
Reconfigurable Inverted Index

Yusuke Matsui
National Institute of Informatics

matsui@nii.ac.jp

Ryota Hinami
The University of Tokyo

hinami@nii.ac.jp

Shin’ichi Satoh
National Institute of Informatics

satoh@nii.ac.jp

ABSTRACT

Existing approximate nearest neighbor search systems suffer from

two fundamental problems that are of practical importance but have

not received sufficient attention from the research community. First,

although existing systems perform well for the whole database, it is

difficult to run a search over a subset of the database. Second, there

has been no discussion concerning the performance decrement

after many items have been newly added to a system. We develop

a reconfigurable inverted index (Rii) to resolve these two issues.

Based on the standard IVFADC system, we design a data layout

such that items are stored linearly. This enables us to efficiently run

a subset search by switching the search method to a linear PQ scan

if the size of a subset is small. Owing to the linear layout, the data

structure can be dynamically adjusted after new items are added,

maintaining the fast speed of the system. Extensive comparisons

show that Rii achieves a comparable performance with state-of-the

art systems such as Faiss.

CCS CONCEPTS

· Information systems → Nearest-neighbor search; Search en-

gine indexing; Multimedia and multimodal retrieval; · Computing

methodologies → Visual content-based indexing and retrieval;

KEYWORDS

Approximate nearest neighbor search; inverted index; product quan-

tization; subset search; reconfigure

ACM Reference Format:

Yusuke Matsui, Ryota Hinami, and Shin’ichi Satoh. 2018. Reconfigurable

Inverted Index. In 2018 ACMMultimedia Conference (MM ’18), October 22ś26,

2018, Seoul, Republic of Korea. ACM, New York, NY, USA, 9 pages. https:

//doi.org/10.1145/3240508.3240630

1 INTRODUCTION

In recent years, the approximate nearest neighbor search (ANN)

has received increasing attention from various research communi-

ties [19]. Typical ANN systems operate in two stages. In the offline

phase, database vectors are stored in the ANN system. These vectors

may be converted to other forms, such as compact codes, for fast

searching and efficient memory usage. In the online querying phase,

the system receives a query vector. Similar items to the query are

retrieved from the stored database vectors. Their identifiers (and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MM ’18, October 22ś26, 2018, Seoul, Republic of Korea

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5665-7/18/10. . . $15.00
https://doi.org/10.1145/3240508.3240630

Query vector

Target IDs

ANN system
Search IDdistance

0.13

0.24

365

223

...

Ranked list

(a) Subset search

ANN system

Optimized and fast.

Add new vectors

Still fast?

ANN system

(b) Performance degadation via data addition

Figure 1: The two problems tackled in this paper. (a) The

search is operated for a subset of a database, which is speci-

fied by the target identifiers. The search result (ranked list)

should contain the specified items only. (b) Given a fast (op-

timized) ANN system, new vectors are added. Is the updated

ANN system still fast?

optionally their distances to the query) are then returned. To handle

large datasets, this search should be not only fast and accurate, but

also memory efficient.

AlthoughmanyANNmethods have already been proposed, there

are two critical problems of practical importance that have not

received sufficient attention from the research community (Fig. 1).

• Subset search (Fig. 1a): Once database vectors are stored, mod-

ern ANN systems can run a search efficiently for the whole

database. Surprisingly, however, almost no systems can run a

search over a subset of the database1. For example, let us con-

sider an image search problem, where the search is formulated

as an ANN search over feature vectors. We assume that each

image also has a corresponding shooting date. Given a query

image, an ANN system can easily find similar images from the

whole dataset. However, it is not trivial to find similar images

that were taken on a target date (say, May 28 1987). Here, the

search should not be conducted over the whole dataset, but

rather over a subset of the dataset, where the subset is specified

by identifiers of target images. The straightforward solution is

to run the search and check whether or not the results were

taken on May 28, but this post-checking can be drastically

slow, especially if the size of the subset is small. Current ANN

systems cannot provide a clear solution to this problem.

