
Causal Embeddings for Recommendation
Stephen Bonner∗

Criteo AI Labs
Paris

st.bonner@criteo.com

Flavian Vasile
Criteo AI Labs

Paris
f.vasile@criteo.com

ABSTRACT
Many current applications use recommendations in order to mod-
ify the natural user behavior, such as to increase the number of
sales or the time spent on a website. This results in a gap between
the final recommendation objective and the classical setup where
recommendation candidates are evaluated by their coherence with
past user behavior, by predicting either the missing entries in the
user-item matrix, or the most likely next event. To bridge this gap,
we optimize a recommendation policy for the task of increasing the
desired outcome versus the organic user behavior. We show this is
equivalent to learning to predict recommendation outcomes under
a fully random recommendation policy. To this end, we propose
a new domain adaptation algorithm that learns from logged data
containing outcomes from a biased recommendation policy and
predicts recommendation outcomes according to random exposure.
We compare our method against state-of-the-art factorization meth-
ods, in addition to new approaches of causal recommendation and
show significant improvements.

CCS CONCEPTS
•Computingmethodologies→ Learning from implicit feed-
back; Neural networks; Transfer learning;

KEYWORDS
Recommender Systems; Causality; Embeddings; Neural Networks;
Counterfactual Inference

1 INTRODUCTION
In recent years, online commerce has outpaced the growth of tradi-
tional business. The research work on recommender systems has
consequently grown significantly during the same time-frame. As
shown by key players in the online e-commerce space, such as
Amazon, YouTube or Netflix, the product recommendation func-
tionality is now a key driver of demand, accounting for, in the case
of Amazon, roughly 35% [18] of overall sales.

Within the area of recommender systems, a promising new class
of deep-learning based solutions has emerged and are showing
promising results. We can separate the newly proposed solutions
in two main types of approaches: ones that learn item embeddings
that optimize for item-item similarity prediction [8, 19, 31] and
the ones that learn user sequence embeddings to optimize for next
item prediction [10, 11]. The new methods can scale to millions of
users and items and show good performance improvements over
traditional approaches. In the context of product recommendation at
scale, these deep-learning approaches were successfully applied to

∗Also a doctoral student at the Department of Computer Science, Durham University,
UK

ad recommendations in Yahoo! Mail [8], for video recommendation
at YouTube [5] and restaurant recommendations by OpenTable [6].

However, even with the recent model developments, the current
state-of-the-art machine learning models still frame the recommen-
dation task as either:

• A distance learning problem between pairs of products or
between pairs of users and products, where we measure
outcomes using link prediction/matrix completion metrics
such asMean Squared Error (MSE) and Area Under the Curve
(AUC).
• A next item prediction problem that models the user behav-
ior and tries to predict what she will do next, using ranking
metrics like Precison@K and Normalized Discounted Cumu-
lative Gain (NDCG).

Both of the approaches fall short of modeling the intrinsic in-
terventionist nature of recommendation, which should not only
attempt to model the organic user behavior, but to actually opti-
mally influence it according to a present objective. In other words,
in many cases, recommendations are by design actions that have,
as a common desired outcome, the change in user behavior, e.g. an
increase in a certain user activity such as buying products, watching
movies or applying for a mortgage/credit card.

Ideally, the increase in user activity would be measured against
the baseline case where no recommendations are being shown.
Using a causal vocabulary, we are interested in finding the optimal
treatment recommendation policy that maximizes the reward with
respect to the control recommendation policy for each user, also known
as the Individual Treatment Effect (ITE) [24]. In this context, the
control policy constitutes the current state of the system. This can
be either a system with no recommendations in place or a baseline
recommender system that we want to improve using the currently
logged feedback. In the rest of the paper, we will use control and
logging policy interchangeably to describe the baseline system.

Currently, this type of approach is prevalent in fields such as per-
sonalized medicine, where one tries to infer which treatment would
have the biggest positive impact for a particular patient. Similar
questions are starting to be asked in the field of Performance Adver-
tising [14], where the problem of measuring the incremental effect
of an advertising campaign on the user shopping propensity is very
important for proper credit attribution in the context of single and
multi-channel advertising [2]. In terms of associated rewards, this
marks a natural evolution of the field from measuring advertising
performance in terms of number of ad displays (CPM - cost per
thousand ad displays), to measuring it in terms of ad clicks (CPC),
to post-click sales/conversions (CPA) to possibly incremental sales
(incremental CPA - value of a sale times the associated individual
treatment effect).

ar
X

iv
:1

70
6.

07
63

9v
6

 [
cs

.I
R

]
 3

 A
ug

 2
01

8

In our paper, we introduce a simple modification of standard
matrix factorization methods that leverages a small sample of ran-
domized recommendations outcomes in order to create user and
products representations. For our method, the associated pairwise
distance between user and item pairs is more aligned with the cor-
responding ITE than in traditional approaches. In Section 4, we
show that, because of this, our method can lead to significant lifts in
performance over both classical and recent causal inference-based
recommendation methods.

1.1 Learning Recommendation Policies
Optimized for ITE

In order to introduce our method, we adopt a notation similar to
the one introduced in [29] and [23] and extend it to the matrix fac-
torization case. The primary notation used throughout this section
is detailed in Table 1.

