type Env explicitly,
which is not required when declaring rules using YAMTL’s concrete
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syntax, as presented in section 2.1. Moreover, in may refer either
to a matched input element inm or to a derived input element ind .
When interested in distinguishing matched input elements inm
from derived ones ind , we replace in with (inm , ind ) without loss
of generality. On the other hand, for an object ς ∈ EObject, we use
type(ς ) to get its type, an EClass instance c , and allSuperTypes(c )
for obtaining the set of all supertypes of an EClass c .

Definition 3.2 (Input Element (abstract syntax)). Input elements
are represented with the notation inm : (type,wl, f ) for matched
input elements, and ind : (type,wl, d) for derived input elements,
where inm and ind are names, type ∈ EClass is the type associated
with the input element, wl is a list of input element names cor-
responding to with dependencies, f ∈ (Env)=>boolean is the local
filter condition of a matched input element, and d ∈ (Env)=>EObject

is the derivation query of a derived input element.

Definition 3.3 (Input Element Match). Given a rule r , a variable
assignment in 7→ ς is a match for the input element in ∈ in(r ) if
type(in) = type(ς ) ∨ type(in) ∈ allSuperTypes(type(ς )).

Definition 3.4 (Input Rule Match). Given a rule r , a match for the
rule is a named listmr : −−−−−→in 7→ ς of input element matches in 7→ ς
for each in ∈ in(r ).

Definition 3.5 (Output Element (abstract syntax)). Output ele-
ments are represented with the notation
outm : (type, drop, overriding, action) where out is a name, type ∈
EClass is the type associated with the output element, drop is a
boolean flag indicating whether the corresponding object needs
to be dropped, overriding is a boolean flag indicating whether the
element overrides the corresponding one in the parent rule (if any),
and action ∈ (Env) ⇒ void is the action expression that either
initializes or updates the features of an output element.

The notions output element match and output rule match for out-
put elements are similar to those for input elements. The notation
is abused by using r (in and out) both for the name of the rule (of
an input element and of an output element, resp.) and for the rule
itself (for the input element and for the output element themselves,
resp.). The notions presented above are purely syntactic. In the
following subsection, the notion of valid match is introduced both
for input elements and for rules, characterizing the set of matches
for a given rule.

In what follows, most of the algorithms are presented using an
equational presentation. That is, algorithms are specified declar-
atively using a set of equations of the form LHS = RHS if Cond,
where: LHS is a pattern with variables that may be used to decom-
pose collection values using list and set constructor operators (e.g.
to fetch the head of a list with an expression h :: L); Cond is a con-
junction of equational predicates (of the form L = R, where L = true
is abbreviated as L), which are used both to ascertain constraints
and to match fresh variables (the predicates in the conjunction are
evaluated from left to right), and which are defined over previously
matched variables in LHS or in Cond; and RHS is the action to be
performed with the variables matched earlier either in LHS or in
Cond. An equation is applied only if LHS matches a term (an expres-
sion) and the condition Cond is satisfied2. The cases that are not
2This notation permits the compact representation of functions and is typical in
functional programming languages like Maude [14], where this notation is borrowed

presented explicitly as equations, when no other equation applies,
are reduced to the no-op expression (e.g. ; in Java) and parameters
are passed by value.

3.2 Valid Matches
For a match in 7→ ς of an input element in to be valid, two cases are
considered: (1) when the input element is matched, in which case
the match needs to satisfy its local filter condition, which may refer
to the matched object; and (2) when the input element is derived,
in which case its derivation query must return the object included
in the match. More precisely:

Definition 3.6 (Valid Input Element Match). Given a rule r and an
environment Γ, a match in 7→ ς for in ∈ in(r ) and ς ∈ EObject is
valid, denoted by

(in 7→ ς ) ⊨Γ in,

and defined as follows:



f (in) (Γ ·∪ {in 7→ ς })) = true if in ∈ inm (r )

d (in) (Γ) = ς if in ∈ ind (r )

To check whether a match is valid for a given rule, that is,
whether it satisfies its input pattern in(r ), the list of input elements
is traversed in sequence (input elements are ordered according to
both with dependencies and the size of their type extent − in that
order, − and matched elements are traversed earlier than derived
ones), checking that for each input element there is a valid match,
in equation MC1 below. Every time a valid match is found, it is
inserted in the environment in order to evaluate subsequent filter
and derivation expressions. When all input elements are traversed,
the match is valid if the the global filter of the rule is satisfied, in
equation MC0.

