
Deep neural network marketplace recommenders in online
experiments

Simen Eide
Schibsted Media Group

Oslo, Norway
simen.eide@schibsted.com

Ning Zhou
Schibsted Media Group

Oslo, Norway
ning.zhou@schibsted.com

ABSTRACT
Recommendations are broadly used in marketplaces to match users
with items relevant to their interests and needs. To understand
user intent and tailor recommendations to their needs, we use
deep learning to explore various heterogeneous data available in
marketplaces. This paper focuses on the challenge of measuring
recommender performance and summarizes the online experiment
results with several promising types of deep neural network recom-
menders - hybrid item representation models combining features
from user engagement and content, sequence-based models, and
multi-armed bandit models that optimize user engagement by re-
ranking proposals from multiple submodels. The recommenders
are currently running in production at the leading Norwegian mar-
ketplace FINN.no and serves over one million visitors everyday.

CCS CONCEPTS
• Information systems→ Content ranking; Personalization;

KEYWORDS
recommendation system; deep learning; marketplace

ACM Reference Format:
Simen Eide and Ning Zhou. 2018. Deep neural network marketplace recom-
menders in online experiments. In Twelfth ACM Conference on Recommender
Systems (RecSys ’18), October 2–7, 2018, Vancouver, BC, Canada. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3240323.3240387

1 INTRODUCTION
Marketplaces are platforms where users buy and sell various types
of items. The items can range from low-value ones such as books
and clothes to high-value ones such as cars and real estate proper-
ties. Sellers can also post non-tangible items such as job openings
and services. Many marketplace sellers are non-professional indi-
viduals selling used items, therefore marketplaces can be viewed
as a special type of e-commerce that involves unique items across
multiple categories from a very large and fragmented seller group.

Recommendation systems are broadly used in marketplaces to
match buyers with items relevant to their interests and needs. It is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5901-6/18/10. . . $15.00
https://doi.org/10.1145/3240323.3240387

(a) Item feed (b) Similar item

Figure 1: Sample marketplace recommendations.

more challenging than the standard e-commerce product recom-
mendation due to the following reasons: (1) Marketplace items are
often secondhand and therefore in a sense unique. This results in
a short lifespan for a specific item. Thus cold-start issues are very
prominent. (2) The items are often poorly described by unstructured
data, making conventional cold-start algorithms harder to apply.
(3) The interaction between buyers and sellers is often tricky to
track, as it can happen outside the platform. Transactions cannot
always be confirmed, so the recommender system must be able to
change focus from sold items quickly to remain relevant.

There is already substantial research on recommender systems
validated on offline metrics. In this paper, we describe three new
marketplace recommenders and benchmark them through online
experiments against industry standard models such as matrix fac-
torization to test their performance in a production environment
where short lifespan and low quality content are common features
of the items recommended. The three models we describe here are:
(1) A hybrid item-item recommender that utilizes behavior data,
image and text to build a robust item representation against cold-
start issues. (2) A sequence based user-item recommender that is
time-aware and can utilize the hybrid item representation above to
quickly build a user’s profile. (3) A higher-level multi-armed bandit
algorithm that prioritizes between multiple submodel recommen-
dations into a personalized item feed. It allows the feed to cover
both long and short term user interests.

The production environment for testing is the leading Norwe-
gian marketplace FINN.no. It has over one million active items in
10+ categories and 200+ subcategories for sell, and serves over one

ar
X

iv
:1

80
9.

02
13

0v
1

 [
cs

.I
R

]
 6

 S
ep

 2
01

8

https://doi.org/10.1145/3240323.3240387
https://doi.org/10.1145/3240323.3240387

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada S. Eide and N. Zhou

million visitors per day. There are two recommendation features at
FINN.no: an item feed on the frontpage and a similar item recom-
mendation widget on the item detail page. One sample of each is
shown in Figure 1. The hybrid model is used for the similar item
recommendation, while the rest two are used for the item feed.