• Performance degradation via data addition (Fig. 1b): So far, the

manner in which the search performance degrades when items

are newly added has not been discussed. The number of data-

base items is typically assumed to be provided when an ANN

1 For example, the state-of-the-art systems Faiss [25] andAnnoy [11] do not provide this
functionality. See discussion at https://github.com/facebookresearch/faiss/issues/322,
https://github.com/spotify/annoy/issues/263

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1715

https://doi.org/10.1145/3240508.3240630
https://doi.org/10.1145/3240508.3240630
https://doi.org/10.1145/3240508.3240630
https://github.com/facebookresearch/faiss/issues/322
https://github.com/spotify/annoy/issues/263
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3240508.3240630&domain=pdf&date_stamp=2018-10-15

system is built. Parameters of the system are usually optimized

by taking this number into consideration. However, in a prac-

tical scenario, new items might be often added to the system.

Although the performance does not change while the number

of new items is small, we can ask whether the system remains

efficient even after 100× items are newly added. To put this

another way, suppose that one would like to develop a search

system that can handle 1,000,000 vectors in the future, but only

has 1,000 vectors in the initial stage. In such a case, is the search

fast even for 1,000 vectors?

We develop an ANN system that solves the above two problems,

namely reconfigurable inverted index (Rii). The key idea is extremely

simple: storing the data linearly. Based on thewell-known inverted

file with product quantization (PQ) approach (IVFADC) [26], we

design the data layout such that an item can be fetched by its

identifier with a cost of O(1). This simple but critical modification

enables us to search over a subset of the dataset efficiently by

switching to a linear PQ scan if the size of the subset is small. Owing

to this linear layout, the granularity of a coarse assignment step can

easily be controlled by running clustering again over the dataset

whenever the user wishes. This means that the data structure can

be adjusted dynamically after new items are added.

An extensive comparison with state-of-the-art systems, such as

Faiss [25], Annoy [11], Falconn [41], and NMSLIB [39], shows that

Rii achieves a comparable performance. For subset searches and

data-addition problems for which the existing approaches do not

perform well, we demonstrate that Rii remains fast in all cases.

Our contributions are summarized as follows.

• Rii enables efficient searching over a subset of the whole data-

base, regardless of the size of the subset.

• Rii remains fast, even after many new items are added, be-

cause the data structure is dynamically adjusted for the current

number of database items.

2 RELATEDWORK

We review existing work that is closely related to our approach.

Locality-sensitive-hashing. Locality-sensitive-hashing (LSH) [15]

can be considered as one of the most popular branches of ANN.

Hash functions are designed such that the probability of collision

is higher for close points than for points that are widely separated.

Using these functions with hash tables, nearest items can be found

efficiently. Although it has been said that LSH requires a lot of

memory and is not accurate compared to data-dependent methods,

a recent well-tuned library (FALCONN [1, 41]) using multi-probe

technology [31] has achieved a reasonable performance.

Projection/tree-based approach. Space partitioning using a pro-

jection or tree constitutes another significant branch of ANN. Es-

pecially in the computer vision community, one of the most widely

employed methods is FLANN [38]. Recently, the random projection

forest-based method Annoy [11] achieved a good performance for

million-scale data.

Graph traversal. Benchmark scores [4, 12] show that graph traversal-

based methods [32, 33] achieve the current best performance (the

fastest with a fixed recall) when the number of database items is

around one million. These methods first create a graph where each

node corresponds to a database item, which is called a navigable

small world. Given a query, the algorithm starts from a random

initial node. The graph is traversed to the node that is the closest to

the query. In particular, the hierarchical version HNSW [33] with

the highly optimized implementation NMSLIB [14] represents the

current state-of-the-art. The drawback is that it tends to consume

memory space, with a long runtime for building the data structure.

