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ABSTRACT
Style synthesis attracts great interests recently, while few works fo-
cus on its dual problem “style separation”. In this paper, we propose
the Style Separation and SynthesisGenerativeAdversarialNetwork
(S3-GAN) to simultaneously implement style separation and style
synthesis on object photographs of specific categories. Based on
the assumption that the object photographs lie on a manifold, and
the contents and styles are independent, we employ S3-GAN to
build mappings between the manifold and a latent vector space for
separating and synthesizing the contents and styles. The S3-GAN
consists of an encoder network, a generator network, and an ad-
versarial network. The encoder network performs style separation
by mapping an object photograph to a latent vector. Two halves of
the latent vector represent the content and style, respectively. The
generator network performs style synthesis by taking a concate-
nated vector as input. The concatenated vector contains the style
half vector of the style target image and the content half vector
of the content target image. Once obtaining the images from the
generator network, an adversarial network is imposed to generate
more photo-realistic images. Experiments on CelebA and UT Zap-
pos 50K datasets demonstrate that the S3-GAN has the capacity of
style separation and synthesis simultaneously, and could capture
various styles in a single model.
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1 INTRODUCTION
Style synthesis [9], also known as style transfer and texture synthe-
sis, attracts enormously attentions recently. The goal of style synthe-
sis is to generate a new image which migrates the style (e.g. colors,
textures) from the style target image, and maintain the content
(e.g. edges, shapes) of the content target image. Approaches [9, 18]
based on Convolutional Neural Networks (CNNs) [21, 36] achieve
remarkable success on style synthesis and generate astonishing
results. Most of those works focus on migrating styles of artistic
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Figure 1: The proposed S3-GAN employs a pair of encoder and gen-
erator to build mappings between the object photograph manifold
and a latent vector space. The encoder performs style separation by
encoding the object photograph to the latent vector, half of which
represents style, the other half represents content. The generator
produces the result of style synthesis from the concatenated vector.

works to photographs. However, all the objects in photographs
have their individual styles, which could also be migrated to other
photographs. Moreover, the success of style synthesis shows that
the content and style of an image are independent.

Thus how to learn the individual representations for content
and style from a given image is the dual problem of style synthesis.
We named this problem as “style separation”. Nowadays, existing
works focus on style synthesis and pay a little attention to style
separation. For example, methods [18, 38] could represent styles
with the learned feedforward networks, but they cannot represent
image contents at the same time.

In this work, we aim to implement the style separation and style
synthesis simultaneously for object photographs. Therefore, we
propose a novel network named Style Separation and Synthesis
Generative Adversarial Network (S3-GAN). The S3-GAN is trained
on specific categories of objects (e.g. faces, shoes, etc.) due to GANs
could generate realistic images in specific domains. Inspired by [9],
we define the structures of objects as “content” (e.g. the identities
and poses of faces, the shapes of shoes), and the colors and textures
of objects as “style” (e.g. the skin color and hair color of faces, the
colors and patterns of shoes). Based on the assumption that the
object photographs lie on a high dimensional manifold, S3-GAN
employs a pair of encoder and generator to build mappings between
the manifold and a latent vector space, as illustrated in Figure 1. The
encoder is used for style separation. At the encoder stage, we map
a given photograph to the latent space. As the content and style
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are independent, we enforce half of the latent vector represents
the style, and the other half represents the content. The genera-
tor network performs style synthesis by taking the concatenated
vector as input. The concatenated vector contains the style half
vector of the style target image and the content half vector of the
content target image. The object photograph generated from the
concatenated vector has the similar style to the style target image
while preserving the content of the content target image.

The proposed S3-GAN shows major differences with existing
style synthesis approaches [8, 9, 18, 23, 38]. Some of them are
an iterative optimization method [8, 9, 23], which can generate
high-quality images with high computationally cost. The other ap-
proaches employ feedforward networks to generate images closing
to the given style target images [18, 38]. These methods could pro-
duce results in real-time, but are only able to handle a specific style
one at a time. By comparison, the proposed S3-GAN could handle
various styles of objects by a single model, as well as high-efficiently
synthesize different styles by concatenating half vectors of different
styles and processing forward propagation.

