
Expressing Confidence in Models and in
Model Transformation Elements

Loli Burgueño
Universidad de Málaga, Spain

UOC, Barcelona, Spain
CEA-List, Paris, France

loli@lcc.uma.es

Manuel F. Bertoa
Universidad de Málaga, Spain

bertoa@lcc.uma.es

Nathalie Moreno
Universidad de Málaga, Spain

moreno@lcc.uma.es

Antonio Vallecillo
Universidad de Málaga, Spain

av@lcc.uma.es

ABSTRACT
The expression and management of uncertainty, both in the infor-
mation and in the operations that manipulate it, is a critical issue
in those systems that work with physical environments. Measure-
ment uncertainty can be due to several factors, such as unreliable
data sources, tolerance in the measurements, or the inability to
determine if a certain event has actually happened or not. In par-
ticular, this contribution focuses on the expression of one kind of
uncertainty, namely the confidence on the model elements, i.e., the
degree of belief that we have on their occurrence, and on how such
an uncertainty can be managed and propagated through model
transformations, whose rules can also be subject to uncertainty.

CCS CONCEPTS
• Information systems→ Uncertainty; • Software and its en-
gineering → Model-driven software engineering; Domain
specific languages; Software design engineering;

KEYWORDS
Uncertainty; confidence; models; model transformations.

ACM Reference Format:
Loli Burgueño, Manuel F. Bertoa, Nathalie Moreno, and Antonio Vallecillo.
2018. Expressing Confidence in Models and in Model Transformation Ele-
ments. In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Measurement uncertainty is an intrinsic property of any physical
system. This uncertainty can be due to different causes, such as
unreliable data sources and communication networks, tolerance in
the measurement of the physical elements values, estimates due
to the lack of accurate knowledge about certain parameters, or
the inability to determine whether a particular event has actually
happened or not. The explicit representation and proper manage-
ment of measurement uncertainty is a crucial issue in any faithful
model of a given physical system. This includes not only the (static)
representation of the uncertainty, but also how it evolves and is
propagated through the system operations.

Conference’17, July 2017, Washington, DC, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper, we focus on the treatment of a special kind of
uncertainty, confidence, which refers to the quality of being certain
about something, e.g., up to what extent something is true or will
happen. In our context, we will assign confidence to model elements
and to model transformation rules.

The former kind of confidence refers to the degree of belief that
we have on the actual existence of an entity, i.e., the real entity
that the model element represents. A very typical example occurs
in systems whose objects represent events from the physical envi-
ronment, such as those produced by (unreliable) sensors that take
measures, which can sometimes be false negatives—i.e., the event
has occurred but it was lost, or the system did not record it properly.
Similarly, if we consider robots or drones that move from one point
to another and whose exact position always yields a margin of
error of millimeters or even centimeters, the precise location of a
moving artifact is also subject to uncertainty, and therefore we need
to assign a level of confidence to it. Likewise, in a social network
environment, the establishment of certain derived relationships
between two objects (friendship, closeness, preference) may be sub-
ject to uncertainty because the person or program estimating such
a derived relationship may not be fully reliable, or completely sure
about his judgment—and therefore it may have some associated
margin of error.

To assign confidence to model elements—both to objects and to
relationships—we propose the use of attributes that permit estimat-
ing the confidence (i.e, the degree of belief) that we have on their
existence, by means of probabilities associated to them.

Furthermore, model transformations (hereinafter, MT) may be
subject to uncertainty, too, due to several factors. First, some trans-
formation rules may have some associated uncertainty, when we do
not have a 100% confidence on them—for example, a rule of a recom-
mender system that generates a wouldLike relationship between a
user and a product based on a set of preferences and a history of
user actions may not be 100% accurate, and therefore we need to
‘qualify’ the results with this kind of information. Second, during
the rule matching process, uncertainty may also be considered, due,
for example, to the comparison of inaccurate attribute values, that
yields an uncertain Boolean value [6]. Finally, the confidence and
uncertainty of the input model elements must be propagated to the
output elements, too, qualifying them accordingly.

In this paper we identify and classify some types of confidence
that can occur both in the models and in the transformations among

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA L. Burgueño et al.

them, and we discuss how to incorporate them into the model el-
ements and into the transformation rules, being able to quantita-
tively represent that confidence, and to propagate it through model
transformations.

The article is organized in six sections. After this introduction,
Section 2 briefly presents the background of our work. Then, Sec-
tion 3 describes our proposal, and introduces an example that is used
to motivate it, and to illustrate its main concepts and mechanisms.
Section 4 describes some evaluation exercises we have conducted to
assess the expressiveness and correctness of our proposal. Finally,
Section 5 relates our work to other similar approaches and Section 6
concludes and outlines some future work.

2 BACKGROUND
To set the paper terminology, this section briefly describes the
context of the work and the main concepts used in the paper.

2.1 Models and Model Transformations
Here we will use the standard notions of models and model trans-
formations (MT) used in MBSE [7]. A model is the representation
or specification of some system, component or application, from
a given point of view, and with a particular purpose. Models are
represented as graphs whose vertices and edges are typed, and
may have typed attributes. A models conforms to a metamodel,
which specifies the language in which a family of models are ex-
pressed, including the language concepts, the relationships and
constraints among them, and the well-formed rules of the language.
Metamodels are models, too.

A MT is the algorithmic specification (declarative or operational)
of the relationship between models. In this paper we will focus
on rule-based MTs, which are those defined in terms of a set of
rules that determine how a set of objects and relations in the source
model (defined by means of a pattern) are transformed into another
set of objects and relationships between them in the target model.
The source and target model can coincide, like in the case of in-place
model transformations [30].

In our context, it is important to note that most rule-based model
transformation languages share a common structure in the defini-
tion of their rules:

• A Selection phase that identifies the source elements that
will trigger the rule. They constitute the antecedents of the
target elements produced by the rule.

• A Matching phase that checks whether the values of the
attributes of the selected events meet the requirements and
conditions of the rule, and calculates the values of the at-
tributes of the elements generated by the rule (using Boolean
comparison operators, and connectives between them).

• A Production phase that generates the target model ele-
ments, and the trace links, if appropriate.

2.2 Uncertainty
Uncertainty is the quality or state that involves imperfect and/or
unknown information. It applies to predictions of future events,
estimations, physical measurements, or unknown properties of a
system [23]. For example, measurement uncertainty (MU) refers
to the inability to know with complete precision the value of a

quantity. Confidence (C) refers to the degree of belief that we have
on the actual existence of an entity (in our case, a model element).

Both types of uncertainties can be represented in different forms,
and using different formalisms. For example, measurement un-
certainty can be expressed by means of a probability distribution
associated to every uncertain variable, representing the distribution
of the dispersion of its values. This is the approach used by, e.g., the
UML Profile for MARTE [32]. However, this approach represents
some limitations when calculating the aggregated MU of the result
of an operation that involves operands with different probability
distributions. A more widely adopted approach among engineers
of different disciplines to represent MU, is defined by the GUM [24],
which associates a standard uncertainty to any uncertain value,
defined by the standard deviation of the measurements for such a
value. Therefore, a Real number x becomes a pair (x ,u), also noted
x ± u, that represents a random variable X whose average is x and
its standard deviation is u. With this, if X follows a normal distri-
bution N (x ,u), we know that 68.3% of the values of X will be in
the interval [x − u,x + u].