Table 1: Definitions and Notations

Symbol Definition

ui A user of the recommendation system
pj A product which the system can recommend
πx A recommendation policy (eq. 1)
πc The control recommendation policy. This represents

the recommendation system used to create the train-
ing dataset.

πt The treatment recommendation policy. This repre-
sents the updated recommendation system.

π rand The fully random recommendation policy that
shows any product with equal probability to all
users.

ri j The true reward for recommending a product pj to
user ui

yi j The observed reward for recommending product pj
to user ui in the data. By comparison with ri j , its
value can be unknown.

Rπx The total reward for policy πx (eq. 2)
ITEπxi j The difference between the reward for current and

control policy (eq. 3)
p∗i The product with the highest reward for user ui (eq.

6)
π∗ The best incremental recommendation policy (eq.

4)
Sc A large set of training samples collected under the

control recommendation policy
St A smaller set of samples taken under a full-

randomized recommendation policy

Recommendation Policy. Consider a recommender system that
takes as input a user ui ∈ X, from the user population X and out-
puts as its prediction one of the possible recommendable products
pj ∈ P. The external behavior of the recommender system can be
described by the policy of which product to show for each user.
We assume a stochastic policy πx that associates to each user ui

and product pj a probability for the user ui to be exposed to the
recommendation of product pj :

pj ∼ πx (.|ui) (1)

For simplicity we assume showing no products is also a valid inter-
vention in P.

Policy Rewards. We define ri j to be the true outcome/reward for
recommending product pj to user ui . In our case, ri j is a binary
outcome, for example click/no click, sale/no sale. We assume that
the reward ri j is distributed according to an unknown conditional
distribution r depending on ui and pj :

ri j ∼ r (.|ui ,pj)
We define yi j to be the observed reward for the pair i, j of user-

product according to the logging policy πx :

yi j = ri jπx (pj |ui)
The reward Rπx associated with a policy πx is equal to the sum

of the rewards collected across all incoming users by using the
associated personalized product exposure probability:

Rπx =
∑
i j

ri jπx (pj |ui)p(ui) =
∑
i j

yi jp(ui) =
∑
i
Ri j (2)

where the probability of seeing users comes from an unknown
distribution p(X): ui ∼ p(X) and Ri j is the reward associated with
the user-product pair ij.

The Individual Treatment Effect (ITE) value of a policy for a given
user i and a product j for a policy πx is defined as the difference
between it’s reward and the reward of the control policy πc :

ITEπxi j = Rπxi j − R
πc
i j (3)

In our paper, we are interested in finding the policy π∗ with the
highest sum of ITEs:

π∗ = arдmax
πx
{ITEπx } (4)

where: ITEπx =
∑
i j ITE

πx
i j

Lemma 1. For any control policy πc , the best incremental pol-
icy π∗ is the policy that shows deterministically to each user the
product with the highest associated reward.

Proof. Let π∗ be the policy with the highest associated reward:

π∗ = arдmax
πx

∑
i j

ri jπx (pj |ui)p(ui) (5)

We have that π∗ is the policy with the highest ITE w.r.t to any
control policy πc since ITEπ

∗
= R∗ − Rc ≥ R\∗ − Rc .

Let p∗i be the product with highest reward for user ui :

p∗i = arдmax
pj

ri j (6)

and r∗i the associated reward.
For any arbitrary policy πx we have the following inequality

that holds:
Rπx =

∑
i
p(ui)

∑
j
ri jπx (pj |ui) ≤

≤
∑
i
p(ui)

∑
j
r∗i πx (pj |ui) =

∑
i
p(ui)r∗i = Rπdet

(7)

2

where πdet is the deterministic policy of showing the best person-
alized product to each user ui :

πdet =

{
1, if pj = p∗i
0, otherwise

(8)

Therefore, π∗ = πdet . □

In order to find the optimal policy π∗, we need to find for
each user ui the product with the highest personalized reward
r∗i . However, in practice we do not observe directly ri j , but yi j ∼
ri jπx (pj |ui). Most of the current approaches use Inverse Propen-
sity Scoring (IPS)-based methods (see [16] and [25]) to predict the
unobserved reward ri j :

r̂i j ≈
yi j

πc (pj |ui)
(9)

The main shortcoming of these approaches is that IPS-based estima-
tors do not handle well big shifts in exposure probability between
treatment and control policies [3] (products with low probability
under the logging policy πc will tend to have higher predicted
rewards).

Ideally, for minimum variance, the logging policy πc should be
one of uniform exposure recommendations (denoted as π rand),
which is impossible in practice due to the resulting low recom-
mendation quality. One potential solution is then to use the biased
data from the current πc and learn to predict the outcomes under a
randomized policy and then rank the products by their predicted
outcomes under this transformation. More formally, if we denote
by L(.) the loss associated with our policy learning objective, we
have that:

min
∑
ui

p(ui)L(p̂i ,p∗i) (10)

Assuming p̂i is computed as the maximum over predicted rewards
we have that:

p̂i = arдmax
pj

r̂i j = arдmax
pj

ŷi j

πc (pj |ui)
=

= arдmax
pj

ŷrandi j

π rand (pj |ui)
= arдmax

pj
ŷrandi j

(11)

where ŷrandi j is the predicted outcome of showing product pj to
user ui under randomized exposure and all π rand (pj |ui) values are
equal by the definition of randomized exposure.