2 RELATEDWORKS
Search and discovery are the two main ways for users to find rele-
vant items on a content platform. Using recommendations to im-
prove the discovery experience has been a hot topic in recent years.
Both collaborative filtering [1] [18] and content based methods [3]
[9] are commonly used in item similarity ranking for e-commerce.
Recent works like LightFM [14] combine the two to address the
cold-start problem in recommendations. The state-of-the-art rec-
ommenders such as [21] and [15] often use learning-to-rank to
model from a complex set of features including text, image, user
profile, behavior, etc. This strategy is effective with marketplaces
recommenders as well [8]. Moreover, models of cascade [16] or se-
quential attention [22] that consider a longer user behavior history
show particularly good results. Our sequential recommender draws
inspiration from [2] and shows positive performance improvements
in online experiments. Multi-armed bandits for prioritizing among
multiple sources is applied in different use cases. For example, Pin-
terest [7] uses a blending algorithm to generate a mixed feed of
their recommendation content and social content. We compared
several multi-armed bandit models to leverage the behavior-content
complementation in the marketplace scenario.

Recommenders are usually evaluated through click and conver-
sion rates from online controlled experiments [12]. There are offline
metrics such as predicted ratings and ranking correlation [10] that
can be used with lower preparation cost, and serve as a proxy to
the online tests.

3 EXPERIMENTATION PLATFORM
A robust experimentation platform for production requires both
a fast iteration cycle from idea to production and a risk-averse
test procedure to secure the product quality. From the business
perspective, the goal of a recommendation system is to increase the
amount of conversions, so we choose to rely on A/B tests to select
good candidate models based on conversion metrics in production.

Our experimentation system consists of offline and online ex-
periments. We use the offline ones mainly to quickly rule out the
candidate models that are clearly underperforming and therefore
not feasible for online testing. This allows us not only to utilize
online experimentation resources more efficiently, but also to lower
the risk of poor user experience. We use the offline metric Hit
Rate@n (HR@n) [6] as a proxy for online conversion metrics. His-
torical data are splitted into a training set Dt<tth and a test set
Dt ≥tth by a specific date tth . A model is trained on Du

t<tth and
recommends top n items for each user u. HR@n is defined as the
average per user hits of the top n items found in Du

t ≥tth .
The candidates that perform better or in the same range as the

baseline model in offline tests are deployed online to A/B test in pro-
duction with gradually higher traffic. We generally follow [13] for
the experiment procedure design. Online experiments are evaluated
with click through rate and other conversion metrics such as seller

contacting rate. We monitor all experiments for significance using
a binomial test. During an A/B test, we also consider the stability
of the result over time. In addition to aggregating all the samples to
calculate the final test result, we monitor the model performance in
smaller time bins during the whole test. If model B is not better than
model A, the probability of model B performing better than model
A in almost all time bins will be very small. When model B shows
improvement but not significant, we gradually increase its traffic
up to 50% in a longer A/B test to see if it will reach significance.

4 HYBRID ITEM REPRESENTATION MODEL
Similar to Lightfm[14], we combine content-based features with
user behaviors to solve the cold start challenge of collaborative
filtering. We design a hybrid model mixing item representations
from user behavior, text, image and location to find similar items.
As shown in Figure 2a, we first train the item representations inde-
pendently and then ensemble them using a separated model.