The proposed S3-GAN is derived from GANs, but it has some dif-
ferences with GANs. The GANs-based methods achieve impressive
success in image generation and editing [17, 19, 48]. However, most
of them build mappings between two application-specific domains
for image-to-image translation, which could be regarded as the
conversion between two styles. Differently, the proposed S3-GAN
could build transfers among various styles. The half vectors of styles
could be treated as the conditions to generate images of associated
styles. Thus the translations between any two different styles can
be simply accomplished by replacing the style half vectors.

We perform the proposed S3-GAN on photographs of two spe-
cific categories of objects, faces from CelebA dataset [27] and shoes
from UT Zappos50K dataset [42]. Experimental results show the
effectiveness of style separation and synthesis for our proposed
method. The main contributions of our work could be summarized
as follows:

• We propose a novel S3-GAN framework for style separation
and synthesis. Extensive experiments on photographs of
faces and shoes demonstrate the effectiveness of the S3-GAN.

• The S3-GAN performs style separation with an encoder,
which builds the mapping between the object photograph
manifold and a latent vector space. For a given object pho-
tograph, half of its latent vector is the style representation,
and the other half is the content representation.

• The S3-GAN performs style synthesis with a generator. By
concatenating the style half vector of the style target image
and the content half vector of the content target image, the
generator maps the concatenated vector back to the object
photograph manifold to produce the style synthesis result.

2 RELATEDWORK
2.1 Style Synthesis
Style synthesis can be regarded as a generalization of texture synthe-
sis. The previous texture synthesis methods mainly apply low-level
image features to grow textures and preserve image structures
[6, 7, 14].

Recently, approaches based on CNNs generate astonishing re-
sults. These approaches employ the perceptual losses measured
from CNN features to estimate the style and content similarity of
generated images and target images. [8, 9] propose the optimization-
based methods to minimize the perceptual losses through an itera-
tive process directly. [23] extends these works through matching
neural patcheswithMarkov RandomFields (MRFs). The optimization-
based methods are computationally expensive since the pixel values
of synthesis results are gradually optimized from hundreds of back-
ward propagations.

To speed up the process of style synthesis, approaches based on
feedforward networks are proposed [18, 24, 38]. These approaches
learn feedforward networks to minimize perceptual losses of a
specific style target image and any content target images. Therefore,
the stylized results of the given photographs can be gained through
the forward propagation process, saving the computational time
of iterations. However, one model of these methods is only able to
represent a single style. For a new style, the feedforward networks
have to be retrained.

Until very recently, some approaches attempt to capture multiple
styles in a single feedforward network, which represents styles with
multiple filter banks [2], conditional instance normalization [5] or
binary selection units [25]. There are also some approaches try
to represent arbitrary styles in a single model through learning
general mappings [10], adaptive instance normalization [15] or
feature transforms [26].

In this paper, we propose the S3-GAN to implement both style
separation and style synthesis. Contents and styles of object pho-
tographs are represented as latent vectors. The S3-GAN could not
only perform style synthesis through a forward propagation pro-
cess, but also capture various styles in a single model.

2.2 Generative Adversarial Networks
GAN is one of the most successful generative models to generate
photorealistic images. The standard GANs [12, 32] learn a genera-
tor and a discriminator from the min-max two-player game. The
generator produces plausible images from random noises, while
the discriminator distinguishes the generated images from the real
samples. The training processes of original GANs are unstable, thus
many approaches are proposed for improvement, such as WGAN
[1], WGAN-GP [13], EBGAN [47], LS-GAN [31].