Therefore, if we can build a good predictor for ŷrandi j , we can
avoid the explosion in variance we encounter in the classic IPS
approach.

The key difference between domain adaptation and IPS-based
methods is that in order to be able to learn a model that performs
well on the fully randomized domain, we need a sample from it.
That means that at learning time we assume the existence of two
training samples: Sc = {(ui ,pcj ,y

c
i j)}

Mc
i=1

, that is a very large sample
of exposed users with outcomes collected with the control recom-
mendation policy and St = {(ui ,ptj ,y

t
i j)}

Mt

i=1
, that is a much smaller

sample of exposed users with outcomes collected with the fully
randomized recommendation policy (for example, collected using
an e-greedy exploration strategy [28] or from other exploration

strategies that can be used to simulate outcomes from π rand by
rejection sampling). A new class of embedding-based approaches
which leverage this setup have been recently proposed in [13, 26]
and the closely related work in [23].

In ourwork, we leverage their findings and proposeCausalEmbed
(CausE), a new embedding method that is able to transfer evidence
between a large sample of logged feedback under the control policy
Sc and a small sample of logged treatment policy feedback St in
order to be able to better predict randomized treatment effects on
pairs of users and products.We show that our approach significantly
improves recommendation performance on unseen pairs of users
and products exposed according to the randomized treatment policy
π randt .

The key contributions of our work are the following:
• We extend the past work [23] on learning from biased control
plus randomized treatment and make the connection with
the recent work on causal embeddings [26] and propose a
new approach entitled CausE, a new matrix factorization
algorithm that generalizes both previous approaches.
• We apply the newly introduced algorithm on the problem of
product recommendation and benchmark it against standard
factorization and IPS-based causal methods and analyze vari-
ous ways of leveraging the exploration sample St in order to
improve the performance of the model on unseen test data
from the randomized treatment policy.

To aid the reproducibility of our CausE method, we release the
source code1 and present results only on public benchmark datasets.

The structure of the paper is the following: In Section 2 we cover
previous related work and the relationship with our method. In
Section 3 we present the CausE approach. In Section 4 we present
the experimental setup and the results on the MovieLens dataset.
In Section 5, we summarize our findings and conclude with future
directions of research.

2 RELATEDWORK
The body of work focusing upon causality is vast and diverse,
spanning multiple interconnected disciplines. We concentrate our
review on the work measuring causal effects as a counterfactual
inference problem.

2.1 Propensity Scoring Methods
The basic idea of propensity scoringmethods is to turn the outcomes
of an observational study into a pseudo-randomized trial by re-
weighting samples, similarly to importance sampling. This is the
classical Inverse Propensity Scoring (IPS) [22] method of computing
an unbiased estimator of the reward of policy πt under its own
induced distribution from a sample of data collected under policy
πc .

In [3] the authors introduce Clipped Inverse Propensity Scoring, a
method which addresses the variance problems that the unbiased
IPS estimator is facing when πt and πc are too different.

Additionally, [7] introduces Double Robust estimation for IPS, as
a way to evaluate the value of a new policy on logged data that
combines the direct method estimation with the IPS estimation and

1https://github.com/criteo-research/CausE

3

https://github.com/criteo-research/CausE

provides an estimator which is consistent if at least one of the two
models is well-specified.

In a series of papers [29, 30], the authors propose the Counterfac-
tual Risk Minimization (CRM) principle along with a new learning
setup Batch Learning from Bandit Feedback (BLBF) that aims to an-
swer the counterfactual question of: "How will a system perform
in response to an intervention that changes the data distribution?".
As a solution, they propose the Policy Optimizer for Exponential
Models (POEM) algorithm, that optimizes a variance-regularized
version of the Clipped-IPS estimator. In the context of learning un-
der the BLBF setup, [15] releases a dataset with logged propensity
weights according to a baseline policy h0 and benchmarks various
propensity weighting methods using the CRM principle.

The most recent work in the BLBF setup introduces BanditNet, an
algorithm for training deep neural networks via logged contextual
bandit feedback data [12]. This approach views the output of a
neural network to be analogous with that of a a stochastic policy
πw , wherew are the parameters associated with the model. Using
BanditNet, πw can be trained in the following manner:

ŵ = arдmin
w

1
n

n∑
i=1
(δi − λ)

πw (pj |ui)
πc (pj |ui)

where πc is an existing training policy, δi is the received loss for pj
given ui under πc and λ is an unconstrained Lagrange multiplier,
which must be chosen empirically.

2.2 Causal Inference using Domain Adaptation
and Transfer Learning Methods

Causal inference as Domain Adaptation [13, 26]: The authors frame
the problem of causal inference as a domain adaptation problem
where we need to learn on the factual domain and predict on the
counterfactual domain. By leveraging the results on Domain Adap-
tation from [4], the authors show that the expected ITE estimation
error of a representation is bounded by the sum of the supervised
generalization error of the representation and the distance between
the resulting treated and control distributions in the new represen-
tation.

Causal inference as Transfer Learning/Joint Optimization [23]:
The authors propose a new method that allows for better prediction
of the magnitude of a new treatment effect by leveraging not only
the A/B Test trafficwhere the traffic is exposed to the new treatment,
but also the pre-A/B Test data that was exposed to the control policy.