The GUM framework also identifies two ways of evaluating the
uncertainty of a measurement, depending on whether the knowl-
edge about the quantity X is inferred from repeated measured
values (“Type A evaluation of uncertainty"), or scientific judgment
or other information concerning the possible values of the quan-
tity (“Type B evaluation of uncertainty"). In Type A evaluation of
uncertainty, if X = {x1, . . . ,xn } is the set of measured values, then
the estimated value x is taken as the mean of these values, and the
associated uncertainty u as their experimental standard deviation,
i.e.,u2 = 1

(n−1)
∑n
i=1(xi −x)2 [23]. In Type B evaluation, uncertainty

can also be characterized by standard deviations, evaluated from
assumed probability distributions based on experience or other
information. For example, if we know or assume that the values of
X follow a normal distribution, N (x ,σ), then we take u = σ . And
if we can only assume a uniform or rectangular distribution of the
possible values of X , then x is taken as the midpoint of the interval,
x = (a + b)/2, and its associated variance as u2 = (b − a)2/12, and
hence u = (b − a)/(2

√
3) [23].

Uncertainty can also apply to Boolean values. For example, in
order to implement equality and comparison of numerical values
with uncertainty, the traditional values of true and false returned
by boolean operators are no longer enough. Comparisons now
need to return numbers between 0 and 1 instead, representing the
probabilities that one uncertain value is equal, less or greater than
other. This leads to the definition of Uncertain Booleans, which are
Boolean values accompanied by the level of confidence that we
assign to them. Therefore, an UBoolean value is a pair (b, c) where
b is true or false, and c ∈ [0, 1] represents the confidence we have
on such a value; of course, (b, c) = (¬b, 1− c). UBoolean is a proper
supertype of Boolean and its associated operations [6]. Note that
this approach should not be confused with fuzzy logic: although
both probability and fuzzy logic represent degrees of subjective
belief, fuzzy set theory uses the concept of fuzzy set membership,
i.e., how much an observation belongs to a vaguely defined set,
whilst probability theory uses the concept of subjective probability,
i.e., the likelihood of an event or condition [26].

Expressing Confidence in Models and Model Transformation Elements Conference’17, July 2017, Washington, DC, USA

This is why we will also use probability theory to express Confi-
dence, assigning probabilities to model elements. The confidence
that we assign to a model element represents the degree of trust
that we have on their actual existence. Here it is interesting to
distinguish between the real and the model elements: the former
ones happen in reality; the latter are the ones contained the system
model, representing the real ones. It may be the case that the real
object exists in reality but the system model has not captured it (i.e.,
a false negative), or that the model transformation rules generate
an object or relation that does not actually exist (i.e., a false posi-
tive). The first case can be due to unreliable sources (e.g., defective
sensors), while the second case is normally due to unreliable beliefs
on the transformation patterns and rules.

With all this, there are different kinds of uncertainty that we
need to consider in this work for model elements.

• Uncertain elements in the source models (for example, miss-
ing objects or relations in reality, despite the fact that they
actually exist in the model), or elements in the target model
that were wrongly generated.

• Lack of precision (i.e., measurement uncertainty) in the val-
ues of the attributes of the source model elements, due to
imprecision of the measuring methods or tools.

• Lack of precision in the decisions/matches due to the un-
certainty of comparison operators (=, <, >, ,...) between un-
certain values of attributes. For example, when comparing
two real values with uncertainty, such as a = 2.0 ± 0.3 and
b = 2.5 ± 0.25, we obtain that a < b with a confidence of
0.893 [6]. Any decision that we take based on such a com-
parison should then be subject to uncertainty.

• Lack of precision due to uncertainty of logical composition
operators (or, and, not) between uncertain statements.

• Lack of precision in the values of the attributes of generated
elements, due to the propagation of uncertainty in their
computation from the elements’ attributes.

• Lack of precision in the MT rules, due to incomplete or
erroneous assumptions about the environment in which the
system operates, or unreliable beliefs, which many influence
the confidence of the MT rule.

For dealing with uncertainty we have used the U-Model concep-
tual model defined in [39] as a reference framework, trying to be
aligned with it. When it comes to concrete concepts that specialize
some of the high-level U-Model concepts, such as measurement
uncertainty, or confidence, we will use standard references. In par-
ticular, we will use the VIM [25] and the GUM [23] for all measure-
ment uncertainty related matters, and probability theory [20] for
dealing with confidence.

3 CONFIDENCE IN MODELS AND MT RULES
3.1 Expressing confidence in model elements
As previously mentioned, we are interested in assigning probabili-
ties to model elements. These probabilities represent the confidence
we have on their occurrence.

To represent the confidence of a model element we will make
use of new abstract class called ProbableElement, from which all
the uncertain elements of the model would inherit. This class has
an attribute (confidence, a Real number between 0 and 1) that

indicates the confidence assigned to the existence of the element,
expressed as a probability.

For example, if an object is derived by a rule that has a confidence
of 99%, a first approach could be to assign a probability of 0.99 to
that object; or if the object represents a system event, for which we
know that the probability of obtaining a false positive is F = 0.001
(due to the accuracy of the sensor that generates it), we could assign
to the object a probability of 1 − F = 0.999.

Note that this new class would play a similar role to the one
played by class NamedElement in the UML metamodel. In addtion,
if an item does not inherit from that class, its confidence is 1.

Although not only object instances but any other model element
(association, transition, etc.) can be assigned a confidence, in order
to assign attributes to elements we will simply convert them into
objects. For example, if we want to assign a probability to an As-
sociation, we can convert it into an Association Class, or just into
a Class with the appropriate references to the two related classes.
Therefore, in following we will focus on objects only.

3.2 Expressing confidence in MT rules
As mentioned above, most rule-based model transformation lan-
guages share a common structure in the definition of their rules.
Depending on the rule phase, different kinds of uncertainties need
to be considered in order to assign a confidence to the generated
target elements.

• The Selection phase identifies the occurrence of the elements
that trigger the rule. These objects constitute the antecedents
of the elements produced by the rule. Thus, in this phase,
the confidence of the antecedents must be considered, that
is, the probability of occurrence of the elements that trigger
the rule.

• The Matching phase checks whether the values of the at-
tributes of the selected eventsmeet the requirements and con-
ditions of the rule, and calculates the values of the attributes
of the elements generated by the rule. In this phase we need
to consider the uncertainty that occurs in the comparison
operations between uncertain values, and the combination
of these comparisons using logical connectors (or, and, etc.).
The measurement uncertainty that occurs when calculat-
ing the values of the attributes of the generated elements
should also be considered in this phase, propagating the
corresponding measurement uncertainty of the operands.