Definition 3.7 (Rule Match). Given a rule r and an initial environ-
ment Γ, a matchmr : −−−−−→in 7→ ς is valid, denoted by

−−−−−→
in 7→ ς ⊨Γ in(r )

as defined by the following equations:

−−−−−→
in 7→ ς ⊨Γ [] = f (r ) (Γ) (MC0)

{(in 7→ ς )} ·∪
−−−−−→
in 7→ ς ⊨Γ in :: −→in =

(in 7→ ς ⊨Γ in) ∧
−−−−−→
in 7→ ς ⊨Γ ·∪{(in 7→ς ) }

−→
in (MC1)

To present YAMTL’s matching procedure in the next subsection,
we need to introduce the notion of transformation step that is used
for scheduling rule matches. A transformation step, denoted by
r : −−−−−→in 7→ ς →

−−−−−−−→out 7→ ς consists of a labelled pair of two matches, the
match for the input pattern of the rule, which enables its application,
and the match for the output pattern of the rule, with the objects
that result from applying the rule. Now that the notion of a valid
match for a rule, without considering rule inheritance, has been
presented, we are ready to present how YAMTL finds them in the
following subsection.

from. An equation can be regarded as a case of either a match statement in Haskell or
Scala, augmented with a condition, or a switch statement in Java/Xtend, augmented
with pattern matching and a condition.
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3.3 Matching Procedure
The YAMTL MT engine keeps a rule store rs in memory in the
form of a non-empty list of rules that are ordered according to their
priorities, the one with lower priority is served first. The matching
procedurematch produces matches and schedules them for deferred
execution, by being parameterized with a lambda expression λs that
dictates how to schedule a match. For now, let’s assume that, given
an environment Γ and a rule match −−−−−→in 7→ ς , the lambda expression
λs records the match in thematchPool for posterior processing. This
lambda expression will be discussed in the following subsection.

In the following we define YAMTL’s matching procedure match.
Two helper procedures are used, matchm for processing matched
input elements, and matchd for processing derived input elements.

Given a rule r , an environment Γ and a scheduling lambda ex-
pression λs , the procedure match starts by processing the rule if
it is both a matched rule (i.e. not lazy) and a top rule (i.e. with no
parents) in Eq. M1.

match(r , Γ, λs ) = matchm (r , inm (r ), Γ, λs )

if mod (r ) = matched ∧ isTopRule(r ) (M1)
match(r :: rs, λs ) = match(r , λs ) ∧match(rs, λs ) (M2)

Matched input elements inm (r ) are processed by the operation
matchm , which first traverses the list of matched input elements in
Eq. M4 in order, trying to form a match with each object ς in the
extent of the type of the input element. Each object ς is traversed
in Eq M6. If, for a particular object ς , the match inm 7→ ς is valid
for the input element inm , the procedure proceeds to assess the
next matched input element after inserting the valid match in the
environment, as defined in EqM5, until no more elements are found.
At that point, the procedure matchm starts by computing derived
matches in Eq. M3. When a match is found to be invalid in Eq. M5,
the search for the completion of that match stops by doing nothing.

matchm (r , [], Γ, λs ) = matchd (r , ind (r ), Γ, λs ) (M3)

matchm (r , inm :: −−→inm , Γ, λs ) =

matcho (r , inm , type(inm ).allInstances,
−−→
inm , Γ, λs ) (M4)

matcho (r , inm , ς ,
−−→
inm , Γ, λs ) = matchm (r ,

−−→
inm , Γ ∪ {inm 7→ ς }, λs )

if (inm 7→ ς ) ⊨Γ inm (M5)

matcho (r , inm , ς :: ol,−−→inm , Γ, λs ) =

matcho (r , inm , ς ,
−−→
inm , Γ, λs ) ∧ matcho (r , inm , ol,

−−→
inm , Γ, λs )

(M6)

Derived input elements are processed orderly, in EqM8, by checking
whether the input element derivation expression produces a valid
match, in which case the next derived input element is assessed,
after inserting the valid match in the environment, until no more
derived input elements are left. At that point, Eq. M7 applies the
scheduling lambda expression if the rule filter f (r ) is satisfied with

the environment Γ.