2.3 Causal Recommendations
The current work in causal recommendations focuses on the idea of
using causal inference as a way to de-bias matrix factorization on
existing logged data. In [17] the authors present ExpoMF, a proba-
bilistic approach for collaborative filtering on implicit data. ExpoMF
jointly models both users exposure to an item, and their resulting
click decision, resulting in a model which naturally down-weights
the expected, but ultimately un-clicked items. The model is also able
to consider additional covariates which may impact the exposure,
for example a user’s location when recommending restaurants. In
[16] the authors follow-up with a second version of the model for
rating matrices and with explicit modeling of the exposure model
(they propose two exposure models, one of global popularity and

one that personalizes the exposure for each user). Once the expo-
sure model is estimated the preference model is fit with weighted
click data, where each click (or skip) is weighted by the inverse
probability of exposure (coming from the exposure model). As a
result, the observational click data is weighted as though it came
from an "experiment" where users are randomly shown items. This
leads to good performance on the domain-adaptation task where
the model is estimated on a different distribution from the training
one. A very similar model was proposed in [25].

3 PROPOSED APPROACH
As discussed in Section 1, we are interested in building a good
predictor for recommendation outcomes under random exposure
for all the user-product pairs, which we denote as ŷrandi j . In our
learning setup, we assume that we have access to a large sample Sc
from the logging policy πc and a small sample St from the random-
ized treatment policy π randt . To this end, we propose a multi-task
objective that jointly factorizes the matrix of observations yci j ∈ Sc
and the matrix of observations yti j ∈ St .

3.1 Multi-Task Objective For Exposure Policies
That Vary Treatments For A Given Set Of
Fixed Users

For simplicity we assume that the same set of users are exposed
differently in control/treatment and the exposure change between
treatment and control is explained by the difference in product
representations in the two policies. In this case, the users have
a fixed representation (either as a set of user features or as a user
embedding vector). This is the evaluation setup proposed in [16]
and the equivalent evaluation of the work in [25], where the test
sample is produced according to π randt .

The case of predicting outcomes under changing treatment ex-
posures for the same set of users is also addressed by the authors in
[23]. They assume a user-independent exposure policy and derive
a multi-task objective that explains jointly the small sample St and
the big sample Sc and regularizes the difference in the two resulting
product representations. In order to motivate this objective, the au-
thors assume that both the expected factual control and treatment
rewards can be approximated as linear predictors over the fixed
user representations ui :

yci j ≈< θcj ,ui >

yti j ≈< θ tj ,ui >
(12)

where θcj ,θ
t
j are the control/treatment vectorial representations

of product j and < x ,y > denotes the inner product between the
vectors x and y.

As a result and using the logic of Equation 3, we can approximate
the ITE of a user-product pair i, j as the difference between the two:

ÎTEi j =< θ tj ,ui > − < θcj ,ui >=< θ∆j ,ui > (13)

We define the first part of our joint prediction objective as the
supervised predictor for yti j , trained on the limited sample St . We
denote the associated loss term by lti j :

lti j = L(< θ tj ,ui >,y
t
i j) + Ω(θ tj) (14)

4

where: L is an arbitrary loss function and and Ω(.) is a regular-
ization term over the weights of the model. Switching to matrix
notation, we define the associated objective by Lt :

Lt =
∑

(i, j,yi j)∈St
lti j = L(UΘt ,Yt) + Ω(Θt) (15)

where: Θt is the parameter matrix of treatment product repre-
sentations,U is the fixed matrix of the user representations, Yt is
the observed rewards matrix, L(.) is an arbitrary loss function and
Ω(.) is a regularization term over the weights of the model.

Then, if we want to leverage the ample control data, we can
use our treatment product representations by subtracting θ∆j since
< θcj ,ui >=< θ tj ,ui > − < θ∆j ,ui >. We denote the associated
objective by lci j :

lci j = L(< θ tj − θ
∆
j ,ui >,y

c
i j) + Ω(θ tj) + Ω(θ∆j) (16)

If instead of parametrizing it in terms of treatment embeddings θ tj
and a set of difference vectors θ∆j , we choose to express the loss in
terms of the new control embedding θcj , and switching to matrix
notation, we have that:

Lc = L(UΘc ,Yc) + Ω(Θc) + Ω(Θt − Θc) (17)

By putting the two tasks together (eq. 15 and 17), we have the
equation of the joint tasks loss LprodCausE :

L
prod
CausE = L(UΘt ,Yt) + Ω(Θt)︸ ︷︷ ︸

tr eatment task loss

+L(UΘc ,Yc) + Ω(Θc)︸ ︷︷ ︸
control task loss

+

+ Ω(Θt − Θc)︸ ︷︷ ︸
r eдular izer between tasks

(18)

We can similarly define LuserCausE , where the user embeddings are
learnt over fixed product representations. This type of modelization
is relevant for the cases where we know that the treatment policy
differs from the control policy in terms of the choice of users.