Moreover, approaches based on Conditional GANs (CGANs) [29]
have been successfully applied to many tasks. These approaches
conditionGANs on discrete labels [29], text [33] and images. Among
them, CGANs conditioned on images accomplish image-to-image
translation [17] with an additional encoder, which is introduced
to obtain conditions from the input images. These frameworks are
widely used to tackle many challenge tasks, such as image inpaint-
ing [30, 40], super-resolution [22], age progression and regression
[46], style transfer [49], scene synthetic [39], cross-modal retrieval
[3, 41, 43] and face attribute manipulation [19, 34, 48]. Moreover,
approaches of domain-adaptation [37, 45] employ GANs to adapt
features and boost models of traditional tasks, such as semantic
segmentation. Some other approaches [28, 35] utilize GANs to gen-
erate human images of arbitrary poses and benefit the related tasks
such as person re-identification. Most of these approaches perform
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Figure 2: The architecture of the proposed S3-GAN consists of the encoder, generator, discriminator and perceptual network. The encoder
E acquires the representation of style separation by mapping the target images A and B to latent vector [cA, sA] and [cB, sB ]. The generator
G produces the result C of style synthesis from the concatenated vector [cA, sB ]. The discriminator D evaluates the adversarial loss to help
to generate plausible images. The perceptual network P is applied to gain perceptual losses, including content perceptual loss and style
perceptual loss. Reconstruction loss and total variation loss are added to the objective function for supplementation (total variation loss is
omitted in the figure for simplification).

image-to-image translation by building mappings between two
application-specific domains.

In this paper, the proposed S3-GAN are trained to represent the
domain consisting of object photographs. These domains can be di-
vided into many sub-domains by different styles. The S3-GAN could
perform mappings between any pair of sub-domains to accomplish
arbitrary style transfer.

3 PROPOSED APPROACHES
In this section, we first formulate the latent vector space which
is introduced to disentangle the content and style representations.
Then we demonstrate the pipeline of S3-GAN and describe each
component in detail. Finally, we present all the individual loss
functions utilized to optimize the S3-GAN.

3.1 Formulation
We assume the object photographs of a specific category lie on a
high dimensional manifold M in the photograph domain. Objects
with same styles or same contents will be clustered to the sub-
domains of associated styles or contents.

Since it is difficult to directly model photographs in the manifold
M, we build mappings between manifold M and a latent vector
space L ⊂ R2d×k×k , where d,k ∈ Z+ represent the dimensions of
vectors in L. Considering contents and styles are independent, we
attempt to disentangle the representations of contents and styles
to different dimensionality of the latent vectors in L. Suppose for
a given object photograph I ∈ M, its associated latent vector in
L is [cI , sI ], where cI ∈ Rd×k×k and sI ∈ Rd×k×k are the sub-
vectors representing its content and style respectively. We set the
sub-vectors of content and style with equal dimensionality for

simplification. Therefore, [·, sI ] (or [cI , ·]) could represent the sub-
domain containing all the objects showing different contents (or
styles) but the same style (or content) with I . For any style sub-
vector ŝ , [cI , ŝ] is the intersection of the sub-domain of style ŝ and
the sub-domain [cI , ·]. Thus, [cI , ŝ] could represent the result of
modifying style to ŝ while preserving the content of I .

3.2 Architecture
The proposed S3-GAN employs the framework of GANs to learn
the mapping from the manifold M to the latent vector space L, as
well as generate realistic images from L. The pipeline of the S3-
GAN consists of four components, including the encoder, generator,
discriminator and perceptual network, as shown in Figure 2. The
encoder and generator are applied both in the training and test
stages to perform style separation and style synthesis, while the
discriminator and perceptual network are employed only in the
training stage to optimize the objective functions.

We learn the encoder E : M → L to build the mapping from the
manifold M to the latent vector space L. For any content target
imageA and style target image B, their corresponding latent vectors
in L are denoted as:

[cA, sA] = E(A),A ∈ M, [cA, sA] ∈ L, (1)

[cB , sB ] = E(B),B ∈ M, [cB , sB ] ∈ L. (2)
Thus, style separation could be implemented by E. cA (or cB ) is the
representation of content and sA (or sB ) is the representation of
style for the object photograph A (or B).

On the contrary, we also learn the generator G : L → M to
build the mapping from latent vector space L back to manifold M:

A′ = G([cA, sA]),A,A′ ∈ M, [cA, sA] ∈ L, (3)

B′ = G([cB , sB ]),B,B′ ∈ M, [cB , sB ] ∈ L, (4)



where A′ (or B′) is the reconstruction having the same content and
style of A (or B). The latent sub-vectors of content and style target
images could be utilized as the conditions to generate results of style
synthesis. Therefore, the generator G could produce a synthetic
photograph C from concatenating the associated sub-vectors cA
from the content target A and sB from the style target B:

C = G([cA, sB ]),C ∈ M, [cA, sB ] ∈ L. (5)

Inspired by the framework of GANs, we also introduce the dis-
criminator D to classify whether an image is real or fake (i.e.,
produced by the generator). The synthetic result C and real pho-
tographs randomly sampled from the training set are fed into the
discriminator D to acquire the adversarial loss. Indistinguishable
object photographs will be generated during the optimal process of
the min-max game.