• The Production phase generates the elements of the output
model. In this phase we need to take into account the con-
fidence of the rule itself, represented by a probability that
captures the possible imprecision of the rule due to incom-
plete or possibly erroneous assumptions caused by the envi-
ronment in which the system operates, or other factors that
influence the confidence in the rule. This rule confidence can
be calculated by Bayesian networks, as proposed by Cugola
et al. in [12] for CEP systems, by expert knowledge, or by
any other means. For example, in a system that models a
social network, a rule can trigger the creation of a relation-
ship of friendship between two users, and we know that the
confidence that we have on such a derivation rule is 89%.
Therefore, we will assign a confidence of 0.89 to the MT

Conference’17, July 2017, Washington, DC, USA L. Burgueño et al.

UnidentifiedObject

Gunshot

/angle : UReal

/hitsTarget : UBoolean

ProbableElement

confidence : Real

Clock

now : UInteger

Coordinate

x : UReal

y : UReal

distance(other : Coordinate) : UReal

Drone

MovingObject

width : UReal

angle : UReal

speed : UReal

move(seconds : UInteger)
position1

shot0..1
target1

shot*

position1

object0..1

shot*

drone1

Figure 1: The Surveillance system metamodel.

rule. Note that confidence in a MT rule is not the same as
the probability that the rule will be triggered, which is what
other authors use when simulating rule-based systems [3].

In summary, our approach assumes that the confidence of an
object generated by a MT rule depends on three main issues: (a)
the confidence level that we have on the occurrence of the source
objects of the rule (antecedents); (b) the confidence level that we
have on the matching and comparison operations performed by the
rule to trigger the production of the target objects, as well as the
computation of their attributes; (c) and, finally, on the confidence
that we have on the rule itself.

This means that, given a rule R whose antecedents are objects
o1, ..., on , that performs a matching process mR and produces a
target object o, the probability of o is given by

P(o) = P(o1, ..., on) · P(mR) · P(R) (1)
where:

P(o1, ..., on) is the combined probability of the antecedent objects—
for example, in case they are all independent, P(o1, ..., on) = P(o1) ·
... · P(on), otherwise conditional probabilities should be used, as
detailed in, e.g., [36]; P(mR) is the confidence level of the matching
process, based on the uncertainty due to comparison operations
(=, <, ...) between uncertain values, and logical operations between
uncertain booleans (and, or, ...); and P(R) is the rule confidence—
which, as stated above, can be calculated by Bayesian Networks, by
expert knowledge, or by any other means; in this paper we are not
concerned on how such a probability is computed, but on how it is
represented and taken into account.

In case a rule produces a set of elements, the formula above will
be used for each generated element.

3.3 A motivating example
To illustrate our approach let us assume a system whose elements
are described by the metamodel shown in Fig. 1. Surveillance drones
are in charge of ensuring that no unidentified object gets close to
the area they protect. For simplicity, we assume that all objects
move in a planar surface (and thus their position is given by a pair
of coordinates x and y); in the direction dictated by their angle
attribute (expressed in radians), and with a given speed (inm/s).
The size of a moving object is determined by its diameter (attribute
width, also inmeters). Movements are performed by operation move
which updates the coordinates of the object based on its current

angle and speed, and the number of elapsed seconds since the last
movement. Times are expressed using the POSIX time convention,
i.e., by the number of seconds since January 1, 1970 [22].

If a drone detects that an unidentified object is moving at a speed
higher than 30 m/s and gets closer than 1000m to its position,
the drone identifies it as a threat, and shoots at it. The potential
shot is represented by an object of class Gunshot. The position of
the Gunshot object coincides with the position of the drone that
shoots at the target, and its attributes are calculated as shown in
Listing 1. Attribute hitsTarget is an uncertain boolean because
of the measurement uncertainty of the variables, and the tolerance
of the shooting instruments.

Listing 1: Derived attributes in the Surveillance metamodel
context GunShot : : shootingPosition : Coordinate

derive : drone . position
context GunShot : : angle : UReal derive :

((target . position . y − drone . position . y) /
(target . position . x − drone . position . x)) . atan ()

context GunShot : : hitsTarget : UBoolean derive :
let d : UReal = drone . position . distance (target . position) in

(drone . position . x−target . position . x +
d ∗ self . angle . cos ()) . abs () <= target . width and
(drone . position . y−target . position . y +
d ∗ self . angle . sin ()) . abs () <= target . width

Note the use of variables of types UReal and UBoolean in this
code, which represent uncertain reals and booleans, respectively [6].
As previously mentioned, when dealing with real-world entities,
models need to take into account the inability to know, estimate or
measure with complete precision the value of the represented quan-
tities. This is why, in general, a measurement result that determines
the value of a quantity “is only complete when it is accompanied
by a statement of the associated uncertainty” [23, 24].

Objects of classes UnidentifiedObject and Gunshot have an
associated confidence, representing the fact that the domain rules
that detect a moving object and identify that it is a threat, are subject
to some degree of uncertainty. Such confidence is then translated
into the confidence of the derived rule that decides whether to
shoot or not at the target.

For example, the object diagram at the top of Fig. 2 shows the
state of the system at moment 1524199495 ± 1, i.e. Friday, April
20, 2018, at 4:44:55GMT. We assume a precision of ±1 second in all
time measurements, and this is why attribute now of object Clock
is of type UInteger [6].

The system contains at that moment two drones (d1, d2) and
three unidentified objects (o1, o2, o3). These three objects have
an associated confidence due to possible errors in the radar that
detects moving objects (normally, the confidence of a sensed or
detected object coincides with 1− F , where F is the probability of a
false positive of the object occurrence).

The behavior of the system can be represented by means of an
in-place model transformation that determines how the state of the
system evolves with time. In our case, we will suppose a discrete
simulation of the system whereby a MT will calculate the state of
the system every second, based on the previous state.

Then, given a model that represents the state of the system at
a given moment in time (such as the one depicted in Fig. 2), a MT
will perform the following actions.

Expressing Confidence in Models and Model Transformation Elements Conference’17, July 2017, Washington, DC, USA

Object diagram

c4:Coordinate

x=UReal(1000.0,0.1)
y=UReal(900.0,0.1)

c3:Coordinate

x=UReal(700.0,0.1)
y=UReal(700.0,0.1)

o3:UnidentifiedObject

confidence=0.85
width=UReal(70.0,0.1)
angle=UReal(0.0,0.07)
speed=UReal(15.0,0.2)

c2:Coordinate

x=UReal(500.0,0.1)
y=UReal(700.0,0.1)

d2:Drone

width=UReal(9.0,0.1)
angle=UReal(1.5,0.02)
speed=UReal(20.0,0.1)

c5:Coordinate

x=UReal(2000.0,0.1)
y=UReal(100.0,0.1)

c1:Coordinate

x=UReal(0.0,0.1)
y=UReal(0.0,0.1)

o2:UnidentifiedObject

confidence=0.9
width=UReal(90.0,0.1)
angle=UReal(3.14,0.07)
speed=UReal(60.0,0.2)

o1:UnidentifiedObject

confidence=0.98
width=UReal(75.0,0.1)
angle=UReal(3.92,0.07)
speed=UReal(50.0,0.2)

c:Clock

now=UInteger(1524199495,1.0)

d1:Drone

width=UReal(5.0,0.1)
angle=UReal(0.78,0.02)
speed=UReal(20.0,0.1)