3.1.1 Multi-task Objective For Exposure Policies that Vary Both
Treatments And Users. In this case, the change in exposure between
treatment and control is explained both by the different choice in
exposed users and products shown. To this end, we modify our
objective function to allow for the user representations to change,
and using similar reasoning to eq (18) we reach LCausE , the final
loss function for our method:
LCausE = L(ΓtΘt ,Yt) + Ω(Γt ,Θt)︸ ︷︷ ︸

tr eatment task loss

+L(ΓcΘc ,Yc) + Ω(Γc ,Θc)︸ ︷︷ ︸
control task loss

+

+ Ω(Γt − Γc) + Ω(Θt − Θc)︸ ︷︷ ︸
r eдular izers between tasks

(19)

We can recover the previous loss as a special case by setting the
regularization parameter on the difference between treatment and
control representations for users to infinity.

3.1.2 Optimization. We optimize LCausE using Stochastic Gra-
dient Descent (SGD) with momentum [27] and a linearly decaying
learning rate. For our experiments we optimize LprodCausE since our
treatment policy depends only on products and not on users. Algo-
rithm 1 details the general CausE method.

Algorithm 1: CausE Algorithm: Causal Embeddings For Rec-
ommendations
Input :Mini-batches of Sc = {(uci ,p

c
j ,δ

c
i j)}

Mc
i=1

and

St = {(uti ,p
t
j ,δ

t
i j)}

Mt

i=1
, regularization parameters

λt , λc for the two joint tasks Lt and Lc and λdist the
regularization parameter for the discrepancy
between the two representations for products and
users, learning rate η

Output :Γt , Γc ,Θt ,Θc - User and Product Control and
Treatment Matrices

1 Random initialization of Γt , Γc ,Θt ,Θc ;
2 while not converged do
3 Read batch of training samples;
4 for each training sample s in the batch: do
5 if s ∈ Sc then
6 Lookup the product index j and user index i in

Θc , Γc and
7 Update control product vector:

θcj ← θcj − η∇L
prod
CausE

8 Update control user vector: γ ci ← γ ci − η∇L
user
CausE

9 end
10 if s ∈ St then
11 Lookup the product index j and user index i in

Θt , Γt and
12 Update treatment product vector:

θcj ← θcj − η∇L
prod
CausE

13 Update treatment user vector:
γ ci ← γ ci − η∇L

user
CausE

14 end
15 end
16 end
17 return Γt , Γc ,Θt ,Θc

4 EXPERIMENTS
The experimental section is organized as follows. Firstly, we de-
scribe the evaluation setup, namely, the evaluation task, success
metrics, the baselines. and the dataset preprocessing protocol. In
the second part, we report results of our experiments on both the
MovieLens10M and Netflix datasets.

4.1 Setup
4.1.1 Task: Estimating Treatment Rewards ytij.

We compare all of the methods on the task of predicting the out-
comes yti j under treatment policy πt , where all of the methods
have available at training time a large sample of observed rec-
ommendations outcomes from πc and a small sample from πt (to

5

simulate the large control plus small treatment info coming from
exploration or an A/B test). Since the resulting setup is basically
a classical conversion-rate prediction problem, we will use the as-
sociated metrics, namely Mean-Squared Error (MSE) and Negative
Log-Likelihood (NLL). For our final numbers we report their lift (eq
20) over the performance of the average predictor AvдCR (e.g. the
empirical conversion rate on the test dataset), to ensure that the
performance of the predictors evaluated on the test distribution is
better than a trivial predictor that has access to the test distribution:

li f tmetr ic
x =

metricx −metricAvдCR

metricAvдCR
(20)

where metric is either MSE or NLL and x is the approach being
measured.

In addition, as we are concerned with implicit feedback data
which is inherently binary, we also report the area under the re-
ceiver operating characteristic curve (AUC) to assess the quality of
the predictions made by the various approaches.

4.1.2 Baselines.
To demonstrate the effectiveness of our proposed approaches, we
compare with the following baselines:

Matrix Factorization Baselines:
Bayesian Personalized Ranking (BPR)
To compare our approach against a ranking based method, we use
Bayesian Personalized Ranking (BPR) for matrix factorization on
implicit feedback data [21]. In this method, we directly learn user
and product representations via matrix factorization, optimized
using the BPR-OPT criteria and trained using LearnBPR [21].

Supervised-Prod2Vec (SP2V)
As a second factorization baseline we will use a Factorization
Machine-like method [20] that approximatesyi j as a sigmoid over a
linear transform of the inner-product between the user and product
representations:

ŷi j = σ (α < pj ,ui > +bi + bj + b) (21)

where: σ is the sigmoid function, α is a scaling factor for the user-
product similarity score, b is the global bias, bi and bj are user and
product bias terms. This method can also be seen as an extension
of the Prod2Vec algorithm [8] for factorizing non-symmetric ma-
trices in the presence of supervised feedback (e.g. negatives are
not randomly sampled as they are provided within the data). For
this reason, we will denote our supervised baseline as Supervised-
Prod2Vec (SP2V).

Causal Inference Baselines:
Weighted-SupervisedP2V (WSP2V)
To test the performance of propensity-based causal inference, we
employ the SP2V algorithm on propensity-weighted data, which
we denote in our experiments as Weighted-SP2V (WSP2V). The
method is similar to the Propensity-Scored Matrix Factorization
(PMF) from [25] but with cross-entropy reconstruction loss instead
of MSE/MAE. An equivalent method was tested in [16] where the
authors argue that their best performing model, ExpoMF trained
causally (CAU) with conditional prediction (Cond), is equivalent to

PMF.