The individual features are generated in the following way: (i)
The behavior-based item representation is frommatrix factorization
implemented with the industry standard Alternating Least Squares
(ALS) [19]. The training data consists of 20-day look-back of item
clicks and conversion signals such as contacting seller. The conver-
sion signals are stronger and therefore acquired more weights. All
hyper-parameters are tuned through offline and online experiments.
(ii) The textual features are from the unstructured free text in the
item title and description. We first train an item category classifier
to map the text to the seller-assigned category, and then extract
the top layer of this classifier as the textual item representation.
The classifier is a variant of the Convolutional Neural Network
(CNN) architecture of [4] using a word2vec [17] model pre-trained
on marketplace corpus. (iii) The image features are generated by
training a model to predict the item title from its image. The title is
projected into word embeddings by the word2vec model mentioned
above. We use the title instead of the category to classify the images.
This gives us a richer feature space. For example, it enables the
item representation to distinguish between "wedding dress" and
"summer dress", despite both belong to the same category "dresses".
The model uses the penultimate layer of a pre-trained Inception-v3
model [20] and stacks seven linear feed-forward layers on top to
predict the title in the word embedding space. It is then trained
by minimizing the mean squared error between the predicted title
embeddings and the real title embeddings. (iv) We do not use the
simple geographical distance to represent location, because it can
be misleading. There are hidden factors such as population density
and ease of transport that affect the impact of location. We train the
location representation based on the historical user behavior, since
the items a user showed interest in implicitly tell us a lot about the
hidden factors. Similar to (i), we factorize a user-postcode matrix
and use the postcode embedding as the location representation.

The different item representations are merged into a hybrid
one using a Siamese network. All the item representations are
concatenated and passed through an attention layer. The attention
layer allows the model to focus more on textual and image features
if the collaborative filtering features are missing, and vice versa.
Then, a towering feed-forward network compresses the features
into a 100-dimensional item representation due to the capacity limit

Deep neural network marketplace recommenders in online experiments RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

(a) Hybrid item representation model.

(b) Deep multi-armed bandit model.

Figure 2: Overview of the recommender models.

of our serving infrastructure. Two items are compared using the
cosine similarity of this representation. The training data consists
of co-converted item pairs, i.e. two items that get conversions from
the same user on the same day, and negative sampling item pairs
that are unlikely to co-convert. The underlying assumption is that
co-converted items are likely to be similar.

5 SEQUENCE-BASED MODELS
Sequence-based models look into a user’s click history and predict
what items they will click next. In contrast to matrix factorization,
such models are time-aware and can take recent clicks into account
more in the predictions. They take the n most recent items clicked
by a user and project them into the item space defined by the hybrid
item representation described in Section 4. The item sequence is
fed through a recurrent neural network. At every step t , the models
use the click history sequence {xt−n , ...,xt } to predict a sequence
{x̂t+1, ..., x̂t+k } of the future k steps. The accuracy is calculated by
the cosine similarity of the predicted sequence {x̂t+1, ..., x̂t+k } at t
and the actual clicked sequence {xt+1, ...,xt+k } at t + k .

In [2], two-layer GRU was shown to be the optimal architecture.
We also tested different variants using LSTM or GRU, adding addi-
tional stacked recurrent layers, or adding attention to the outputs.
However, we did not observe any additional significant improve-
ments over using one straight forward GRU layer.

6 MULTI-ARMED BANDIT MODELS
The multi-armed bandit models can generate a live item feed for a
specific impression. The bandits are not recommenders by them-
selves but re-rankers that receive proposals from independent sub-
models as input and re-rank all the proposed items from most to
least relevant by estimating their click probabilities with a value
function. A submodel can be a recommender of any type, e.g.
sequence-based or matrix factorization, that returns its top pro-
posals along with their corresponding scores. Typically, a bandit
is connected to 6-10 submodels. In order to avoid local minimal
during training, we adopt a simple epsilon-greedy policy and add
5% random items in every recommended list to the bandit.

This approach differs from the ones such as [5] that use simple
models as the first filter into amore complexmodel. Instead, the ban-
dit enables us to directly leverage the results from well-performing
models tuned for different scenarios. It utilizes the scores from each
submodel and focuses on evaluating submodel reliability as well as

contextual information such as visiting time, device, landing page
type (main frontpage or categorical frontpage), etc.

The row-separated feed described in Section 6.1 is just a naive
baseline for experimentation purpose. We propose two different
value functions to estimate click probabilities: regression bandit in
Section 6.2 and deep classification bandit in Section 6.3. The former
is selected mainly due to its good interpretability, whereas the latter
allows us to increase value function complexity and get a better
online performance.