Object diagram

d2:Drone

width=UReal(9.0,0.1)
angle=UReal(1.5,0.02)
speed=UReal(20.0,0.1)

gs2:Gunshot

confidence=0.891
/angle=UReal(-0.3258437843696686,0.17597634263952236)
/hitsTarget=UBoolean(true,0.9956916198235095)

Coordinate4:Coordinate

x=UReal(940.0000760963476,0.22370660062299935)
y=UReal(900.0955591749893,4.201184994360247)

Coordinate5:Coordinate

x=UReal(2015.0,0.223606797749979)
y=UReal(100.0,1.0547511554864493)

cgs1:Coordinate

x=UReal(0.0,0.1)
y=UReal(0.0,0.1)

Coordinate2:Coordinate

x=UReal(501.41474403335405,0.4113993646628948)
y=UReal(719.9498997320811,0.14405055624664068)

o3:UnidentifiedObject

confidence=0.85
width=UReal(70.0,0.1)
angle=UReal(0.0,0.07)
speed=UReal(15.0,0.2)

gs1:Gunshot

confidence=0.9702
/angle=UReal(0.7859027636416147,0.049346140477908515)
/hitsTarget=UBoolean(true,0.9792607472014212)

Coordinate3:Coordinate

x=UReal(664.3983641800845,2.4636649337125367)
y=UReal(664.8926855634597,2.4980702741106393)

d1:Drone

width=UReal(5.0,0.1)
angle=UReal(0.78,0.02)
speed=UReal(20.0,0.1)

gs3:Gunshot

confidence=0.9702
/angle=UReal(0.3897331598649296,0.17174900813396102)
/hitsTarget=UBoolean(true,0.8826483723383837)

o2:UnidentifiedObject

confidence=0.9
width=UReal(90.0,0.1)
angle=UReal(3.14,0.07)
speed=UReal(60.0,0.2)

c:Clock

now=UInteger(1524199496,1.0)

Coordinate1:Coordinate

x=UReal(14.218270760245545,0.3069043682006334)
y=UReal(14.065588384008203,0.3095314342346671)

cgs3:Coordinate

x=UReal(500.0,0.1)
y=UReal(700.0,0.1)

cgs2:Coordinate

x=UReal(500.0,0.1)
y=UReal(700.0,0.1)

o1:UnidentifiedObject

confidence=0.98
width=UReal(75.0,0.1)
angle=UReal(3.92,0.07)
speed=UReal(50.0,0.2)

Figure 2: The state of the system at times 1524199495 (above), and 1524199496 (below).

• For every UnidentifiedObject (with a confidence greater
than 0.65) moving at a speed higher than 30m/s , which has
not already been shot (with a confidence of hitting the target
higher than 0.95), and with a drone less than 1000m away
from it, a GunShot object (that relates the drone with the
target) will be created.

• The coordinates of all moving objects will be updated, using
their move() operation. In this case, the value of the argu-
ment is 1, assuming that the MT simulates the behavior of
the system every second.

• Finally, attribute now of object Clock will also be updated,
reflecting the passage of that time.

For example, the ATL in-place transformation in Listing 2 (next
page) could implement such behavior.

Let us explain how the confidence of the newly created ob-
jects is calculated. In this case the confidence is computed in rule
shoot when creating the Gunshot object (lines 19–23), and in rule
moveUnidentifiedObject when re-calculating the confidence
attribute of the object (line 48). In this second case, we assume that
the confidence of the object does not change when it moves. In the
former case, to compute the confidence of the GunShot object in
the shoot rule we make use of formula (1) above.

The expression of the confidence of the gs object depends on
the confidence of the antecedents (line 19): the unidentified object

u and the drone d. The first one is given by u.confidence and the
second one is 1.0 because drones are certain objects.

The second operand of formula (1) is the confidence of the match-
ing operations used in the rule. To compute it we simply make use
of method uncertainty() of type UBoolean, which returns the
confidence of the uncertain boolean—i.e., the second component
of the pair (b, c). We can see (line 22) how it is applied to the filter
expression used in the left-hand side of the rule, and it captures the
accumulated probability of all comparison operations between un-
certain reals, and its composition through logical connectors. The
way in which such an operation works is detailed in [6]. Basically,
it combines the probability of the operands using the composition
laws of the logical operations. In this case we are assuming all
operands are independent, and therefore logical conjunctions result
in probability multiplications.

Finally, we have assumed that the confidence of rule shoot, that
generates the shots, is shootC = 0.99 (line 23), due to the possible
inaccuracies in the estimation of the decision parameters. The other
rules are always accurate.

With this, the object diagram that represent the system at time
1524199496 (i.e., after 1 second) is shown at the bottom of Fig. 2.

We can see that the clock has elapsed 1 second, that all drone
and unidentified objects have moved (hence their coordinates have
been updated), and that the two drones have shot at their targets.
Drone d1 has shot at object o1 with a confidence of 0.9702, and

Conference’17, July 2017, Washington, DC, USA L. Burgueño et al.

Listing 2: Surveillance model transformation in ATL
1 module surveillance ;
2 create OUT : MM ref ining IN : MM ;
3 helper def : sec : R ea l = 1 ;
4 helper def : shootC : R ea l = 0 . 9 9 ;
5 rule shoot {
6 from
7 d : MM ! Drone ,
8 u : MM ! UnidentifiedObject (u . confidence >0 . 6 5 and

9 u . speed >30 and

10 u . shot−>select (confidence > 0 . 9 5)−>isEmpty () and

11 d . position . distance (u . position) < 1000)
12 to
13 c : MM ! Coordinate (
14 x <− d . position . x , y <− d . position . y) ,
15 gs : MM ! GunShot (
16 drone <− thisModule . resolveTemp (d , 'm1') ,
17 target <− thisModule . resolveTemp (u , 'm1') ,
18 position <− c ,
19 confidence <− u . confidence ∗ 1 . 0 ∗
20 (u . confidence > 0 . 6 5 and u . speed > 30 and

21 u . shot−>select (confidence > 0 . 9 5)−>isEmpty ()
22 and d . position . distance (u . position) <1000) . confidence () ∗
23 thisModule . shootC
24)
25 }
26 rule moveDrone {
27 from
28 m : MM ! Drone
29 to
30 c1 : MM ! Coordinate (
31 object <− m1 ,
32 x <− m . position . x + (m . speed ∗ thisModule . sec) ∗ m . angle . cos () ,
33 y <− m . position . y + (m . speed ∗ thisModule . sec) ∗ m . angle . sin ()) ,
34 m1 : MM ! Drone (
35 angle <− m . angle , speed <− m . speed , width <− m . width
36)
37 }
38 rule moveUnidentifiedObject {
39 from
40 m : MM ! UnidentifiedObject
41 to
42 c1 : MM ! Coordinate (
43 object <− m1 ,
44 x <− m . position . x + (m . speed ∗ thisModule . sec) ∗ m . angle . cos () ,
45 y <− m . position . y + (m . speed ∗ thisModule . sec) ∗ m . angle . sin ()) ,
46 m1 : MM ! UnidentifiedObject (
47 angle <− m . angle , speed <− m . speed ,
48 width <− m . width , confidence <− m . confidence
49)
50 }
51 rule coordinate {
52 from
53 c : MM ! Coordinate
54 to
55 }
56 rule tick {
57 from
58 c : MM ! Clock
59 to
60 c1 : MM ! Clock (now <− c . now+thisModule . sec)
61 }

with a likelihood of hitting it of 0.97926. Drone d2 has fired two
shots. The first one at object o1 with a confidence of 0.891 and the
second one at object o2 with a confidence of 0.9702. The chances
of hitting these targets are 0.99569 and 0.88264, respectively.