Moreover, we bring the perceptual network P to evaluate and
improve style synthesis results. P is employed to extract features
from the synthetic resultC , the content targetA and the style target
B to evaluate the perceptual losses, including content perceptual
loss and style perceptual loss. The perceptual losses enforce C to
acquire the style of B while preserving the content of A.

3.3 Loss Functions
Figure 2 also presents the losses for optimizing the proposed S3-
GAN. The objective function is the weighted sum of five losses,
including adversarial loss, content perceptual loss, style percep-
tual loss, reconstruction loss and total variation loss. They will be
described in detail in the following.

3.3.1 Adversarial Loss. We apply the discriminator D to evaluate
the adversarial loss LA. The adversarial loss of original GAN [12]
is based on the Kullback-Leibler (KL) divergence. However, when
the discriminator is quickly trained towards its optimality, the
KL divergence will lead to a constant and cause the vanishing
gradient problem, which will restrain the updating of the generator.
To tackle this problem, we exploit the adversarial loss with the
recently proposed WGAN [1], which is based on the Earth Mover
(EM) distance.

We denote the distribution of the training data (i.e., the object
photographs of specific categories) in the manifold M as pM . Ran-
dom sampling process from pM is denoted as I ∼ pM . Thus, the
adversarial loss is:

LA(E,G,D) = EI∼pM [D(I )]
−EA,B∼pM [D(G([cA, sB ]))] ,

(6)

where G([cA, sB ]) is the generated result of style synthesis, formu-
lated in Eq. (1), Eq. (2) and Eq.(5). A min-max objective function is
employed to optimize the adversarial loss:

arдmin
E,G

max
D

LA(E,G,D), (7)

where E,G tries to minimize LA so as to generate imageG([cA, sB ])
that looks indistinguishable to images from training set, while D
tries tomaximizeLA so as to classify the generated imageG([cA, sB ])
and real sample I .

The adversarial loss ensures that the generated images reside
in the manifoldM, and forces them to be indistinguishable from
real images. Thus, we exploit this loss function to produce realistic

images. Blurry images look obviously fake, so that they will be
prevented by the adversarial loss.

3.3.2 Content Perceptual Loss. The generated image C are pur-
posed to be stylistically similar to the style target B and preserve
the content of the content target A. Since the groundtruths of style
synthesis are not provided in the training set, we employ the percep-
tual network P and utilize the feature representations to penalize
the differences between generated images and target images, by
incorporating the prior knowledge of style synthesis [9, 18].

Generated results are expected to match the feature responses
of the target images. Let Pl (I ) be the feature maps extracted from
layer l of the perceptual network P and the input image I ∈ M.
The content perceptual loss LC is defined as the squared Euclidean
distance between feature responses:

LC (E,G) =
∑
l ∈FC

| |Pl (C) − Pl (A)| |22 , (8)

where FC are the layers utilized to evaluate the content perceptual
loss.

Considering the design of neural networks, higher layers capture
semantic-level information including shapes and spatial structures
but ignoring low-level information such as colors and textures.
Therefore, we calculate LC (E,G) on higher layers of P , so that the
generated image C will preserve the content of the content target
A.

3.3.3 Style Perceptual Loss. Suppose the feature map Pl (I ) from
layer l of input I has the shape ofCl ×Hl ×Wl . The style perceptual
loss LS is calculated with the squared Frobenius distance of Gram
matrix, denoted as:

LS (E,G) =
∑
l ∈FS

| |ψl (C) −ψl (B)| |2F , (9)

where FS is the layers applied for the style perceptual loss. The
Gram matrixψl (I ) is aCl ×Cl matrix inspired from the uncentered
covariance of the feature map Pl (I ) along the channel dimension.
Its element at (c, c ′) is denoted as:

ψ c,c ′
l (I ) = 1

ClHlWl

∑
h,w

Ph,w,c
l (I )Ph,w,c ′

l (I ). (10)

The Gram matrix focuses on features activating together from
different channels, omitting the spatial information of images. Thus,
the style perceptual loss LS (E,G) based on Gram matrix maintains
the style of the style target B and ignores the content. In contrast to
the content perceptual loss, LS (E,G) are calculated on lower layers
of P to focus on low-level information including style-related colors
and textures.