Product quantization. Product quantization (PQ) [26] and its ex-

tensions [5, 6, 8, 16, 18, 21, 24, 34, 40, 44, 48, 49] are popular ap-

proaches to handling large-scale data. Our proposed Rii method also

follows this line. PQ-based methods compress vectors into short

memory-efficient codes. The Euclidean distance between an orig-

inal vector and compressed code can be efficiently approximated

using a lookup table. Current billion-scale search systems are usu-

ally based on PQ methods, especially combined with an inverted

index-based architecture [7, 20, 23, 29, 37, 42, 46]. Hardware-based

acceleration has also recently been discussed [2, 3, 13, 28, 30, 45, 47].

An efficient implementation proposed by the original authors is

Faiss [25, 28]. An extensive survey is given in [36].

3 BACKGROUND: PRODUCT QUANTIZATION

In this section, we will review product quantization (PQ) [26]. PQ

compresses vectors into memory efficient short codes. The squared

Euclidean distance between an input vector and the compressed

code can be approximated efficiently. Owing to its memory-efficient

form, PQ played a central role in large-scale ANN systems.

We first describe how to encode a vector. A D-dimensional input

vector x ∈ RD is split intoM sub-vectors. Each D/M-dimensional

sub-vector is compared to Z pre-trained code words, and the identi-

fier (an integer in {1, 2, . . . ,Z }) of the closest one is recorded. Using
this, x is encoded as x̄, which is a tuple ofM integers:

x 7→ x̄ = [x̄1, . . . , x̄M]⊤ ∈ {1, . . . ,Z }M , (1)

where themth sub-vector in x is quantized into x̄m . We refer to x̄

as a PQ-code for x. Note that x̄ is represented byM log2 Z bits, and

we set Z to 256 in order to represent each code usingM bytes.

Next, we show how to search over the PQ-codes given a query

vector q ∈ RD . First, a distance table A ∈ RM×Z is computed

online by comparing the query to the code words. Here, A(m, z) is
the squared Euclidean distance between themth part of q and zth

code word from themth codebook. The squared Euclidean distance

between the query q and the database vector x can be approximately

computed using the PQ-code x̄, as follows:

d(q, x)2 ∼ dA(q, x̄)2 =
M
∑

m=1

A(m, x̄m). (2)

This is called an asymmetric distance computation (ADC) [26], and

can be performed efficiently, because onlyM fetches are required

on A. A search over N PQ-codes requires O(DZ +MN).

4 RECONFIGURABLE INVERTED INDEX

Now, we introduce our proposed approach: reconfigurable inverted

index (Rii). Let us define a query vector q ∈ RD , N database vectors

X = {xn ∈ RD }Nn=1, and target identifiers S ⊆ {1, . . . ,N }. The
subset-search problem is defined to find the R similar items to the

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1716

query from the subset of X specified by S:

R- argmin
s ∈S

∥q − xs ∥22 , (3)

where the R- argmin operator finds the R arguments for which an

objective function attains R (sorted) smallest values. The exact so-

lution can be obtained by a time-consuming direct linear scan. Our

goal is to approximately find nearest items in a fast and memory-

efficient manner. Note that the problem turns out to be a usual ANN

search if the whole database is set as the subset: S = {1, . . . ,N }.

4.1 Data Structure

First, N input database vectors X are encoded as PQ-codes X̄ =
{x̄n }Nn=1, where each x̄n ∈ {1, . . . ,Z }

M . These PQ-codes are stored

linearly, meaning that they are stored in a single long array. Given

an identifier n, fetching x̄n requires a computational cost of O(1).
The PQ-codes are clustered into K groups for inverted indexing.

First, K coarse centers C̄ = {c̄k }Kk=1 are created by running the

clustering algorithm [35] on X̄ (or its subset). Note that each coarse

center is also a PQ-code c̄k ∈ {1, . . . ,Z }M . Using these coarse

centers, the database PQ-codes X̄ are clustered into K groups. The

resulting assignments are stored as posting listsW = {Wk }Kk=1,
where eachWk is a set of identifiers of the database vectors whose

nearest coarse center is the kth one:

Wk = {n ∈ {1, . . . ,N }|a(n) = k}. (4)

Note that a(n) is an assignment function, that is defined as a(n)
= argmink ∈{1, ...,K } dS (x̄n , c̄k), where dS is a symmetric distance

function that measures the distance between two PQ-codes [26, 35].