matchd (r , [], Γ ·∪
−−−−−→
in 7→ ς , λs ) = λs (r ,

−−−−−→
in 7→ ς )

if f (r ) (Γ ·∪
−−−−−→
in 7→ ς ) = true (M7)

matchd (r , ind :: −−→ind , Γ, λs ) =

matchd (r ,
−−→
ind , Γ ∪ {ind 7→ d (ind ) (Γ)}, λs )

if (ind 7→ ς ) ⊨Γ ind (M8)

Therefore the procedurematch finds all matches for the top rules,
i.e. with no parents, in the rule store of the MT engine. In the next
subsection, the matching procedure is extended with multiple rule
inheritance in the scheduling lambda expression λs .

3.4 Matching with Multiple Rule Inheritance
For each selected top rule and valid match, Eq. M7 applies λs , which
then triggers a downward search, along the rule inheritance hier-
archy, for the most concrete rules that are applicable to the given
match using the function concretize. At the end of this search the
resulting rule set rs must be a singleton set in order for YAMTL to
proceed with the execution of the transformation, as there would be
several rules applicable to the same match otherwise. The match is
then scheduled for the resulting concrete rule if it is not abstract, by
inserting a transformation step with the rule match and an empty
output match in thematchPool, which indexes transformation steps
by their rule match, as defined in Eq. SCH3.

λs (r ,
−−−−−→
in 7→ ς ) =

matchPool (C) := matchPool (C) ·∪ {(r : −−−−−→in 7→ ς → ∅)}

if {cr } = concretize([r ],−−−−−→in 7→ ς , ∅) ∧ not (abstract (cr )) (SCH)

The parameters of the function concretize are: a list rl of rules,
the match −−−−−→in 7→ ς , and a set rs of concrete rules and it is defined as
follows.

Eqs. C2 and C3 traverse the given list rl of rules, and Eq. C3
merges the resulting sets obtained from different search branches.
In Eq. C1, for each rule r for which the given match −−−−−→in 7→ ς is valid,
the search process continues with the descendant rules children(r )
after removing the parent rule from the set rs of selected rules while
piggybacking the selected rule r .

concretize(r ,
−−−−−→
in 7→ ς , Γ, rs) =

concretize(children(r ),
−−−−−→
in 7→ ς , Γ, (rs\{parents(r )}) ∪ {r })

if
−−−−−→
in 7→ ς ⊨Γ in(r ) (C1)

concretize([],−−−−−→in 7→ ς , Γ, rs) = rs (C2)

concretize(r :: rl,−−−−−→in 7→ ς , Γ, rs) =

concretize(r ,
−−−−−→
in 7→ ς , Γ, rs) ∪ concretize(rl,

−−−−−→
in 7→ ς , Γ, rs) (C3)

By the end of the finite search process, the most concrete rule
that matches the object will be selected as the candidate rule for
3The assignment is valid in a lambda expression because we are updating the feature
of the immutable object C − more specifically, of an object C whose reference is
immutable.



Expressive and Efficient MT with an Internal DSL of Xtend MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

the match if it is not abstract. If, by the end of this process, several
rules are selected, a run-time error is thrown halting the execution
as the same object can be matched by several rules. This algorithm
imposes a leftmost, top-down strategy, w.r.t. the rule inheritance
hierarchy, as defined in clauses inheritsFrom, for evaluating filter
conditions. Note that, the search strategy, which is guided by depth
and not by breadth, does not result in invalidmatches as all branches
need to be explored anyway and the search is forced to be confluent.
Hence, once a unique concrete rule is selected, YAMTL ensures that
the match satisfies the input pattern of all parent rules.

Finally, that rule will be the one applied for the match by YAMTL
in the lambda expression λs . Note that λs has not been presented as
a pure lambda expression, as it stores the match in the matchPool,
which is not passed as argument. For a complete functional pre-
sentation, all of the matchX expressions (both in LHS and in RHS),
in Eqs. M1-M8, need to be augmented with the matchPool as a
parameter.