BanditNet (BN)
To utilize BanditNet as a baseline, we use SP2V as our target pol-
icy πw . For the existing policy πc , we model the behavior of the
recommendation system as a popularity-based solution, described
by the marginal probability of each product in the training data. In
our experiments, in order to keep the magnitude of the resulting
factor 1

πc (pj) within a reasonable magnitude we replace it with the
π rand (pj)
πc (pj) and cap it to maximum 100. Under this setup, BanditNet

with λ = 0 has a similar formulation with WSP2V. As in the origi-
nal paper [12], we train BanditNet using SGDwith momentum [27].

4.1.3 Leveraging The Exploration Sample St.
In order to better understand the leverage we obtain by transferring
information from the limited treatment policy sample, we define
four possible setups of incorporating the exploration data:

• No adaptation (no) - the algorithm does not take into account
the exploration data, it is trained only on the Sc sample.
• Blended adaptation (blend) - the algorithm is trained on the
union of the Sc and St samples.
• Test-only adaptation (test) - the algorithm is trained only on
the St samples.
• Average test adaptation (avg) - the algorithm constructs an
average treatment product by pooling all of the points from
the St sample into a single vector (it applies only to CausE).
• Product-level adaptation (prod) - the algorithm constructs a
separate treatment embedding for each product based on the
St sample (it applies only to CausE). For the final prediction
we can use either the control (denoted by CausE-prod-C) or
the treatment product representation (denoted by CausE-
prod-T).

In the following sub-section we detail our methodology for cre-
ating the evaluation datasets.

4.1.4 Datasets: MovieLens10M and Netflix.
The datasets used for evaluation are the MovieLens10M [9] (with
71567 unique users and 10677 unique products) and Netflix [1] (with
480189 unique users and 17770 unique products) recommendation
datasets. We also use the MovieLens100K dataset [9] to explore
how changes in the quantity of test set injected into the training
set affect performance. In order to be able to simulate causal ef-
fects under uniform exposure, all datasets are transformed using
the standard protocol introduced by Liang et al.[16]: First we bi-
narize the ratings yi j by setting all observed five-star ratings to
one (click) and everything else to zero (view only). We then create
two datasets: regular (REG) and skewed (SKEW), each one with
70/10/20 train/validation/test event splits.

To create the regular dataset, for each user we split the prod-
ucts in train/validation/test, similarly with the normal supervised
evaluation setup. Whilst in the creation of the skewed dataset, we
first generate the test dataset where we expose as uniformly as
possible each user to each product. This simulates a random test
recommendation policy π randt , which the authors argue is the best
policy to collect unbiased feedback for training a recommendation

6

Method MovieLens10M (SKEW) Netflix (SKEW)

MSE lift NLL lift AUC MSE lift NLL lift AUC
BPR-no − − 0.693(±0.001) − − 0.665(±0.001)
BPR-blend − − 0.711(±0.001) − − 0.671(±0.001)
SP2V-no +3.94%(±0.04) +4.50%(±0.04) 0.757(±0.001) +10.82%(±0.02) +10.19%(±0.01) 0.752(±0.002)
SP2V-blend +4.37%(±0.04) +5.01%(±0.05) 0.768(±0.001) +12.82%(±0.02) +11.54%(±0.02) 0.764(±0.003)
SP2V-test +2.45%(±0.02) +3.56%(±0.02) 0.741(±0.001) +05.67%(±0.02) +06.23%(±0.02) 0.739(±0.004)
WSP2V-no +5.66%(±0.03) +7.44%(±0.03) 0.786(±0.001) +13.52%(±0.01) +13.11%(±0.01) 0.779(±0.001)
WSP2V-blend +6.14%(±0.03) +8.05%(±0.03) 0.792(±0.001) +14.72%(±0.02) +14.23%(±0.02) 0.782(±0.002)
BN-blend − − 0.794(±0.001) − − 0.785(±0.001)
CausE-avg +12.67%(±0.09) +15.15%(±0.08) 0.804(±0.001) +15.62%(±0.02) +15.21%(±0.02) 0.799(±0.002)
CausE-prod-T +07.46%(±0.08) +10.44%(±0.09) 0.779(±0.001) +13.97%(±0.02) +13.52%(±0.02) 0.789(±0.003)
CausE-prod-C +15.48%(±0.09) +19.12%(±0.08) 0.814(±0.001) +17.82%(±0.02) +17.19%(±0.02) 0.821(±0.003)

Table 2: Results for MovieLens10M and Netflix on the Skewed (SKEW) test datasets. All three versions of the CausE algorithm
outperform both the standard and the IPS-weighted causal factorization methods, with CausE-avg and CausE-prod-C also
out-performing BanditNet. We can observe that our best approach CausE-prod-C outperforms the best competing approaches
WSP2V-blend by a large margin (21% MSE and 20% NLL lifts on the MovieLens10M dataset) and BN-blend (5% AUC lift on
MovieLens10M).

model. In order to achieve this we estimate the popularity of each
product and find the least popular product. For all other products
we compute how much more common it is than the least popular
product. This can then used to compute an acceptance probability
e.g. if a product is 100 times more popular than the least popular
product we accept these products in the test set with 1% probability.