Finally, we store X̄, C̄, andW as a data structure for Rii. The

total theoretical memory usage is (N +K)M log2 Z + 32N bits if an

integer is represented by 32 bits. We will show in Sec. 5.5 that this

theoretical value is almost the same as the measured value.

Note that in a typical implementation of the original IVFADC [26]

system, PQ-codes are stored in posting lists (not a single array).

That is, {x̄n |a(n) = k} are chunked for each k and then stored. This

would enhance the locality of the data, and improve the cache effi-

ciency when traversing a posting list. However, the experimental

results (Sec. 5.5) showed that this difference is not serious.

4.2 Search

We explain how to search for similar vectors using the data structure

explained above. Our system provides two search methods: PQ-

linear-scan and inverted-index. The former is fast when the size of

a target subset is small, and the latter is fast when the size is large.

Depending on the size, the faster method is automatically selected.

A search over a subset of a database is defined as a search on

target PQ-codes denoted by the target identifiers S ⊆ {1, . . . ,N }.
Note that we assume that the elements of S are sorted2. This is a

slightly strong but reasonable assumption. Because S is sorted, it

can be checked whether or not an item is contained in a set (n ∈ S)
with a cost of O(log2 |S|) using a binary search, where |S| is the
number of elements in S. Note again that a search over the whole

dataset is available by setting S = {1, . . . ,N }.

2 A set is denoted by calligraphic font, such as X, and implemented by a single array.

Algorithm 1: PQLinearScan

Input: q ∈ RD , # Query

X̄ = {x̄n }Nn=1, # Database PQ-codes

R ∈ {1, . . . ,N }, # # of returned items

S ⊆ {1, . . . ,N } # Target subset identifiers

Output:U = {ur }Rr=1 s.t. ur = [nr ,dr] ∈ {1, . . . ,N } × R
nr : r-th identifier. dr : r-th distance.

1 A← CompareCodewords(q) # Distance table

2 U ← ∅ # Array of tuples (id, distance)

3 for s ∈ S do

4 d ← ∑

M

m=1A(m, x̄ms)
5 PushBack(U, [s,d])
6 PartialSort(U,R) # Sort by distance

7 return Take(U,R) # Top R

PQ-linear-scan. : Because the database PQ-codes are stored lin-

early, we can simply pick up target PQ-codes and evaluate the

distances to the query. We call this a PQ-linear-scan. This is es-

sentially fast if |S| is small, because only a fraction of vectors are

compared. The pseudocode is presented in Alg. 1.

As inputs, the system accepts a query vector q ∈ RD , data-
base PQ-codes X̄ = {x̄n }Nn=1, the number of returned items R ∈
{1, . . . ,N }, and the target identifiers S ⊆ {1, . . . ,N }. First, a dis-
tance table A is created by comparing a query to code words3 (L1).

This is an online pre-processing step, required for all PQ-based

methods. To store the results, an array of tuples is prepared (L2).

Each tuple consists of (1) an identifier of an item and (2) the distance

between the query and the item. For each target identifier s , the

asymmetric distance to the query is computed (L4). This distance

is then stored in the result array with its identifier s , where the

PushBack function is used to append an element to an array (L5).

After all target items have been evaluated, the result array is sorted

by the distance (L6). As we require only the top R results, we use

a partial sort algorithm. Finally, the top R elements are returned,

where the Take function simply picks up the first several elements

(L7). Note thatW and C̄ are not required for the search.

Let us analyze the computational cost. The creation of a dis-

tance table requires O(DZ), and a comparison to |S| items requires

O(M |S|). Partial sorting requires O(|S| log2 R) on average4. Their

sum leads to a final average cost (Table 1). It is clear that the compu-

tation is efficient if |S| is small. As the cost depends on |S| linearly,
a PQ-linear-scan becomes inefficient if |S| is large. Note that if the
search target is the whole dataset, |S| is replaced by N .