4 EXECUTION SEMANTICS
Declarative matched and lazy rules are executed by applying the
operation fetch to the input match of a rule. The operation fetch is
totally defined for rule matches that have been scheduled using λs
in the matching process and defines a check-enforce semantics for
YAMTL rules: when the fetch operation is used, it will trigger the
creation of objects in the output match of the corresponding trans-
formation step, if they are not present. This operation is overloaded.
We start by discussing its most general variant, −−−−−→in 7→ ς.fetch(r,out),
where r is a rule name, − out is the name of an output element
of rule r . The overloaded variants are discussed at the end of the
section.

Given a rule match, the operation fetch accesses its correspond-
ing transformation step in the matchPool, if it exists, and updates
it, with the assignment operator :=, by applying the reduce oper-
ation, as defined in Eq. FETCH-MATCHED. In this equation, the
expression inm (

−−−−−→
in 7→ ς ) restricts the match −−−−−→in 7→ ς to its matched

variables. Then, it returns the value of the element out of its output
match −−−−−−−→out 7→ ς in the expression out (−−−−−−−→out 7→ ς ).

−−−−−−−→
inm 7→ ς . fetch(r , out) =

matchPool (C) := {reduce(r : −−−−−→in 7→ ς →
−−−−−−−→out 7→ ς )} ·∪matchPool;

out (−−−−−−−→out 7→ ς )

if {(r : −−−−−→in 7→ ς →
−−−−−−−→out 7→ ς )} ·∪matchPool = matchPool (C)

∧
−−−−−−−→
inm 7→ ς = inm (

−−−−−→
in 7→ ς ) (FETCH-MATCHED)

−−−−−−−→
inm 7→ ς . fetch(r , out) =

matchd (r , ind (r ), Γ ∪
−−−−−−−→
inm 7→ ς , λs );

−−−−−−−→
inm 7→ ς . fetch(r , out) (FETCH-LAZY)

For lazy rules, when the input match cannot be found in the
matchPool the Eq. FETCH-LAZY initializes a transformation step,
with the given input match −−−−−→in 7→ ς , in the matchPool and then
applies Eq. FETCH-MATCHED, to obtain the corresponding object.
The matchPool is accessed by using matched input elements, and

derived matches are optional when invoking an operation fetch,
as they are uniquely identified by matched input elements.

The operation reduce is used to perform the actual transforma-
tion step, if it has not been done already. Eq. R1 returns the transfor-
mation step as is when the output match is already present. Without
considering rule inheritance yet, Eq. R2 performs the actual trans-
formation step by applying reduce on the rule match, according to
the following algorithm:

(1) The output match −−−−−−−→out 7→ ς is initialized by inserting a new
element match out 7→ ς for each element out of the output
pattern of the rule. The value ς of the new element match
will be a new instance of type type(out) by default, unless
the out element refers, by name, to an input element. In that
case, the output element match is initialized with the value
of the corresponding input match.

(2) The initial environment Γ, where values of attribute helpers
are cached, is updated by inserting: (a) the rule input match
−−−−−→
in 7→ ς , (b) the recently created output match −−−−−−−→out 7→ ς , and
(c) assignments for local variables (with derivation queries
defined in the using block of the rule r ).

(3) For each element out in the output match, the lambda expres-
sion action(out) is applied to the environment Γ, performing
an update if the output element refers to an input one, or
an initialization of features otherwise. When the output el-
ement defines a drop, only possible if the output element
refers to an input element, the object is deleted together with
its contents.

(4) Finally, the lambda expression endWith(r ) is applied to the
environment Γ.

reduce(r : −−−−−→in 7→ ς → ∅) = (r : −−−−−→in 7→ ς → (reduce(r ,
−−−−−→
in 7→ ς )))

(R1)
reduce(t ) = t otherwise (R2)

In the following, we discuss overloaded forms of the operation
fetch. The operation fetch is used for obtaining objects that have
been created in output elements of other rules, either matched or
lazy. In the case of matched rules, it can be used either without
arguments, when the output pattern of the rule only contains one
element, or with the name of the output element to be retrieved
otherwise. In the case of lazy rules, in addition, the operation fetch

needs to know which rule to apply as the match for the rule needs
to be computed.When the input pattern of the rule contains a single
matched element − it could have several derived elements − the
operation fetch also works for object references, and the match is
inferred automatically. An outline of the different possibilities is
summarized in Table 1. Although not included in the table, fetch
is also overloaded for lists of objects (and matches), mapping each
input object (or match) to an output object. Furthermore, fetch is
also overloaded for fetching variable values from the environment Γ
in lambda expressions with access to it, e.g. in an action expression.