3.3.4 Reconstruction Loss. We could also gain the reconstruction
of A and B, as formulated in Eq.(3) and Eq.(4). The reconstruction
loss LR calculated from the original images and the reconstructed
images is added to the objective function for supplementation,
denoted as:

LR (E,G) = | |A′ −A| |1 + | |B′ − B | |1
= | |G(E(A)) −A| |1 + | |G(E(B)) − B | |1.

(11)

We apply L1 distance rather than L2 in LR , because L1 results in
less blurring.



The reconstruction loss ensure that the encoder E and the gener-
atorG are a pair of inverse mappings to each other. Considering the
groundtruth of style synthesis are not given in the training set, the
implementation of reconstruction could also provide an analogous
groundtruth output, so as to accelerate the training process and
improve the realistic effect. In addition, although the reconstruction
loss may overly smooth and lead to blurry images, serious results
could be prevented with an appropriate loss weight and the restrict
of the adversarial loss.

3.3.5 Total Variation Loss. Another auxiliary loss function is the
total variation loss LTV , which could encourage spatial smooth-
ness of generated results and reduce spike artifacts. It performs
total variation regularizer on both the synthesis products and the
reconstruction results, formulated as:

ϕ(x) =
∑
i, j

((xi, j+1 − xi, j )2 + (xi+1, j − xi, j )2), (12)

LTV (E,G) = ϕ(C) + ϕ(A′) + ϕ(B′)
= ϕ(G([cA, sB ])) + ϕ(G(E(A))) + ϕ(G(E(B))).

(13)

3.3.6 Full Objective Function. The full objective function LO is the
weighted sum of all the losses defined above, denoted as:

LO (E,G,D) = λ1LA(E,G,D) + λ2LC (E,G)
+λ3LS (E,G) + λ4LR (E,G) + λ5LTV (E,G),

(14)

where λ1, λ2, λ3, λ4, λ5 are the loss weights which control the rela-
tive importance in the objective function. The optimizing process
is to solve the min-max problem:

E∗,G∗ = arдmin
E,G

max
D

LO (E,G,D). (15)

4 EXPERIMENTS
In this section, we perform experiments on object photographs of
two specific categories, including faces from CelebA dataset [27]
and shoes from UT Zappos50K dataset [42].

4.1 Experimental Settings
4.1.1 CelebA Dataset. The CelebA dataset consists of more than
200K celebrity images of 10K identities. We crop the 128×128 cen-
ter part of the aligned face images in the CelebA dataset for pre-
processing. We randomly select 2K images for testing, and the rest
images are employed as training samples. The content and style
target image pairs are randomly selected, while the forty face at-
tributes and five key points annotated in the CelebA dataset are
not utilized.

4.1.2 UT Zappos50K Dataset. The UT Zappos50K dataset is col-
lected from the online shopping website Zappos.com. This dataset
contains 50K catalog shoe images which are pictured in the same ori-
entation with blank backgrounds. The images are scaled to 128×128
before being fed to the network. We randomly split these images
into two parts, one contains 2K images for testing and the other
contains 48K for training. We also randomly select the content and
style target image pairs and ignore the meta-data (e.g., shoe type,
materials, gender, etc.) of the images.

Table 1: The detailed structure of S3-GAN, including encoder E ,
generator G and discriminator D . BN: Batch Normalization.