Inverted-index. : The other search method is inverted-index. Be-

cause the database items are preliminarily clustered as explained

in Sec. 4.1, we can simply evaluate items that are in the same/close

clusters to the query. This drastically boosts the performance if the

number of the target identifiers is large.

We show the pseudo-code in Alg. 2. Inverted-index takes three

additional inputs: posting listsW, coarse centers C̄, and the number

3 We intentionally omitted the code words from the pseudocode, for simplicity.
4 This cost comes from the heap sort-based implementation used in the partial_sort
function in C++ STL. Another option is to pick up the k smallest items and only sort
these. This leads to O(|S | + R log2 R). We used the former in this paper because we

empirically determined that the former is faster in practice, especially when R is small.

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1717

Table 1: The average computational complexity for each

operation. The range for each variable used in this paper:

96 ≤ D ≤ 960, Z = 256, 8 ≤ M ≤ 240, 106 ≤ N ≤ 109, 1 ≤ R ≤ 100,

102 ≤ |S| ≤ 5 × 105, 103 ≤ K ≤ 3.2 × 104, 103 ≤ L ≤ 3.2 × 104.

Operation Computational complexity

PQLinearScan

- whole data O(DZ +MN + N log2 R)
- susbet (S) O(DZ +M |S| + |S| log2 R)
InvertedIndex

- whole data O
(

DZ + KM + K log2
KL

N
+ LM + L log2 R

)

- susbet (S) O
(

DZ + KM + K log2

(

min
(

KL

|S | ,K
))

+
LN

|S | log2 |S| + LM + L log2 R
)

of candidates L. Note that L candidates will be selected and eval-

uated in the final step. This means that L is a runtime parameter

that controls the trade-off between the accuracy and runtime.

To search, a distance table is first created in the same manner

as for PQ-linear-scan (L1). The search steps consists of two blocks.

First, the closest clusters to the query are found (L2-6). Then, the

items inside the clusters are evaluated (L7-16).

To find the closest clusters, an array of tuples is created (L2). For

each coarse center (c̄k), the distance from the query is computed

(L4). The results are stored in the array (L5).

Next, we run partial sort on the array to find the closest clusters

to the query (L6). Here, the target number of the partial sort (the

number of postings lists to be focused) is set as
⌈

KL

|S |

⌉

, which is

determined as follows. Because the target identifiers are of size

|S|, where the total number of identifiers is N , the probability of

any item being a target identifier is |S|/N on average. Because our

purpose here is to select L target items as candidates of the search,

the required number of items to traverse is L/(|S|/N) = LN /|S|.
To traverse LN /|S| items, we need to focus on (LN /|S|)/(N /K) =
KL/|S| posting lists, because the average number of items per

posting list is N /K . This implies that we need to select the nearest
⌈

KL

|S |

⌉

posting lists. Note that ifK < KL

|S | , we simply replace the value

by K , because this performs a full sort of the array (O(K log2 K)).
The selected posting lists are then evaluated. A score array is

prepared (L7). For each closest posting list (L8), identifiers in the

posting list are traversed (L9). If an identifier is not included in the

target identifier S, then this item is simply ignored (L10-11). Note

that if the search is for the whole dataset (S = {1, . . . ,N }), any
item n is always included in S, thus we remove L10-11.

For a selected identifier n, the identifier and the distance to the

query are recorded in the same manner as for the PQ-linear-scan

(L12-13). If the size of the score array (|U|) reaches the parameter

L, then the top R results are selected and returned (L14-16).

The computational cost is summarized as follows. After the code

creation with O(DZ), the comparison to K coarse centers requires

O(KM). Partial sort requires O(K log2(KL/|S|)). The number of

items to be traversed is O(LN /|S|). We can check whether or

not each item is included in S using a binary search, requiring

O(log2 |S|). This leads to O(LN /|S| · log2 |S|) in total. The number

of items that are actually evaluated is L, and so O(LM) of the cost
is required. Finally, the top R are selected using the partial sort,

requiring O(L log2 R). Table 1 summarizes the computational cost.