Note how the non-recursive semantics of the ATL refining mode
work in this case [35]: all rules check the matches first, and then
create the target objects in a second step. This is why object o1 is
shot twice, evenwhen the two gunshots have probabilities of hitting
the target higher than 0.65. Should we have used another in-place

transformation language with recursive semantics, e.g. Henshin [5]
or any other graph transformation language that modify the target
model after the application of each individual rule, only one shot
at object o1 would have been fired.

Note as well that the ATL code shown above in Listing 2 is just
a sample of how it should work. Unfortunately, the extended type
system that permits dealing with UReal and UBoolean values and
their operations is not currently implemented in ATL. This is why
we have used LinTra [9] to develop the implementation of all our
model transformations, as discussed below.

3.4 Implementation
LinTra is a model transformation engine that, by means of paral-
lelizing tasks and using a data-based approach, outperforms other
model transformation engines in most of the cases. LinTra offers
support for the execution of outplace as well as inplace model
transformations running in batch mode—the input model is avail-
able once the transformation starts—or streaming mode—the input
model is a data stream.

We have integrated in the current implementation of LinTra [2]
the libraries we presented in [6], which provide it with uncertain
types and operations as primitive types. In particular, these libraries
offer support for the types UReal, UInteger and UBoolean.

Since LinTra is a Java-based platform, its metamodels and trans-
formations are written in Java too. We are currently working on a
compiler from ATL/EMF to LinTra.

4 EVALUATION
4.1 Case studies
In order to evaluate the expressiveness and applicability of our
proposal, we have also modeled two further case studies, from
separate domains in which our approach can be effectively used
(apart from the motivating example in Section 3.3, which was in
the cyber-physical systems domain): predictive models and run-
time models. The implementation of this two case studies, as well
as the one presented in Section 3, are available from our group’s
website [1], Git repository [2] and ReMoDD repository [8].

4.1.1 A social media recommendation system. The following is
an example of a predictive model. It is a reduced version of a recom-
mender system in a social media environment, whose metamodel
is shown in Fig. 3. At the basic level there are Users and Items.
Users follow other users, and like items. Items can be pictures,
tweets, or products from a catalog. We are interested in modeling
a system whose behavior, in addition to representing these ele-
ments and their relations, is also able to infer further relationships.
For the sake of simplicity, we have omitted many details from the
real system, such as user circles, item tags, and further relations
between the objects such as retweets.

For example, a business rule can estimate that if more than 200
followers of a user like an item, it is quite likely that the user likes
it too. Similarly, if user A likes more than two thirds of the likings
of user B, it may be the case that A could be interested in following
B, too.

Our approach permits expressing these issues in a very natural
way. We have reified the relations Like and Follow to be able to

Expressing Confidence in Models and Model Transformation Elements Conference’17, July 2017, Washington, DC, USA
Class diagram

Like Product

Tweet

Follow

ProbableElement

confidence : Real

Item

Photo

User

followedBy*

followed1

item1

likers*

follower1

follows*

likes*user1

Figure 3: A reduced Social Media metamodel.

Listing 3: SocialMedia model transformation in ATL
1 module socialmedia ;
2 create OUT : MM ref ining IN : MM ;
3 helper def : numFollowers : I n t e g e r = 2 0 0 ;
4 helper def : wouldLikeRuleConf : R ea l = 0 . 9 2 5 ;
5 rule wouldLike { --no previous "Like" relationship

6 from
7 i : MM ! Item ,
8 u : MM ! User (
9 (u . followedBy−>select (f | f . confidence > 0 . 9 5)
10 −>select (f | f . follower . likes−>select (l |
11 l . confidence >0 . 8 5 and l . item=i)−>notEmpty ()
12)−>sum () > thisModule . numFollowers) and

13 (u . likes . item−>excludes (i)))
14 to
15 i1 : MM ! Item (. . .) , --copy of i

16 u1 : MM ! User (. . .) , --copy of u

17 l : MM ! Like (
18 user <− u1 ,
19 item <− i1 ,
20 confidence <− (u . followedBy−>
21 select (f | f . confidence > 0 . 9 5)−>
22 select (f | f . follower . likes−>
23 select (l | l . confidence >0 . 8 5 and l . item=i)−>notEmpty ())−>
24 collect (l | l . confidence)−>product () ∗
25 thisModule . wouldLikeRuleConf))

assign confidence to them, making them regular classes (another
option would have been to make them association classes). Links
defined by users have a confidence of 1.0. Links derived by the
system will have a smaller confidence. Then the user could accept
them (modifying its confidence to 1.0) or reject them (making it 0.0
or simply removing the derived link from the model).

A model transformation can be in charge of recalculating all
relationships and their confidence after a user manually creates
or removes a relationship, or accepts or rejects one suggested by
the system. Listing 3 shows part of the behavior of such a model
transformation, namely the rule that suggests a Like relationship
between a user and an item (once again, we are presenting it here
in ATL, for understandability purposes).

The rule counts those users who are related to a given user u
through a Follow relationship with a confidence higher than 0.95
(line 9) and, from those, the rule selects those who like the item
with a confidence higher than 0.85 (line 11). Then, the rule checks
whether the number of such followers is higher than 500 (line 12)
and there is no previous Like relationship between the user and
the item (line 13). If so, it creates a Like object representing such a
relationship.

Given that users and items have no associated confidence (they
are certain objects), the confidence of the newly created Like rela-
tionship only depends on the confidence of the Follow and Like
relationships that the rule uses in the selection process (these are
the antecedents in this case). Therefore, it is a matter of navigating

Class diagram

Call

FireWarning

Home

id : Integer

temp : UReal

co : UReal

dopen : UBoolean

sqre : Real

TempIncr

temp : UReal

incr : UReal

ProbableElement

confidence : Real

COHigh

Person

id : Integer

Location

x : UReal

y : UReal

TempWarning

temp : UReal

NobodyHome

TimedElement

ts : UReal

TimedProbableElement

coHigh*

home1

call*

fw1

fw*

tw1

location1

home1

nobodyH*

home1

location1

person1

tempIncr*

home1

tempWarning*

home1

Figure 4: Smart home metamodel.

the relations that are used (lines 20–24), and multiply their confi-
dence (line 24). Given that we are not dealing in this example with
measurement uncertainty of the attributes of the objects, there is
no need to compute the uncertainty in the matching phase of the
rule. Finally, we need to take into account the production phase of
the rule, multiplying the result by the rule’s confidence (line 25),
which in this case we assume it is 0.925 (line 4).