In the original protocol, the skewed training and validation sets
partition the rest of the data to obtain the final 70/10/20 split. This
setup is sufficient to be able to compute the propensity weights
between the training policy and the test policy, e.g. πt (pj |ui)πc (pj |ui) that
will be used by WP2V. However, for CausE we need at training
time an explicit sample from πt and not only the propensity ratio.
Because of this, we increase the size of the uniform test to 30%, 20%
used for final testing and 10% to be injected in the training data.

To recap, the final skewed dataset for which we report the results
in Table 2 comprises three parts: 70% train (60% from πc and 10%
from πt), 10% validation (all from πc), 20% test (all from πt). To limit
the number of test products that are not available in training, due
to fully sampling them for skewed testing, we cap the maximum
probability for a product event to be moved in the test split to
0.9. Additionally, to help limit overfitting for WP2V, we cap the
maximum propensity weight to 10.

4.2 Results
Table 2 shows the results for all approaches evaluated on the bina-
rized MovieLens10M and Netflix datasets.

We use the standard cross-entropy loss as the loss function L. In
terms of implementation, all the baseline and CausE approaches
tested have been coded in Tensorflow and were optimised using
SGD with momentum and a linearly decaying learning rate.

For our choice of regularization functions, similarly with the
previous work of [26] and [23], we experimented with both L1
and L2 for penalizing the embedding matrices and the discrepancy
between the two product representations associated with the Sc

and St distributions. We report our best results which we reached
with the configuration Ωt,c (.) = L2 and Ωdist (.) = L1.

As one would expect, in the case of the REG dataset, where the
training and test distributions are constant, all methods demon-
strated similar performance. For the sake of brevity we do not
present the REG results in Table 2, but for the MovieLens10M
dataset all approaches achieved an MSE lift of +8%(±0.02).

On the SKEW datasets, where the test distribution is very differ-
ent from the training distribution, the standard matrix factorization
and supervised methods (SP2V and BPR) perform badly, with the
method having access to the St sample during training time show-
ing a marginal increase in performance (SP2V-blend). SP2V-test is
the only method to be trained exclusively upon data sampled from
the test distribution, but as expected, it cannot perform as well as
other methods due to sparsity issues arising from its comparatively
smaller size.

As expected, the competing causal approaches lead to better re-
sults: the IPS-weighted methods (WSP2V-no/blend) can take advan-
tage of the propensity information and are able to outperform the
standard supervised methods and manage to exhibit some domain
adaptation from Sc to St on both datasets. BanditNet (BN-blend)
outperforms the IPS-weighted approaches and demonstrates per-
formance on the test distribution that is the closest to our proposed
method.

Finally, our proposed CausEmethod significantly outperforms all
baselines across both datasets, demonstrating that it has a better ca-
pacity to leverage the small test distribution sample St . We observe
that, out of the three CausE variants, CausE-prod-C, the variant that
is using the regularized control matrix, clearly out-performs the
others. We believe that this is due to the fact that fitting the larger
training sample Sc allows to model correctly the personalized user
responses, while controlling the deviation from the target task via
the discrepancy regularizer.

In terms of the impact of the size of the St sample on performance,
figure 1 shows that CausE is able to leverage the extra data from

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of Test Sample in Training Set (% of Overall Dataset)

6

7

8

9

10

11

12

M
SE

 L
ift

 (%
)

WSP2V-blend
SP2V-blend
CausE-prod-C

(a) MSE Lift

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of Test Sample in Training Set (% of Overall Dataset)

5

6

7

8

9

10

11

NL
L

Lif
t (

%
)

WSP2V-blend
SP2V-blend
CausE-prod-C

(b) NLL Lift

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size of Test Sample in Training Set (% of Overall Dataset)

0.66

0.67

0.68

0.69

0.70

0.71

AU
C

Sc
or

e

WSP2V-blend
SP2V-blend
CausE-prod-C

(c) AUC

Figure 1: Change in MSE (1a), NLL (1b) and AUC (1c) on MovieLens100K as more test set is injected into the blend training
dataset.

the test distribution much better than the other methods, giving it
the best overall lift.

5 CONCLUSIONS
In this paper, we have introduced a novel method for factorizing
matrices of user implicit feedback that optimizes for causal recom-
mendation outcomes. We show that the objective of optimizing for
causal recommendations is equivalent with factorizing a matrix
of user responses collected under uniform exposure to item rec-
ommendations and propose CausE, a domain adaptation-inspired
method that learns from a large sample of biased exposure feedback
data Sc and a small sample of unbiased exposure feedback data St .
The resulting method is a simple extension to current matrix factor-
ization algorithms that adds a regularizer term on the discrepancy
between the item vectors used to fit the biased sample Sc and their
counter-part representations that fit the uniform exposure sample
St .

Since, unlike other competing causal models, we are able to
leverage the large sample of biased feedback data, we show that
we can clearly outperform both classical matrix factorization meth-
ods, in addition to recent causal approaches such as IPS-weighted
factorization methods and BanditNet.

We believe this to be promising for industrial applications for two
main reasons: Firstly, in real-world scenarios, most of the current
user feedback data is collected under a biased recommendation
system which fits perfectly in our approach. Secondly, most of
real-world recommender systems are based on matrix factorization,
which would require little modifications in order to be able to
experiment with our proposed approach.

As future work, we plan to extend this approach to user sequence
modeling and leverage both organic user activity sequences and
influenced user activity sequences in order to make sequential
product recommendation policies more incremental.