5 EXPRESSIVENESS ANALYSIS
In this section, the MT languages involved in the performance anal-
ysis are discussed from an expressiveness point of view, facilitating
fairness in the comparison. For a more general discussion on the
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Table 1: Variants of the Operation fetch

|inm (r ) | |out (r ) | rule type fetch expression
1 1 matched o . fetch
1 >1 matched o . fetch(out)
1 1 lazy o .fetch(r )
1 >1 lazy o . fetch(r, out)
>1 1 matched −−−−−→

in 7→ ς . fetch
>1 >1 matched −−−−−→

in 7→ ς . fetch(out)
>1 1 lazy −−−−−→

in 7→ ς . fetch(r )
>1 >1 lazy −−−−−→

in 7→ ς . fetch(r, out)

expressiveness of MT languages, the reader is referred to [24] for a
recent survey.

VIATRA [3] provides support for incremental and reactive MT [3,
44] that uses incremental graph queries [4, 41]. A declarative MT is
defined as a rule specification using an Xtend internal DSL, where
each rule consists of model queries, defined in EMF-IncQuery, and
actions, defined in Xtend. While VIATRA’s IDE consists of Xtext-
generated tooling, YAMTL benefits from Xtend’s own IDE. Both of
them use Xtend for defining MT.

The ATL virtual machine [25] was the first to provide low level
execution primitives to support MT. It has been extended to support
lazy evaluation of OCL expressions and (target) incremental MT in
the ReactiveATL MT engine [30]. EMFTVM [46] is an EMF-native
MT engine, with a simpler architecture, that provides a low-level
language supporting mappingMT in ATL and rewriting transfor-
mations in SimpleGT, a simple graph transformation language.

Expressiveness of MT, as supported by the aforementioned trans-
formation engines, is summarized in Figure 1 along the following
dimensions: paradigm, referring to the type of MTs supported (on-
demand, incremental, reactive); query pattern, describing the lan-
guage used for defining rule input patterns and some features that
are normally used when defining such patterns (capturing multiob-
jects− or collections of objects,− recursion and negative application
conditions); type of rules, including the cardinality of input and
output patterns, how traceability is supported, and control mech-
anisms; advanced constructs for reuse, at the MT level (module
import/extension, higher-order transformation − HOT), at the rule
level, and at the expression level (normally referring to the value
resulting from the evaluation of the expression).

Currently, YAMTL does not support HOTs and the language does
not prevent the user from modifying the source model in an output
action, which could introduce inconsistencies. In a MT, several
source and target models can be used but only one source model and
one target model can be traced implicitly by rules. From the usability
point of view, ATL offers a more concise syntax for developing MT
than YAMTL does. However, the Xtend tool ecosystem is more
mature than that of ATL. Below, we provide a brief outline of the
dispatch and execution semantics in the MT engines under study.

5.1 Dispatch Semantics
EMF-IncQuery uses both local search-based pattern matching and
incremental pattern matching. While the first starts the matching
process from a single node and then completes the match step-by-
step with the neighbouring nodes and edges following a model-
sensitive search plan [45], the second one [4, 41] relies on caching

results sets of queries, providing an order of magnitude faster re-
evaluation time [42]. The query language allows the choice of query
strategy for each defined pattern. YAMTL’s matching algorithm is
based on local search where the search plan is programmed with (1)
dependencies with, (2) local/global filters and (3) rule inheritance,
as explained below. In addition, it is model-sensitive by considering
the size of the type extent in each input pattern of a rule.

EMFTVM computes all matches up-front and deals with rule in-
heritance by applying top rules first, and then the matching process
continues with the descendants of the matched rules, recursively
in horizontal slices corresponding to levels of children rules. When
a descendant rule matches the same object, the match of the parent
rule is removed. Hence, rule inheritance is used as an optimization
technique where child rules are matched only if their parent rules
are matched, effectively representing a RETE network [46]. YAMTL
follows a similar approach but takes a vertical slice search strat-
egy centered on an object by finding the most concrete rule that
can be applied. This allows YAMTL to start the matching process
from a single match using only those rules that are relevant. On
the other hand, in EMFTVM matches corresponding to abstract
rules are stored but not applied, whereas YAMTL discards matches
corresponding to abstract rules.