4.1.2 Modeling confidence in run-time models. To illustrate our
proposal in the case of run-time models we will use an example
taken from the Complex Event Processing (CEP) domain. CEP [17,
28] is a form of Information Processing [11] whose goal is the
definition and detection of situations of interest, from the analysis
of low-level event notifications [13], also called simple events. Then,
complex events are those that summarize, represent, or denote a set
of other events. Complex events are derived by rules that define the
relevant patterns of (simple or other complex) events, their contents,
and their temporal relations. In fact, CEP can be considered as a
special kind of streaming model transformations [10, 14], able to
manipulate models whose elements are continuously produced or
modified in high volume and with rapid rate of change.

In this context, let us suppose that we have a smart house, with
sensors that permit detecting three basic parameters: temperature,
carbon monoxide (CO) level, and whether the main door is open
or not. These values are periodically sensed and notified by means
of Home events, which also include information about the house
id, the time at which the event was issued, the coordinates of
the house, and its size in square meters. We also want to monitor
whether the people living at a house are inside or not. Therefore,
we suppose that they periodically issue Person events with their
location (coordinates x and y).

Figure 4 shows the metamodel of such a system. Classes Person
and Home represent the CEP simple events described above. Classes
shaded with darker background color represent the complex events
defined by the application:

• TempIncr: The temperature of the house has increased 2 or
more degrees in less than one minute.

• TempWarning: Four TempIncr events are detected in less
than 5 minutes, while temperature remains above 33 degrees.

• COHigh: CO levels exceed 5000 units.

Conference’17, July 2017, Washington, DC, USA L. Burgueño et al.

• FireWarning: A COHigh event is detected, followed by a
TempWarning event, everything within less than 5 seconds.

• NobodyHome: The main door of the house is closed and there
is no person within the perimeter of the house.

• Call: A FireWarning event occurs after a NobodyHome event
is detected; the fire department should be called.

Starting from the simple events, they are enriched with the mea-
surement uncertainty of their attributes, and with the confidence
we have on the event. For simple events, their confidence is given
by (1 − F (e)), where F (e) is the probability of a false positive for
that event.

The confidence of the complex events is calculated by formula (1),
as the product of three factors: (a) the confidence of its antecedents,
(b) the confidence of the matching and comparison operations, and
(c) the confidence of the rule itself. For example, the probability
of the previous TempIncr event, created by the rule with the same
name, is given by:

P(TempIncr) =
P(Home)2· // Antecedents
P (h2.temp − h1.temp ≥ 2.0) · // Matching ops.
P(h1.ts < h2.ts)· // Comparison ops.
P (TempIncrRule) // Rule confidence

For instance, Listing 4 shows a piece of the ATL code that imple-
ments the rule that generates the TempIncr objects.

Listing 4: SmartHome model transformation in ATL.
1 module SmartHome ;
2 create OUT : MM ref ining IN : MM ;
3 helper def : tempIncrRuleConf : R ea l = 0 . 9 2 5 ;
4 rule TempIncr {
5 from
6 h1 : MM ! Home ,
7 h2 : MM ! Home (h2 . home = h1 . home and h2 . temp − h1 . temp >= 2 . 0 and

8 h2 . ts > h1 . ts and h2 . ts − h1 . ts < 60)
9 to
10 h11 : MM ! Home (. . .) , -- copy of h1

11 h21 : MM ! Home (. . .) , -- copy of h2

12 t : MM ! TempIncr (
13 home <− h21 . home , ts <− h2 . ts ,
14 temp <− h2 . temp , incr <− h2 . temp − h1 . temp ,
15 confidence <− (h1 . confidence ∗ h2 . confidence ∗
16 (h2 . home = h1 . home and

17 h2 . temp − h1 . temp >= 2 . 0 and

18 h2 . ts > h1 . ts and

19 h2 . ts − h1 . ts < 60) . confidence () ∗
20 thisModule . tempIncrRuleConf))
21 }

We can see how the rule computes all attributes of the complex
event, including attribute confidence with the associated confi-
dence, using formula (1) above.

Similar rules are in charge of generating the rest of the complex
events. In addition, there is a dedicated rule that feeds in the model
the objects that represent the basic events newly arrived, while
another rule removes obsolete events, i.e., those objects whose
timestamp falls outside the event window—hence simulating a
streaming transformation.

This example also illustrates the need to consider confidence in
CEP systems, something we also discussed in [31]. Instead of all
events being equally probable, assigning confidence to events intro-
duces an implicit priorization mechanism, very useful for instance

Table 1: Drones Example. Performance (in secs)

Initial model Transformed Time w/o Time w/ Over-
elements model elems. uncertainty uncertainty head

101 271 0.01 0.02 1.73
1,001 2,791 0.13 0.22 1.62
10,001 27,991 4.34 11.50 2.65
100,001 279,991 1,287.06 2,142.39 1.66

Table 2: Social Media Example. Performance (in secs.)

Initial model Transformed Time w/o Time w/ Over-
elements model elems. uncertainty uncertainty head

29,500 272,700 7.77 8.42 1.08
43,150 406,900 11.52 12.12 1.05
58,500 544,500 15.59 18.18 1.16
74,100 682,600 22.14 25.74 1.16

Table 3: Smart Home Example. Performance (in secs.)

Initial Transformed Transformed Time Time Over-
model model els. w/o model els. w/ w/o w/ head
elems. uncertainty uncertainty uncert. uncert.
2,000 2,199 2,298 0.29 2.95 10.29
4,000 4,395 4,778 0.89 11.51 12.86
6,000 6,584 6,657 1.69 26.43 15.57
8,000 8,853 10,071 4.49 52.11 11.59

when two or more critical events occur (e.g., two Calls to the Fire
Department). In these cases we could discriminate among them
based on their probability, attending those most probable first.

4.2 Performance
In order to check the performance penalty introduced by our ex-
tension with uncertain types and its operations, we have created
a set of synthetic models for our three case studies. For each case
study, we present the number of elements in the model before and
after the execution of the transformation, as well as the execution
time of the transformation with and without uncertain types.

We have executed the experiments using Java 8 on a machine
whose operating system is Windows 10 64-bits with 8 Gb of RAM
and an Intel i7 processor with 8 cores of 1.6 GHz each.

Table 1 shows the performance of the Surveillance case study,
for models of increasing sizes (from 101 to 100,001, being the single
object the system Clock). In this case the overhead introduced by
the uncertain types and most importantly by operating with them
remains between 1.5 and 2.6. We can also see how the time taken
by the MT exponentially increases with the size of the model (note
that this is not due to our extension, but the nature of the MT itself).

Table 2 shows the corresponding performance figures for the
social media example. In this case the overhead is very small (be-
tween 0.05 and 0.16) because there are no attributes with mea-
surement uncertainty. Therefore, calculations on attributes and
logical comparison operations do not need to propagate such kind
of uncertainty—even when the size of the transformed models is
much bigger than the size of the source models.