Encoder E
Layer Filter Size | Stride Activation Size

Input color image - 3×128×128
Conv, BN, Leaky ReLU 64×4×4|2 64×64×64
Conv, BN, Leaky ReLU 128×4×4|2 128×32×32
Conv, BN, Leaky ReLU 256×4×4|2 256×16×16
Conv, BN, Leaky ReLU 512×4×4|2 512×8×8
Conv, BN, Leaky ReLU 1024×4×4|2 1024×4×4

Generator G
Layer Filter Size Activation Size

Input latent vector - 1024×4×4
Deconv, BN, ReLU 512×4×4|2 512×8×8
Deconv, BN, ReLU 256×4×4|2 256×16×16
Deconv, BN, ReLU 128×4×4|2 128×32×32
Deconv, BN, ReLU 64×4×4|2 64×64×64
Deconv, Tanh 3×4×4|2 3×128×128

Discriminator D
Layer Filter Size Activation Size

Input color image - 3×128×128
Conv, Leaky ReLU 64×4×4|2 64×64×64

Conv, BN, Leaky ReLU 128×4×4|2 128×32×32
Conv, BN, Leaky ReLU 256×4×4|2 256×16×16
Conv, BN, Leaky ReLU 512×4×4|2 512×8×8
Conv, BN, Leaky ReLU 1024×4×4|2 1024×4×4

Fully Connected 1×(1024×4×4) 1

4.1.3 Implementation Details. The detailed structures of the en-
coder E, generatorG and discriminator D are specified in Table 1. E
and D apply the “Convolution, Batch Normalization, Leaky ReLU”
module, whileG exploits the “Deconvolution, Batch Normalization,
ReLU” module. Strides of 2 are utilized in both convolutional and
deconvolutional layers to down-sample or up-sample the feature
maps. Particularly, the output layer of G utilizes Tanh as activation
function instead of ReLU. In addition, Batch Normalization [16] is
removed in the generator output layer and the discriminator input
layer, since directly applying Batch Normalization to all layers may
lead to sampling oscillation and model instability. Images is normal-
ized to [0,1] before input to E orD, and the output ofG are re-scaled
to [0,255]. For a given image I , the output 1024×4×4 latent vector
of E(I ) is split along the channel dimension as cI and sI , i.e., the
two half 512×4×4 vectors are the content and style representations
respectively.

During training, the Adam optimizer [20] with the mini-batch of
16 samples is adopted. We employ VGG-19 network [36] pre-trained
on ImageNet dataset [4] as the perceptual network P . The weights
of encoder E, generatorG and discriminator D are initialized from
a zero-centered Gaussian distribution with appropriate deviations
[11]. The learning rate is fixed at 0.001 for 30 epochs. The loss
weights are set as λ1 = 1, λ2 = 10−6, λ3 = 5 × 10−5, λ4 = 30, λ5 = 1.
The absolute values of loss weights are obtained and chosen from
the experiments. The direct loss values of perceptual losses are
much larger than other losses, so we set the loss weights of percep-
tual losses smaller than other losses to make the weighted losses
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Figure 3: Visualization of the content and style representation on
face images of CelebA Dataset. From top to bottom are: original im-
ages, content representation and style representation.
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Figure 4: Visualization of the content and style representation on
shoe images of UT Zappos50KDataset. From top to bottom are: orig-
inal images, content representation and style representation.

in the same order of magnitude. We compute content perceptual
loss at layer relu4_2 and style perceptual loss at layers relu1_1,
relu2_1 and relu3_1. We perform the alternative training approach
of GANs, by alternating between one gradient descent step on D
and two steps on E andG . Our experiments are implemented based
on Tensorflow platform. All of our networks are trained and tested
on one NVIDIA Tesla K40 GPU.

4.2 Results and Comparisons
4.2.1 Visualization of Content and Style Representations. The en-
coder of S3-GAN could perform style separation through encoding
an image to a latent vector, half of which represents style, and
the other half represents content. To demonstrate the S3-GAN has
the capacity of style separation, we visualize the content and style
representations produced by the encoder E. For visualization, we
preserve the half vector of content or style and simply fill the other
half vector with zeros. Then we feed the new vector into the gener-
atorG, and obtain the visualization for content or style. As shown
in Figure 3 and 4, the visualizations of content representations
preserve the structure information but abandon color information,
while the style representations maintain the color information but
ignore structure information. For example, the content representa-
tions preserve the identities and poses of original faces in Figure 3,
and the shapes and structures of original shoes in Figure 4. In con-
trast, the style representations present the skin color and hair color
of style target faces in Figure 3, and the colors and textures of style
target shoes in Figure 4. These content and style representations
are powerful to synthesizing new images. The above experiments
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Figure 5: Illustration of style synthesis on CelebA dataset. From
top to bottom: style target images, content target images, synthe-
sis results, logarithms of content distances and style distances. For
the fourth and fifth rows, pink bars are distances between content
target images and synthesis results, while blue bars are distances
between style target images and synthesis results.
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Figure 6: Illustration of style synthesis on UT Zappos50K dataset.
From top to bottom: style target images, content target images, syn-
thesis results, logarithms of content distances and style distances.
For the fourth and fifth rows, pink bars are distances between con-
tent target images and synthesis results, while blue bars are dis-
tances between style target images and synthesis results.