Inverted-index is fast when |S| is sufficiently large, but is slow if

Algorithm 2: InvertedIndex

Input: q ∈ RD , # Query

X̄ = {x̄n }Nn=1, # Database PQ-codes

W = {Wk }Kk=1, # Posting lists

C̄ = {c̄k }Kk=1, # Coarse centers

R ∈ {1, . . . ,N }, # # of returned items

S ⊆ {1, . . . ,N }, # Target subset identifiers

L ∈ {1, . . . ,N } # # of candidates

Output:U = {ur }Rr=1 s.t. ur = [nr ,dr] ∈ {1, . . . ,N } × R
nr : r-th identifier. dr : r-th distance.

1 A← CompareCodewords(q) # Distance table

2 T ← ∅ # Array of tuples (id, distance)

3 for k ∈ {1, . . . ,K} do
4 d0 ←

∑

M

m=1A(m, c̄mk)
5 PushBack(T , [k,d0])

6 PartialSort

(

T ,
⌈

KL

|S |

⌉)

Sort by distance

7 U ← ∅ # Array of tuples (id, ditance)

8 for [k,d0] ∈ T do

9 for n ∈ Wk do

10 if n < S then

11 continue

12 d ← ∑

M

m=1A(m, x̄mn)
13 PushBack(U, [n,d])
14 if |U| = L then

15 PartialSort(U,R) # Sort by distance

16 return Take(U,R) # Top R

|S| is small. This is highlighted in the term LN /|S| log2 |S|, where
this term becomes dominant if |S| is small.

Note that although there appear to be several input parameters

for inverted-index, all of them except L are usually decided deter-

ministically. L is the only parameter the user needs to decide. Our

initial setting is the average length of a posting list, L = N /K . This
means that the system traverses one posting list on average. This

is a fast setting, and users can change this if they require more

accuracy, as L = 2N /K , 3N /K ,

Selection. : The final query algorithm is described in Alg. 3. Given

inputs, the system automatically determines the query method

as either PQ-linear-scan or inverted-index. This decision is based

on the threshold value θ for the number of target identifiers (L1).

Owing to this flexible switching, we can always achieve a fast search

with a single Rii data structure (X̄,W, and C̄), regardless of the
sizes of the target identifiers (|S|). Fig. 2 highlights the relations
among the three query algorithms.

Note that it is not trivial to set the threshold θ deterministically,

because it depends on several parameters, such asM and L. To find

the best threshold, we simply run the search with several parameter

combinations when the data structure is constructed. Based on the

result, we fit a 1D line in the parameter space, and finally obtain

the best threshold. See the supplementary material for more details.

This works almost perfectly, as shown in Fig. 2. This thresholding

does not require any additional runtime cost for the search phase.

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1718

Algorithm 3: Query

Input: q, X̄,W, C̄, R, S, L
See the definitions in Alg. 2

Output:U = {ur }Rr=1 s.t. ur = [nr ,dr] ∈ {1, . . . ,N } × R
1 if |S| < θ then

2 return PQLinearScan(q, X̄,R,S) # Alg. 1

3 else

4 return InvertedIndex(q, X̄,W, C̄,R,S,L) # Alg. 2

Figure 2: Comparison of PQ-linear-scan, inverted-index,

and the final query algorithm. Runtime per query for the

SIFT1Mdatasetwith various sizes of target identifiers is plot-

ted. Note that L = K = 1000,R = 1,θ = 24743.

4.3 Reconfiguration

Here, we introduce a reconfigure function that enables us to search

efficiently even if a large number of vectors are newly added. As dis-

cussed in Sec. 1, typical ANN systems are first optimized to achieve

fast searching for N items. If new items are added later, such sys-

tems might become slow. For example, IVFADC requires an initial

decision on the number of space partitions K . The selection of K is

sensitive and critical to the performance. A standard convention5 is

to set K =
√
N . On the other hand, K cannot be changed later. The

system could become slower if N changes significantly. In other

words, we must decide K even if the final database size N is not

known, which sometimes frustrates users.