5.2 Execution Semantics
The VIATRA solution, which is the fastest solution in the bench-
mark up to now, uses EMF-IncQuery patterns to activate the actions
that perform the transformation, which are defined in plain Xtend.
Hence, the execution semantics is that of an Xtend program. The
execution semantics in EMFTVM is more involved as requires deal-
ing with inheritance of feature assignment expressions, which are
implicitly overriden in child rules and inherited otherwise. YAMTL
uses an inherits strategy by default, evaluating all inherited actions
for a particular output element in the order in which they were
declared, with the option of overriding them manually. In YAMTL,
an output element can refer to an input element defining an update.
In ATL, this is achieved by declaring MTs in refining mode.

The operation fetch in YAMTL resembles that of resolveTemp
in ATL although their semantics differ considerably. When used in
an action expression (binding in ATL) of an output element, both
operations resolve target object references, which may have been
created in other rules, from input pattern matches in order to ini-
tialize references in the output element. However, whereas fetch
implements a check-enforce semantics enabling access to features of
target objects from the context of the calling output element, object
references obtained from resolveTemp cannot be accessed, as they
may not have been initialized yet. That is, resolveTemp can only be
used after the matching phase is completed and, hence, access to
traceability links is possible. This decouples object creation from
binding initialization. While, in the current version, fetch is also
enabled after the initial matching phase, it can be used as a control
structure for executing of rules as it triggers a transformation step
if it has not been performed yet. This combines both object creation
and binding initialization in one single step. To dissipate concerns
about decidability, note that the existence of recursive cycles is for-
bidden thanks to the use of the internal matchPool, which enforces
that matches are unique.
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Feature	 ATL	 VIATRA	 YAMTL	
ATL2010	(EMFVM)	 EMFTVM	

Semantics	

	 on-demand,		
mapping,	
reactive,	(source	
and	target)	incr.	

as	in	EMFVM,	
rewriting	with	
SimpleGT	

on-demand,	
mapping/	
rewriting,	
reactive,		
(source)	incr.	

on-demand,	
mapping,	
rewriting,	
(source)	incr.	

Query	
pattern	

language	 OCL	(eager)	 OCL	(lazy)	 IncQuery	 Xtend	
multiobject	 select-collect,	forAll	 select-collect,	

forAll	
native	 filter-map,	forall	

recursion	 helpers,	rules	 helpers,	rules	 helpers	 helpers,	rules	
negative	 OCL	(negation)	 OCL	(negation)	 native	 Xtend	(negation)	

Decl.	
rules	

elements	 n-m	 n-m	 n-m	 n-m	
traceability	 implicit/explicit	 implicit/explicit	 implicit/explicit	 implicit/explicit1	
control	 (unique)	lazy	rules	 (unique)	lazy	rules	 control	

schemas	
priorities,	(unique)	
lazy	rules,	fetch	

Reuse	

trafo	 libraries,	HOT,	
module	import	

libraries,	HOT,	
module	import	

HOT	 import/extension	

rule	 single	inheritance,	
with	binding	
overriding	

multiple	
inheritance:	filter	
and	bindings	
(overrides)	

“inheritance”	of	
patterns	via	
pattern	reuse	

multiple	
inheritance:	filter	
and	actions	
(inherits/	
overrides)	

values	 attributes	 attributes	 genericity	 attributes	

	
	

	
	
	
	
	
	
Optimization	 	 attributes	 inherited	

filters,	lazy	
eval.	

Xtend	@Lazy	 inherited	filters,	
Xtend	@Lazy	

Matching	 	 	 	 local-
search/adaptive,	
model-sensitive	

model-sensitive	

	

1Developed	ad-hoc	for	the	traceability	metamodel	of	the	benchmark.	

Figure 1: Analysis of language features.

6 PERFORMANCE ANALYSIS
In this section, the performance of the YAMTL MT engine is com-
pared against the MT approaches discussed in the previous section
with the batch MT component of the VIATRA CPS benchmark [36].
The software artefacts used in the evaluation and the results ob-
tained are publicly available [13]. The experiments were run on
a MacBookPro11,5 Core i7 2.5 GHz, with four cores and 16 GB
of RAM. For the experiments the following software was used:
ATL/EMFTVM (4.0.0); ATL SDK (4.0.0); CPS metamodels (0.1.0);
Eclipse (4.7.3); EMF SDK (2.13.0); JRE (build 1.8.0_72-b15); VIATRA
SDK (1.7.2); and Xtend SDK (2.13.0).