Table 3 shows the opposite situation. In this case the number of
created objects is smaller (merely a 10%), but the system needs to
perform many operations on uncertain values (values of attributes

Expressing Confidence in Models and Model Transformation Elements Conference’17, July 2017, Washington, DC, USA

and comparison operations between them). We can see how the
model transformed taking into account the uncertainty introduces
many new objects, which represent the relationships suggested by
the recommendation rules. The overhead in this case is between
10 and 15 times, due to the need to operate with measurement
uncertainty and to propagate it.

4.3 Discussion
Once we are able to assign confidence to model elements and to
model transformation rules, this subsection discusses some aspects
of our proposal, as well as some of its main benefits and limitations.

First, using our approach we could make decisions based on the
confidence of the generated objects, before triggering the rules. For
example, we could avoid shooting at the target if the confidence of
the gunshot that is going to be generated is below a given threshold
(0.3 for instance). Or we could discriminate between two calls to
the fire department, attending the most probable one in case we do
not have enough resources.

Concerning the way in which we have added the information
about the confidence to the model elements, we decided to make use
of an abstract class (ProbableElement). This approach has both
benefits and limitations. On the one hand, it is very natural and easy
to use, and the confidence becomes a regular attribute of the model
elements we are interested in. On the other hand, this mechanism is
rather intrusive and not always possible to use—for instance, when
dealing with legacy models for which the (un)certainty of their
elements is unknown. An alternative solution could be the use of
annotations, either internally in the model or externally by means
of UML profiles or similar mechanisms. However, these annotations
could greatly hinder the easy treatment and computations of the
confidence attribute in all expressions.

Finally, the performance issue needs to be discussed. We have
seen that in some cases, the fact of dealing with the calculation of
the measurement uncertainty of the attributes, and its propagation
through the operations and comparison operators, may introduce
a significant overhead. This performance penalty has to be taken
into consideration in the case of applications with very stringent
response time requirements.

5 RELATEDWORK
In [38] the authors propose a conceptual model, called Uncertum,
which is supported by a UML profile (UUP, the UML Uncertainty
Profile) that enables including uncertainty in test models. Uncertum
is based on the U-Model [39], extending it for testing purposes. UUP
is a very complete profile that covers all different kinds of uncer-
tainties. In particular, it defines three different measure packages
(Probability, Ambiguity, and Vagueness) to facilitate annotating
modeling elements with different uncertainty information and mea-
sures. Our work differs from it mainly in two aspects. On the one
hand, we just cover one way of modeling confidence, using prob-
ability theory, while UUP also offers the use of possibility theory
(ambiguity) and fuzzy sets (vagueness). On the other hand, our focus
is slightly different. UUP was defined mainly for test modeling, i.e.,
creating test ready models that can be used to generate executable
test cases, and therefore such type of modeling is less detailed than,
e.g., modeling for automated code or for transforming the models,

as in our case. This is mainly because, during test modeling, the
work [38] is mainly interested in modeling test interfaces (e.g., APIs
to send a stimulus to the system, and capturing state variables) and
in the expected behavior of a system, and thus the importance lies
on the expressiveness on the annotations on the model elements.
However, we are interested in both representing that information
and operating with it—for instance, to calculate derived values or
to automatically compute the confidence of a target element gener-
ated by a model transformation rule. For semantic coherence, we
decided to restrict our choices and use just probability theory to
represent confidence levels, using one uniform approach, in this
case probability theory. Otherwise, combining the uncertainty in-
formation expressed using different approaches would not make
sense. For example, consider aggregating the uncertainty of two
attributes of the same kind, one expressed using classical probabili-
ties, and other using either vagueness (fuzzy logic), or ambiguity
(e.g., Hartley or Shannon possibilistic measures of uncertainty).

This proposal is also inspired by existing works in the field of
complex event processing (CEP), which can be considered a partic-
ular case of model transformations [14]. The work [4] offers a very
interesting summary on the proposals to address the uncertainty
in CEP systems, and that partially cover some of the ideas we have
mentioned here. Among them, Wang [36] addresses the uncertainty
in the selection phase, while Wasserkrug [37] and Cugola [12] deal
with the other two phases using Bayesian Networks—each one
using a different approach. In [31] we made a proposal covering
the three phases in the case of CEP systems, using the extended
type system for dealing with measurement uncertainty in UML and
OCL defined in [6]. This greatly simplifies the representation of the
uncertainty and its propagation, as we have seen in Section 3.4. In
this paper we propose an extension of this proposal to the domain
of the models and the transformations between them, generalizing
significantly the results obtained, as well as their applicability.

There are various modeling works that deal with uncertainty,
but they usually focus on aspects of uncertainty different from the
ones we have described here. For instance, on the uncertainty on
the models themselves and on the best models to use depending on
the system properties that we want to capture [27]. Other works
deal with the uncertainty of the design decisions, of the model-
ing process, or of the domain being modeled [15, 16, 18, 21, 33].
Our work differs from them since we are just concerned with the
confidence we assign to the model objects, which is a different prob-
lem. We are not aware of other works that deal with uncertainty
in model transformations, apart from the existing works on CEP
systems mentioned above. In [19] the authors deal with the trans-
formation of may-models [18], which are models subject to design
uncertainties, but the transformations themselves are not subject
to uncertainty. Moreover, the propagation of design uncertainty,
due to its particular nature, is completely different from that of
measurement uncertainty or of confidence in the model elements.

Other authors have also identified the need of counting on mech-
anisms to represent and manipulate physical values in software
models [34], in particular units or real-time properties [6, 29]. Again
this kind of uncertainty is different from the one treated here, al-
though we have needed it in order to define the confidence of the
model objects.

Conference’17, July 2017, Washington, DC, USA L. Burgueño et al.

Finally, there is an active research area on probabilistic pro-
gramming languages1. These programs are targeted to describe
probabilistic models and then perform inference in those models.
Our proposal here uses a simpler approach, assigning just prob-
abilities to objects representing the belief that we have on their
occurrence, which is the main focus of our work.

6 CONCLUSIONS
This contribution proposes the representation and management of
the information about the confidence we have in the elements of
the models, and how such confidence is propagated through model
transformations. We have identified different types of uncertainty
that can affect such confidence, and proposed a way to calculate
the confidence of the elements generated by a transformation.

Our work can be continued in various directions. First, more and
larger case studies should give us more feedback on the features
and scalability of our approach. One particular aspect of interest
is the application of our proposal to existing models and model
transformations in the least intrusive way possible. In this respect,
the use of high-order transformations could provide the required
mechanisms to adapt existing MTs, adding confidence to their el-
ements and rules. Finally, we are also working on the integrated
support of all these mechanisms and tools within widely usedmodel
transformation languages, such as ATL.

Acknowledgments. This work was partially funded by Spanish
Research Project TIN2014-52034-R.

REFERENCES
[1] Atenea research group’s official website, 2018. http://atenea.lcc.uma.es/projects/

ConfidenceMandMT.html. Accessed: July 2018.
[2] LinTra Git repository, 2018. https://github.com/atenearesearchgroup/lintra.git.

Accessed: July 2018.
[3] G. Agha, J. Meseguer, and K. Sen. Pmaude: Rewrite-based specification language

for probabilistic object systems. ENTCS, 153(2):213–239, 2006.
[4] E. Alevizos, A. Skarlatidis, A. Artikis, and G. Paliouras. Complex event processing

under uncertainty: A short survey. In Proc. of EDBT/ICDT’15, pages 97–103. CEUR-
WS.org, 2015.