6.1 Row-separated feed
This simple baseline has a fixed number of rows and serves one
submodel per row. The row order is also fixed based on the individ-
ual performance of each submodel. We choose this setup because it
is commonly used by many e-commerce recommendation plug-ins.

6.2 Regression bandit
The regression bandit, as its name, using regression to approximates
the click probability based on submodel score, submodel type and
contextual information. Submodel scores are binned into 10 buckets.
The remaining features are categorical and one-hot encoded. The
recommendation impressions are grouped across these features and
the target value is the average number of clicks per group. A ridge
regression model is fit on the encoded features, as the weights of
the unregularized versions often explode.

6.3 Deep classification bandit
The deep classification bandit estimates the click probability as a
classification problem. This allows us to usemore complex functions
taking in a larger set of features than the regression bandit.

The model input is a mix of scalars (submodel score, item po-
sition, hour of day, etc.) and categorical variables (submodel type,
location, device, weekday, etc.). The scalars are normalized through
batch normalization, and the categorical variables are one-hot en-
coded. A towering feed-forward network is applied to the features
and finally outputs a click probability. The dataset contains an
unequal ratio of click v.s. view events (i.e. only a small ratio of rec-
ommended items were clicked) that can cause severe instabilities
in training. This is solved by introducing class weights in the loss
function and applying L2 regularization on the model weights.

RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada S. Eide and N. Zhou

7 RESULTS AND DISCUSSIONS
We conducted online experiments on both the similar item widget
and the item feed shown in Figure 1. Similar item widget is shown
at the bottom or the sidebar of an item detail page, assuming that
users view the item details because they are interested in this item
and therefore interested in similar items. The item feed is usually
displayed at the main and categorical frontpages of the marketplace,
aiming to provide new and relevant items for users. We choose to
test the hybrid item representation in the similar item widget while
the multi-armed bandits and sequence-based model in the item
feed, because the item-item type of models are not capable to create
the serendipity experience desired in the item feed scenario [11].

The experiment results are summarized in Table 1. The absolute
click thorough rate (CTR) varies a lot due to the seasonal effect,
new feature launches, etc. Hence we report the more stable CTR
improvement ∆CTR = (CTRB − CTRA)/CTRA when comparing
experiments from different periods. By default, the A/B tests last
for one week to avoid seasonal impact of weekends and accumulate
around one million impressions of the similar item widget and 5-10
million impressions of the item feed. For simplicity, we only show
the results of the best of each type after hyper-parameter tuning.

In the similar item scenario, the pure content-based item repre-
sentation model is 7.7% worse than the matrix factorization base-
line, but the hybrid model outperformed the baseline by 23.8%.
This indicates that the user behavior signals give more relevant
recommendations than content-based features but still suffer a lot
from cold start. Throughout the experiments, we observed many
examples where the hybrid model used content-based features on
items with very few clicks, whereas it gave similar results to the
matrix factorization approach for items with abundant clicks.

Sequence-based models generally outperformed matrix factor-
ization in the online experiments. When n = 1, they collapse into
an item-item recommender making predictions only using the last
seen item. We require n > 1 in order for the models to generalize
and find out that a n = 15 look-back with a k = 5 prediction horizon
gives the best performance of 21.2% CTR improvement.

The multi-armed bandit models were tested in two groups with
different baselines, because we introduced a major user interface
(UI) redesign in between. When we tested the regression bandit
against the row-separated feed baseline, we observed 50.1% CTR
improvement. We attribute the improvement mainly to that the
regression bandit can mix submodels across the rows and not con-
strained by the fixed order. An interesting observation is that the
scores from matrix factorization submodels do not have a monoto-
nous increasing relationship with CTR. In our experiments, CTR
keeps increasing before scores reach around 0.8, but then falls
quickly after that. Investigations show that these ultra high score
items have some viral tendencies and do not reflect personal taste,
therefore do not transform into clicks. We introduce a break point
in the regression to allow the click probability estimation to fall
after a threshold, and this gained another 5% CTR improvement.
The bandit also allowed us to add more submodels to the feed and
opened up the UI flexibility to increase the number of items recom-
mended and submodels connected. After redesigning the UI, CTR
increased even further. The two main drawbacks of the (linear)

Table 1: Experiment Results.