In the following subsections, we describe the part of the VIATRA
CPS benchmark selected for the experiments, the methodology
followed, and conclusions drawn from the experiments.

6.1 VIATRA CPS Benchmark Adaptation
A new benchmark harness was developed considering the best
practices recommended by the VIATRA team [20] among others.
This allowed us both to fine-tune measurements with VLMs and to
crosscheck results for the sake of both consistency and fairness.

For the study, existing batch MTs were extracted from the bench-
mark framework as independent Java projects. Classes implement-
ing transformations were kept intact in the new projects, including
their namespaces, so that errors were not introduced due to lack
of expertise. From the benchmark, the following transformations
were considered: EMF-IncQuery batch transformation (EIQ) [34],
which was the fastest as a batch MT up to now ; and the optimized
version of the Xtend batch MT (Xtend) [39], which is defined in
plain Xtend using a cache to store traceability information − a
feature present in YAMTL, ATL2010 and EMFTVM and therefore of
relevance. Incremental variants were not considered as they show
worse performance than EIQ when used for batch MT.

The YAMTL solution [12] comprises four phases: first, an at-
tribute helper is used to cache transitions with an action
waitForSignal indexing them by its signal; second, HostInstances
and ApplicationInstances are transformed using matched rules,

StateMachines are transformed using a lazy rule, thus creating a
deep copy of the target object for each rule application, and States
and Transitions are transformed using unique lazy rules within
the context created by the lazy rule applied to their containing
StateMachine; third, a transient matched rule with low priority
is used to compute triggers, once all transitions have been trans-
formed; fourth, the traceability model is extracted from YAMTL’s
internal model of traceability links (eventPool), which comes with
the tool out of the box. This last construction process has been
considered part of the transformation whereas the actual storage
process that flushes contents to a physical file through the EMF
persistence API is considered to be external. The YAMTL solution
passes the CPS benchmark sanity tests, with some minor adapta-
tions as reported in [12].

In addition, two newMTswere defined in ATL, one withmatched
rules (decl.) [5] and one with lazy rules (imp.) [6], and executed
with ATL2010 [7, 8] and with EMFTVM [10]. These MTs map each
CPS element to its DEP counterpart using either implicit object
resolution, when using matched rules, or explicit rule invocation,
when using lazy rules. An attribute helper is used to cache all
transitions with action waitForSignal at the start, and these are
used for setting triggers in BehaviorTransitions in the DEP model
when CPS transitions are processed. Hence, there is a rule match for
each element in the CPS model. These solutions are, however, not
fully correct: a unique target behaviour is created per source state
machine; triggers are always created for the first instance of the
application type disregarding dynamic host instance allocation; and
the traceability model is not extracted. Moreover, some anomalies
were detected when inspecting their results: triggers are not set
when using ATL2010, and the feature to of BehaviorTransition

is not set consistently in the MT with lazy rules with EMFTVM.
Bearing in mind these caveats, these transformations are still useful
for indicative purposes.

6.2 Scenarios and Methodology
Among the scenarios provided as part of the VIATRA CPS bench-
mark [38], we discuss our analysis with client-server. Results with
the other scenarios for the YAMTL and EIQ solutions are available
online [13]. We have used the CPS model generator [37] to ran-
domly obtain models whose size depends on a logarithmic scale
factor,4 obtaining the sizes reported in Figure 2 in terms of both
number of nodes (objects) and number of edges (references). The
CPS generator could not generate models twice as big as the last
model used in the experiment, giving an out of memory error (oom),
probably due to the EMF persistence API and not to the generation
process itself. However, the biggest models considered consist of
millions of nodes and edges and can be classified as VLMs.