[5] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Ad-
vanced concepts and tools for in-place EMF model transformations. In Proc. of
MODELS’10, volume 6394 of LNCS, pages 121–135. Springer, 2010.

[6] M. F. Bertoa, N. Moreno, G. Barquero, L. Burgueño, J. Troya, and A. Vallecillo. Ex-
pressing Measurement Uncertainty in OCL/UML Datatypes. In Proc. of ECMFA’18,
number 10890 in LNCS, pages 46–62. Springer, July 2018.

[7] J. Bézivin. On the unification power of models. Journal on Software and Systems
Modeling, 4(2):171–188, 2005.

[8] L. Burgueño, M. F. Bertoa, N. Moreno, and A. Vallecillo. Expressing confidence
in model and model transformation elements, 2018. http://remodd.org/node/581.
Accessed: July 2018.

[9] L. Burgueño, M. Wimmer, and A. Vallecillo. A Linda-based platform for the
parallel execution of out-place model transformations. Information & Software
Technology, 79:17–35, 2016.

[10] J. S. Cuadrado and J. de Lara. Streaming model transformations: Scenarios,
challenges and initial solutions. In Proc. of ICMT’13, volume 7909 of LNCS, pages
1–16. Springer, 2013.

[11] G. Cugola and A. Margara. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv., 44(3):15:1–15:62, 2012.

[12] G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Introducing uncertainty
in complex event processing: model, implementation, and validation. Computing,
97(2):103–144, 2015.

[13] G. Cugola, A. Margara, M. Pezzè, and M. Pradella. Efficient analysis of event
processing applications. In Proc. of DEBS’15, pages 10–21. ACM, 2015.

[14] I. Dávid, I. Ráth, and D. Varró. Foundations for streaming model transformations
by complex event processing. Software and System Modeling, 17(1):135–162, 2018.

1http://probabilistic-programming.org/wiki/Home

[15] R. Eramo, A. Pierantonio, and G. Rosa. Managing uncertainty in bidirectional
model transformations. In Proc. of SLE’15, pages 49–58. ACM, 2015.

[16] N. Esfahani and S. Malek. Uncertainty in self-adaptive software systems. In
Software Engineering for Self-Adaptive Systems II, number 7475 in LNCS, pages
214–238. Springer, 2013.

[17] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications, 2010.
[18] M. Famelis, R. Salay, and M. Chechik. Partial models: Towards modeling and

reasoning with uncertainty. In Proceedings of the 34th International Conference
on Software Engineering, ICSE’12, pages 573–583. IEEE Press, 2012.

[19] M. Famelis, R. Salay, A. Di Sandro, and M. Chechik. Transformation of models
containing uncertainty. In Proc. of MODELS’13, volume 8107 of LNCS, pages
673–689. Springer, 2013.

[20] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, 2008.
[21] D. Garlan. Software Engineering in an Uncertain World. In Proc. of the FSE/SDP

Workshop on Future of Software Engineering Research (FoSER’10), pages 125–128.
ACM, 2010.

[22] IEEE Std 1003.1-2008. The Open Group Base Specifications. Issue 7, Sect. 4.16,
Seconds Since the Epoch, 2016.

[23] JCGM 100:2008. Evaluation of measurement data – Guide to the expression of
uncertainty in measurement (GUM). Joint Committee for Guides in Metrology,
2008. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.
pdf.

[24] JCGM 101:2008. Evaluation of measurement data – Supplement 1 to the “Guide
to the expression of uncertainty in measurement" – Propagation of distributions
using a Monte Carlo method. Joint Committee for Guides in Metrology, 2008.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf.

[25] JCGM 200:2012. International Vocabulary of Metrology – Basic and general concepts
and associated terms (VIM), 3rd edition. Joint Committee for Guides in Metrology,
2012. http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.
pdf.

[26] B. Kosko. Fuzziness vs. Probability. International Journal of General Systems,
17(2–3):211–240, 1990.

[27] B. Littlewood, M. Neil, and G. Ostrolenk. The role of models in managing the
uncertainty of software-intensive systems. Reliability Engineering & System
Safety, 50(1):87 – 95, 1995.

[28] D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, 2002.

[29] T. Mayerhofer, M. Wimmer, and A. Vallecillo. Adding uncertainty and units to
quantity types in software models. In Proc. of SLE’16, pages 118–131. ACM, 2016.

[30] T. Mens and P. V. Gorp. A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, 2006.

[31] N. Moreno, M. F. Bertoa, G. Barquero, L. Burgueño, J. Troya, and A. Vallecillo.
Managing Uncertain Complex Events in Web of Things Applications. In Proc. of
ICWE’18, number 10845 in LNCS, pages 1–9. Springer, July 2018.

[32] OMG. UML Profile for Modeling and Analysis of Real-time and Embedded Systems
(MARTE). Object Management Group, June 2008. OMG doc. ptc/08-06-08.

[33] R. Salay, M. Chechik, J. Horkoff, and A. Sandro. Managing requirements uncer-
tainty with partial models. Requirements Engineering, 18(2):107–128, 2013.

[34] B. Selic. Beyond Mere Logic – A Vision of Modeling Languages for the 21st
Century. In Proc. of MODELSWARD 2015 and PECCS 2015, pages IS–5. SciTePress,
2015.

[35] J. Troya and A. Vallecillo. A rewriting logic semantics for ATL. Journal of Object
Technology, 10:5:1–29, 2011.

[36] Y. H. Wang, K. Cao, and X. M. Zhang. Complex event processing over dis-
tributed probabilistic event streams. Computers & Mathematics with Applications,
66(10):1808–1821, 2013.

[37] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Complex event processing over
uncertain data. In Proc. of DEBS’08, pages 253–264. ACM, 2008.

[38] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz. Uncertainty-wise cyber-
physical system test modeling. Software & Systems Modeling, Jul 2017. https:
//doi.org/10.1007/s10270-017-0609-6.

[39] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren. Understanding
uncertainty in cyber-physical systems: A conceptual model. In Proc. of ECMFA’16,
volume 9764 of LNCS, pages 247–264. Springer, 2016.

http://atenea.lcc.uma.es/projects/ConfidenceMandMT.html
http://atenea.lcc.uma.es/projects/ConfidenceMandMT.html
https://github.com/atenearesearchgroup/lintra.git
http://remodd.org/node/581
http://probabilistic-programming.org/wiki/Home
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf
https://doi.org/10.1007/s10270-017-0609-6
https://doi.org/10.1007/s10270-017-0609-6

	Abstract
	1 Introduction
	2 Background
	2.1 Models and Model Transformations
	2.2 Uncertainty

	3 Confidence in Models and MT Rules
	3.1 Expressing confidence in model elements
	3.2 Expressing confidence in MT rules
	3.3 A motivating example
	3.4 Implementation

	4 Evaluation
	4.1 Case studies
	4.2 Performance
	4.3 Discussion

	5 Related Work
	6 Conclusions
	References