Unlike these existing methods, Rii provides a reconfigure func-

tion. If the search becomes slow because of newly added items,

coarse centers and assignments are updated by simply running

clustering again. The system is automatically optimized to achieve

the fastest search for the current number of database items.

Data addition. Let us first explain how to add a new item. Given

a new PQ-code ȳ, the database PQ-codes X̄ = {x̄n }Nn=1 are updated
using PushBack(X̄, ȳ). A corresponding posting list is also updated

by PushBack(Wa(N+1),N + 1). Then, searching can be performed

without any modifications, but it may be slower if many items are

added. This is because the length of each posting list (|Wk |) can
become too long, making the traversal inefficient.

Reconfigure. If the search becomes slow, a reconfigure function

can be called (Alg. 4). This function takes the database PQ-codes X̄
and a new number of coarse space partitions K ′ as inputs. Again,
K ′ is typically set as

√
N for the new N . The outputs are updated

posting lists and coarse centers. First, the updated coarse centers

5https://github.com/facebookresearch/faiss/wiki/Index-IO,-index-factory,
-cloning-and-hyper-parameter-tuning

Algorithm 4: Reconfigure

Input: X̄ = {x̄n }Nn=1, # Database PQ-codes

K ′ ∈ {1, . . . ,N } # # of coarse centers

Output:W = {Wk }K
′

k=1
, # Updated posting list

C̄ = {c̄k }K
′

k=1
Updated coarse centers

1 C̄ ← PQkmeans(X̄,K ′) # Clustering on PQ-codes [35]

2 W ← ∅
3 for k ∈ {1, . . . ,K ′} do
4 Wk ← {n ∈ {1, . . . ,N }|a(n) = k}
5 returnW, C̄

are computed by running clustering over the PQ-codes using PQk-

means [35] (L1). PQk-means efficiently puts the input PQ-codes

into several clusters, without decoding the codes for the original

D-dimensional vectors. Note that clustering can be run for a subset

of X̄ to make this fast. We set the upper limit of the codes to be

clustered as min(N , 100K ′). After new coarse centers are obtained,

the posting lists are created by simply finding the nearest center

for each PQ-code (L2-4).

The advantage of the reconfigure function is that it can be called

whenever the user wishes. The results are deterministic for K ′,
because this just runs the clustering over the codes. We will show

in Sec. 5.4 that this reconfigure function is especially useful when

the database size drastically changes. Another way of looking at

this is that we do not need to know the final number of database

items when the index structure is built. This is a clear advantage

over IVFADC-based methods. In a practical scenario, it will often

occur that the number of database items cannot be decided when

the system is created. Even in such cases, IVFADC must decide the

parameters. This would lead to a suboptimal performance.

4.4 Connection to IVFADC

The data structure proposed above is similar to the original IV-

FADC [26], but has the following fundamental differences.

• In Rii, each vector is encoded directly, whereas IVFADC encodes

a residual between an input vector and a coarse center. This

makes the accuracy of Rii slightly inferior to that of IVFADC

(see Sec. 5.5), but enables us to store PQ-codes linearly.

• In Rii, PQ-codes are stored linearly, and their identifiers are

stored in posting lists. In IVFADC, both PQ-codes and identifiers

are stored in posting lists. This simple modification enables us

to run the PQ-linear scan without any additional operations.

• In IVFADC, coarse centers are a set of D-dimensional vectors,

whereas coarse centers in Rii are PQ-codes. The advantage of

this is that the reconfigure steps become considerably fast with

PQk-means. The limitation is that this might decrease the accu-

racy, but the experimental results show that this degradation

is not serious (Sec. 5.5).

4.5 Advanced Encoding

There exist advanced encoding methods for PQ, such as optimized

product quantization (OPQ) [18, 40], additive quantization (AQ) [6,

34], and composite quantization (CQ) [48, 49]. Although state-of-

the-art accuracy has been achieved by AQ or CQ, it is widely known

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1719

https://github.com/facebookresearch/faiss/wiki/Index-IO,-index-factory,-cloning-and-hyper-parameter-tuning
https://github.com/facebookresearch/faiss/wiki/Index-IO,-index-factory,-cloning-and-hyper-parameter-tuning

that they are more complex and time consuming. Therefore, we did

not incorporate AQ and CQ in our system.