For each transformation (and tool), the same Java process was
used to run all of the experiments. For each model size, twelve ex-
periments were performed, measuring performance time (in ms) in
four phases: model load, engine initialization, transformation and

4While the live VIATRA CPS benchmark generates such models for each experiment,
our experiments rely on fixed source models, used to evaluate all of the solutions.
Although this does not affect the validity of the results, the results in the live benchmark
may vary and the author is currently collaborating with the maintainers of the VIATRA
CPS benchmark to integrate the YAMTL solution in the live benchmark [9].
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model storage. The engine initialization phase involves the instan-
tiation of a fresh engine instance, avoiding interference between
experiments as caches are not reused. Only engine initialization
and transformation times have been considered in the quantitative
analysis. Transformations were executed with the VM arguments
-Xmx12288m -XX:+UseConcMarkSweepGC. For each model size, the list
of results obtained for the twelve experiments were ordered and
the minimum and maximum values were deleted. Then the median
of the remaining list was considered for the analysis of the trans-
formation for the corresponding input model, as shown in Figure 2.
For each solution, an initial iteration for the smallest model size
was executed to warm up the JVM, and excluded from the analysis.

Threats to Validity. Regarding the DEP models produced by the
different tools, EMFTVM, Xtend and YAMTL produced syntacti-
cally identical models. However, the ATL transformation is not fully
correct as explained in section 6.1. On the other hand, EIQ produces
highly similar models but for trigger references of
BehaviorTransition objects, which appear shuffled even though
they are defined as ordered in the CPS deployment metamodel.

6.3 Evaluation of Experimental Results
The results obtained, displayed in Figure 2 using logarithmic scales
both for time (ms.) and for sizes, are reasonably consistent with
those available in the VIATRA CPS benchmark [35] for the Xtend
(optimized) and EIQ solutions. According to our findings, YAMTL
is the fastest solution − in all of the experiments performed [13]. In
the client-server scenario, both YAMTL and ATL (imp., i.e. with lazy
rules) on EMFTVM are able to process transformations involving
10.16M objects and 27.53M references (client-server), while VIATRA
gives an out of memory error (oom). YAMTL did so with a median of
32.7s . (including transformation initialization and execution time,
and excluding EMF persistence times) for the largest models. Note,
however, that the experiments are biased towards ATL as consid-
ered in threats to validity. In the experiments, EMFTVM showed
a substantial improvement when using lazy rules, i.e. with non-
declarative MT, which was not perceivable in ATL2010 (EMFVM).
On the other hand, it can be observed that the abstractions that
YAMTL provides to Xtend for declarative MT use computational
resources efficiently, vastly outperforming the Xtend solution.

7 CONCLUSION AND FUTUREWORK
In this paper, we have introduced YAMTL, an internal DSL of Xtend
that is both as expressive as ATL for batch MTs and more efficient
than current MT engines, which are used in the large in the project
MONDO, in the batch MT component of the VIATRA CPS bench-
mark. Two important lessons are sustained by our experimental
results: neither (1) virtual machines that work with low level MT
instructions nor (2) incremental queries may be the most efficient
approaches for batch MTs. YAMTL tackles the efficient MT of VLMs,
increasing the amount of work that can be performed in a single-
threaded environment, thus scaling up processors without employ-
ing additional physical resources.

On the one hand, regarding expressiveness, the semantics of the
operation fetch has similarities with the check/enforce semantics
at the core of synchronization languages, like QVT-Relations [47]
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Figure 2: Median performance times inms (client-server).

or MOFLON [1], and extending YAMTL with support for incre-
mental MT is feasible. On the other hand, while performing the
experimental evaluation of the tools, we experienced the XMI se-
rialization problem in EMF [26], which yielded long latency times
and eventual out of memory errors. This is a clear Achilles’ heel
for the application of YAMTL (and other EMF-native MT tools) to
VLMs, which could be addressed by using external NoSQL stores,
as done in NeoEMF [16]. The performance analysis of section 6 fo-
cussed on one single case study and we aim at researching YAMTL’s
characteristics with further case studies and benchmarks.

Advantages of internal DSLs for MT w.r.t. external DSLs were
discussed in [23, 28] and several of them have been proposed − e.g.
in Scala, SIGMA [29], and inC♯ , NTL [21–23]. SIGMA is EMF native
and its MT rules are defined as Scala methods, which are internally
processed using reflection, thereby achieving a more concise syntax
than that of YAMTL. Its performance was analysed in [27], where
it was found to be as efficient as raw Java. NTL is not EMF-native
and provides efficient support for incremental and bidirectional
MT. A comprehensive comparison with these MT languages, which
are research prototypes under development, and others is out of
scope in this work and could be done collaboratively, possibly in
the context of the Tool Transformation Contest.
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