show that the content and style representations are complementary
and could be captured from the learned encoder.

4.2.2 Results of Style Synthesis. The generator of S3-GAN could
produce style synthesis from the vector by concatenating content
and style half vectors. Both qualitative and quantitative evaluation
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Figure 7: Illustration of style synthesis on different styles. The first
row shows different style target images, while the second row shows
the content target image and style synthesis results.
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Figure 8: Illustration of style synthesis on different contents. The
first row shows different content target images, while the second
row shows the style target image and style synthesis results.

of synthesis results on CelebA and UT Zappos50K datasets are
presented in Figure 5 and 6. From the first three rows of those two
figures, we could observe that the synthesis images represent the
obvious style of the style target images and preserve the content
of the content target images. For example, the synthesis faces in
the third row in Figure 5 represent the skin colors and hair colors
of the style target faces, while preserving the identities, poses and
expressions of the content target faces. Similarly, the synthesis
shoes in the third row in Figure 6 show the colors of the style
target shoes and the structures and shapes of the content target
shoes. Furthermore, for target and synthesis images, the lower the
content/style perceptual distances (in Eq. (8) and Eq. (9)) are, the
more similar the contents/styles are. As shown in the forth row in
Figure 5 and 6, the synthesis images have a lower content perceptual
distance with content target images than style target images. From
the fifth row in Figure 5 and 6, we could observe that the synthesis
images have a lower style perceptual distances with style target
images than content target images. We conclude that the S3-GAN
could make the style synthesis have the following two advantages:
1) For the content target images, it only captures the content and
abandons the style information. 2) For the style target images, it
maintains the style and ignores the content information.

Style Content Gatys et al. Johnson et al. Li et al. Huang et al. Ours 

Figure 9: Comparison results with four popular style synthesis ap-
proaches [9], [18], [26] and [15].

Table 2: Confidence scores of S3-GAN compared with four popu-
lar style synthesis approaches [9], [18], [26] and [15]. Confidence:
averaged confidence score of face detection. Content: averaged log-
arithms of content perceptual distances. Style: averaged logarithms
of style perceptual distances.

Method Confidence Content Style
Gatys et al. [9] 0.947 5.56 3.18
Johnson et al. [18] 0.938 5.64 3.24
Li et al. [26] 0.967 5.66 3.67
Huang et al. [15] 0.953 5.36 3.49
S3-GAN (ours) 0.984 5.25 3.22

4.2.3 Diversity. Furthermore, we analyze the diversity of the S3-
GAN from the following two aspects: 1) we apply various style
target images on a same content image to generate the synthesis
images. As shown in Figure 7, the generated images maintain the
similar structure with the original content target image and show
different colors and textures according to different style target
images. 2) we use a same style target image and different content
target images to synthesize images. As shown in Figure 8, the
color and texture of the generated images are same to the style
target image with different shapes and structures. The above results
present the diversity of the proposed S3-GAN. In other words, S3-
GAN could capture various styles and contents in a single model.