Model Type Model A Model B ∆ CTR

item-item matrix factorization content-based -7.7%
item-item matrix factorization hybrid 23.8%
user-item matrix factorization sequence-based 21.2%

multi-armed row-separated feed regression bandit 50.1%
multi-armed regression bandit deep bandit 10.0%

regression bandit are that it cannot estimate the observed non-
linear relationship between submodel scores and CTR, and it is not
personalized. The regression function cannot handle the variable
dimension explosion by introducing per user aggregation.

We observed around 10% CTR improvement from testing the
deep classification bandit against the regression bandit. The deep
model is personalized, for it is capable to usemore features including
user embeddings.

During the experiments, we also tried several promising ap-
proaches but did not succeed: (1) We tried factorization machines
to solve the cold start problem, but the engineering cost was quite
high and did not show significant CTR improvement, so we ended
up focusing on hybrid models instead. (2) We tried to train models
with only strong signals such as repeating visits and messaging,
but those models turned out to perform worse due to the low data
volume in a short look-back time. (3) Though both previous works
and user studies show that diversity matters a lot for the item feed,
when we tried to optimize explicitly with a diversity metric based
on category count, we did not get significant improvements. (4)
Both the regression and the deep classification value functions had
large instabilities during training, and a lot of care had to be done
to stabilize it for production usage.

8 CONCLUSIONS
In this paper, we propose three new marketplace recommenders
- hybrid item representation, sequence-based model, multi-armed
bandit, and analyze their performance in online experiments from
a production setting. The results demonstrate the effectiveness of
combining collaborative filtering and content features for better
item representation in cold start and in sequence-based models. We
also present a successful use case of bandits in recommendations as
a high-level re-ranker on top of other recommenders. These bandits
are useful to utilize contextual information and to combine multiple
domain-specific recommenders.

For future works, there are still a lot to explore in the above-
mentioned models. In general, we have not explored the content
features sufficiently. Adding more content features into the item
representations should reduce cold-start problems on user or item
more effectively. The exploration strategies of the bandit models
can be further improved: New submodels still take a long time
to catch up. Moreover, clicks and transactions in marketplaces
do not happen instantaneously. The transaction of an item often
takes place hours or days after an user first views the item, so the
"reward" of recommendations can arrive with delay. Defining the
models under a reinforcement learning framework may give them
an incentive to explore more broadly and provide a better user
experience.

Deep neural network marketplace recommenders in online experiments RecSys ’18, October 2–7, 2018, Vancouver, BC, Canada

ACKNOWLEDGMENTS
This project is a team effort from the recommendation team at
FINN.no. The authors would like to thank Audun M. Øygard, Thork-
ild Stray, Bjørn Rustad and Nicola Barbieri for their contribution
to this paper. We also thank the anonymous reviewers for their
helpful comments.

REFERENCES
[1] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding

for collaborative filtering. In Machine Learning for Signal Processing (MLSP), 2016
IEEE 26th International Workshop on. IEEE, 1–6.

[2] Cedric De Boom, Rohan Agrawal, Samantha Hansen, Esh Kumar, Romain Yon,
Ching-Wei Chen, Thomas Demeester, and Bart Dhoedt. 2017. Large-Scale User
Modeling with Recurrent Neural Networks for Music Discovery on Multiple
Time Scales. CoRR abs/1708.06520 (2017).