ACKNOWLEDGEMENTS
The authors would like to thank David Rohde, Mike Gartrell and
Jeremie Mary for their insightful feedback and comments during
the preparation of this manuscript.

REFERENCES
[1] James Bennett, Stan Lanning, et al. 2007. The netflix prize. In Proceedings of KDD

cup and workshop, Vol. 2007. New York, NY, USA, 35.
[2] Ron Berman. 2016. Beyond the last touch: Attribution in online advertising.

(2016).
[3] Léon Bottou, Jonas Peters, JoaquinQuinonero Candela, Denis Xavier Charles, Max

Chickering, Elon Portugaly, Dipankar Ray, Patrice Y Simard, and Ed Snelson. 2013.
Counterfactual reasoning and learning systems: the example of computational
advertising. Journal of Machine Learning Research 14, 1 (2013), 3207–3260.

[4] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. 2016.
Optimal transport for Domain adaptation. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2016).

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191–198.

[6] Sudeep Das. 2015. Recsys 2015:MakingMeaningful Restaurant Recommendations
at OpenTable. http://tinyurl.com/zs9at2t. (2015). Accessed: 2016-04-08.

[7] Miroslav Dudík, John Langford, and Lihong Li. 2011. Doubly robust policy
evaluation and learning. arXiv preprint arXiv:1103.4601 (2011).

[8] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in Your Inbox:
Product Recommendations at Scale. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’15).
ACM, New York, NY, USA, 1809–1818. https://doi.org/10.1145/2783258.2788627

[9] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016),
19.

[10] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[11] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos
Tikk. 2016. Parallel recurrent neural network architectures for feature-rich
session-based recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 241–248.

[12] Thorsten Joachims, Artem Grotov, Adith Swaminathan, and Maarten de Rijke.
2018. Deep Learning with Logged Bandit Feedback. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR) (2018).

[13] Fredrik D Johansson, Uri Shalit, and David Sontag. 2016. Learning representations
for counterfactual inference. arXiv preprint arXiv:1605.03661 (2016).

[14] Garrett A Johnson, Randall A Lewis, and Elmar I Nubbemeyer. 2015. Ghost
ads: Improving the economics of measuring ad effectiveness. Available at SSRN
(2015).

[15] Damien Lefortier, Adith Swaminathan, Xiaotao Gu, Thorsten Joachims, and
Maarten de Rijke. 2016. Large-scale Validation of Counterfactual Learning Meth-
ods: A Test-Bed. arXiv preprint arXiv:1612.00367 (2016).

[16] Dawen Liang, Laurent Charlin, and David M Blei. 2016. Causal Inference for
Recommendation. (2016).

[17] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-
eling user exposure in recommendation. In Proceedings of the 25th International
Conference on World Wide Web. 951–961.

[18] Matt Marshall. 2006. Venture Beat article. http://venturebeat.com/2006/12/
10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/. (2006). Accessed:
2016-04-08.

[19] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference

8

http://tinyurl.com/zs9at2t
https://doi.org/10.1145/2783258.2788627
http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/
http://venturebeat.com/2006/12/10/aggregate-knowledge-raises-5m-from-kleiner-on-a-roll/

on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, 1532–1543. http://www.aclweb.org/
anthology/D14-1162

[20] Steffen Rendle. 2010. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 995–1000.

[21] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[22] PR Rosenblum and DM Rubin. 1983. The central role of the propensity score in
observational studies for causal effect. Biometrika 70, 1 (1983), 41–55.

[23] Nir Rosenfeld, Yishay Mansour, and Elad Yom-Tov. 2016. Predicting Counterfac-
tuals from Large Historical Data and Small Randomized Trials. arXiv preprint
arXiv:1610.07667 (2016).

[24] Donald B Rubin. 1974. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of educational Psychology 66, 5 (1974), 688.

[25] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations As Treatments: Debiasing Learning
and Evaluation. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48 (ICML’16). 1670–1679.

[26] Uri Shalit, Fredrik Johansson, and David Sontag. 2016. Estimating individ-
ual treatment effect: generalization bounds and algorithms. arXiv preprint
arXiv:1606.03976 (2016).

[27] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
Conference on Machine Learning. 1139–1147.

[28] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. Vol. 1. MIT press Cambridge.

[29] Adith Swaminathan and Thorsten Joachims. 2015. Batch learning from logged
bandit feedback through counterfactual risk minimization. Journal of Machine
Learning Research 16 (2015), 1731–1755.

[30] Adith Swaminathan and Thorsten Joachims. 2015. Counterfactual Risk Mini-
mization: Learning from Logged Bandit Feedback.. In ICML. 814–823.

[31] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:
Product Embeddings Using Side-Information for Recommendation. In Proceedings
of the 10th ACM Conference on Recommender Systems. ACM, 225–232.

9

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

	Abstract
	1 Introduction
	1.1 Learning Recommendation Policies Optimized for ITE

	2 Related Work
	2.1 Propensity Scoring Methods
	2.2 Causal Inference using Domain Adaptation and Transfer Learning Methods
	2.3 Causal Recommendations

	3 Proposed Approach
	3.1 Multi-Task Objective For Exposure Policies That Vary Treatments For A Given Set Of Fixed Users

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusions
	References