4.2.4 Comparisons. We compare the proposed method with other
four popular style synthesis approaches [9], [18], [26] and [15].
As shown in Figure 9, the images generated by S3-GAN are more
visually realistic because they contain distinguishable details. In
contrast, the images generated by the four existing approaches are
blurry and distorted, and lose many details of the content target
images. Inspired by [39] and [26], we also perform the quantitative
experiment. We randomly select 10 images as style target images
and another 100 images as content target images. Then we generate
1000 synthesis images by using the five approaches. In order to
measure the realism of generated images, we employ the popular
MTCNN [44] to perform face detection on the generated images.
The more realistic the generated image is, the higher confidence
score is. Thus, we employ the confidence score, i.e., the softmax
probability, of face detection to represent the quality of the gen-
erated image. As shown in Table 2, the confidence score of the
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Figure 10: Effect of different objective functions. LP = LC + LS is
the sum of content perceptual loss in Eq. (8) and style perceptual
loss in Eq. (9). LR is the reconstruction loss in Eq. (11). LA is the
adversary loss in Eq. (6).

proposed method is higher than the four methods, which means
the generated images of the proposed method are more realistic.
Furthermore, we employ the averaged logarithms of content/style
perceptual distances in Eq. (8) and Eq. (9) to measure the similarity
of synthesis results and content/style target images. As shown in
Table 2, the averaged logarithms of content perceptual distances are
lower than those of the four comparison methods. Meanwhile, the
averaged logarithms of style perceptual distances are lower than
those of the three comparison methods [18], [26] and [15]. Note
that the averaged logarithms of style perceptual distances of our
method is slightly higher than [9] because they [9] only focus on
transferring style information. The above comparisons show that
the generated images of the proposed methods could well represent
the content and style of the target images.

4.3 Discussion and Analysis
4.3.1 Analysis of the objective function. In this work, the objective
function (Eq. (14)) consists of several loss functions, such as content
perceptual loss LC , style perceptual loss LS , reconstruction loss
LR , and adversary loss LA. Therefore, we analyze the effect of each
loss function for images, and the related results are summarized
in Figure 10. From Figure 10, we could observe that the images
generated by using perceptual loss LP (LP = LC + LS ) are blurry
and distorted, and lack of many important details. The reason is
that the perceptual loss is a global constraint, and has a limited
ability to capture the subtle information. By adding the reconstruc-
tion loss LR to perceptual loss LP , the generated images are still
blurry but are more reasonable. Otherwise, the images generated
by combining the adversary loss LA and perceptual loss LP are
sharper and realistic, but lose much important detail information
compared with the content target images. For example, the slight
differences in eyes, eyebrows, and mouths between the generated
and content target images could change the identities of original
faces. As the reconstruction loss LR could ensure the encoder and
generator are a pair of inverse mappings, it could compensate for
the incorrect details cased by adversary loss LA. Therefore, the
reconstruction loss is complementary to adversary loss. As shown
in Figure 10, fusing the reconstruction loss LR , adversary loss A,
and perceptual loss LP could tackle the above-mentioned problem,
and the generated images could have sharper and corrected details.
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Figure 11: Illustration of the learned facemanifoldM and analysis
of content and style interpolation. The horizontal axis indicates the
traversing of style, and the vertical axis indicates the traversing of
content.
4.3.2 Analysis of Content and Style Interpolation. We analyze the
assumption of manifold M of object photographs through illus-
trating the results of content and style interpolation, as shown in
Figure 11. Images in the bottom left and top right corners are the
reconstructions of two target faces, while images in the bottom
right and top left corners are the synthesis results of swapping
contents and styles. The horizontal (or vertical) axis indicates the
traversing of style (or content), i.e., images in each row (or column)
are style (or content) interpolation results with fixed content (or
style). These results show that the contents and styles are indepen-
dent of images in the manifoldM. Moreover, the learned encoder
E and generator G could build mappings between the manifold M
and the latent space L, and successfully obtain the representation
of content and style.

5 CONCLUSION
In this paper, we propose the S3-GAN to implement style sepa-
ration and style synthesis simultaneously. We assume the object
photographs of a specific category lie on a manifold, as well as
the content and style of an object are independent. We learn an
encoder to build the mapping from the manifold to a latent space,
in which the content and style of an object could be represented
with two halves of its associated latent vector respectively. Thus,
the style separation could be performed by the encoder. We also
learn a generator for the inverse mapping, so that the result of
style synthesis could be generated from concatenating the style
half vector of the style target image and the content half vector
of the content target image. Experiments on both CelebA and UT
Zappos 50K datasets demonstrate the satisfactory results of the
proposed S3-GAN.
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