[3] Konstantinos Christidis and Gregoris Mentzas. 2012. A Topic-Based Recom-
mender System for Electronic Marketplace Platforms. 2012 IEEE 24th International
Conference on Tools with Artificial Intelligence 1 (2012), 381–388.

[4] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language processing (almost) from scratch.
Journal of Machine Learning Research 12, Aug (2011), 2493–2537.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys ’16). 191–198.

[6] Mukund Deshpande and George Karypis. 2004. Item-based top-N Recommenda-
tion Algorithms. ACM Trans. Inf. Syst. 22, 1 (Jan. 2004), 143–177.

[7] Stephanie deWet. 2017. Personalized content blending in the Pinterest homefeed.
2017 Net ix Workshop on Personalization, Recommendation and Search.

[8] Simen Eide, Audun M. Øygard, and Ning Zhou. 2018. Five lessons from building
a deep neural network recommender for marketplaces. ACM KDD’18 Deep
Learning Day.

[9] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati,
Jaikit Savla, Varun Bhagwan, and Doug Sharp. 2015. E-commerce in your inbox:
Product recommendations at scale. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1809–1818.

[10] Asela Gunawardana and Guy Shani. 2009. A Survey of Accuracy Evaluation
Metrics of Recommendation Tasks. J. Mach. Learn. Res. 10 (Dec. 2009), 2935–2962.

[11] Marius Kaminskas and Derek Bridge. 2016. Diversity, Serendipity, Novelty, and
Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in
Recommender Systems. ACM Trans. Interact. Intell. Syst. 7, 1, Article 2 (Dec. 2016),
2:1–2:42 pages.

[12] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann.
2013. Online Controlled Experiments at Large Scale. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’13). 1168–1176.

[13] Ron Kohavi, Alex Deng, Roger Longbotham, and Ya Xu. 2014. Seven Rules of
Thumb for Web Site Experimenters. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’14).
ACM, New York, NY, USA, 1857–1866. https://doi.org/10.1145/2623330.2623341

[14] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recom-
mendations. In Proceedings of the 2nd Workshop on New Trends on Content-Based
Recommender Systems co-located with 9th ACM Conference on Recommender Sys-
tems (RecSys 2015), Vienna, Austria, September 16-20, 2015., Vol. 1448. 14–21.

[15] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related Pins at Pinterest:
The Evolution of a Real-World Recommender System. In Proceedings of the 26th
International Conference on World Wide Web Companion. 583–592.

[16] Shichen Liu, Fei Xiao, Wenwu Ou, and Luo Si. 2017. Cascade Ranking for Opera-
tional E-commerce Search. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1557–1565.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[18] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[19] Apache Spark. 2018. Apache Spark MLlib - Collaborative Filtering. https://spark.
apache.org/docs/2.1.0/mllib-collaborative-filtering.html.

[20] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2818–2826.

[21] Flavian Vasile, Elena Smirnova, and Alexis Conneau. 2016. Meta-Prod2Vec:
Product Embeddings Using Side-Information for Recommendation. In Proceedings

of the 10th ACM Conference on Recommender Systems (RecSys ’16). 225–232.
[22] C. Zhou, J. Bai, J. Song, X. Liu, Z. Zhao, X. Chen, and J. Gao. 2018. ATRank: An

Attention-Based User Behavior Modeling Framework for Recommendation. In
Proceedings of the thirty-second AAAI Conference on Artificial Intelligence.

https://doi.org/10.1145/2623330.2623341
https://spark.apache.org/docs/2.1.0/mllib-collaborative-filtering.html
https://spark.apache.org/docs/2.1.0/mllib-collaborative-filtering.html

	Abstract
	1 Introduction
	2 Related works
	3 Experimentation platform
	4 Hybrid item representation model
	5 Sequence-based models
	6 Multi-armed bandit models
	6.1 Row-separated feed
	6.2 Regression bandit
	6.3 Deep classification bandit

	7 Results and discussions
	8 Conclusions
	Acknowledgments
	References