On the other hand, OPQ provides a reasonable trade-off (slightly

slow but with a high accuracy). In OPQ, a rotation matrix is prelim-

inarily trained to minimize the error. In the search phase, an input

vector is first rotated with the matrix. The remaining process is

exactly the same as PQ. We will show the results of OPQ in Sec. 5.5.

5 EVALUATIONS

All experiments were performed on a server with a 3.6 GHz Intel

Xeon CPU (six cores, 12 threads) and 128 GB of RAM. For a fair

comparison, we employed a single-thread implementation for the

search. Rii is implemented by C++ with a Python interface, All

source codes are publicly available6

5.1 Datasets

The various methods were evaluated using the following datasets:

• SIFT1M [27] consists of 128D SIFT feature vectors extracted

from several images. It provides 1,000,000 base, 10,000 query,

and 100,000 training vectors.

• GIST1M [27] consists of 960D GIST feature vectors extracted

from several images. It provides 1,000,000 base, 1,000 query,

and 500,000 training vectors.

• Deep1B [9] consists of 96D deep features extracted from the last

FC layer of GoogLeNet [43] for one billion images. It provides

1,000,000,000 base, 10,000 query, and 1,000,000 (we used the top

1M from the whole training branch) training vectors.

The code words of Rii and Faiss were preliminarily trained using

the training data. The search is conducted over the base vectors.

5.2 Methods

We compare our Rii method with the following existing methods:

• Annoy [11]: A random projection forest-based system. Because

Annoy is easy to use (fewer parameters, intuitive interface, no

training steps, and easy IO with a direct mmap design), it is the

baseline for million-scale data.

• FALCONN [41]: Highly optimized LSH [1]. FALCONN is re-

garded as a representative state-of-the-art LSH-based method.

• NMSLIB [39]: Highly optimized ANN library with the sup-

port of non-metric spaces [14]. This library includes several

algorithms, and we used Hierarchical Navigable Small World

(HNSW) [32, 33] in this study. NMSLIB with HNSW is the

current state-of-the-art for million-scale data [4, 12].

• Faiss [25]: A collection of highly-optimized PQ-based meth-

ods. This library includes IVFADC [26], OPQ [18], inverted

multi-index [7], and polysemous codes [16]. Some of these are

implemented using the GPU as well [28]. In particular, we com-

pared Rii with the basic IVFADC, which is one of the fastest

options. Note that only Faiss and Rii can handle billion-scale

data, because PQ-based methods are memory efficient.

5.3 Subset Search

We first present the results for searching over a subset of the whole

database. This is the main function that the proposed Rii method

6https://github.com/matsui528/rii

provides. The conclusion is that Rii always remains fast, whereas

existing methods become considerably slower, especially if the size

of the target subset is small. We first explain the task, and then

introduce a post-checking module through which existing methods

can conduct a subset search. Finally, we present the results.

Task. The task is defined as follows. We randomly select integers

from {1, . . . ,N }, sort them, and construct the target indices S ⊆
{1, . . . ,N }. For each query, we run the search and find the top-R

results. All the results must be members of S. The runtime per

query was reported with several combinations of S and R. The

evaluation was conducted using the SIFT1M dataset (N = 106),

with R ∈ {1, 10, 100}.

Post-checking module. Because none of the existing methods pro-

vide a subset search functionality, we implemented a straightfor-

ward post-checking module in order to enable the existing methods

to perform a subset search. Alg. 5 shows the pseudocode. This mod-

ule takes a query function Q , a query vector q, target identifiers S,
and the number of returned items R as inputs. The query functionQ

returns the identifiers of the R closest items, given q and R. This Q

is an existing method such as Annoy. First, the output identifier set

is prepared (L1). The number of returned items for each iteration, r ,

is first initialized (L2). Then, the search begins with an infinite loop.

The top-r items are searched using Q , and the results are stored

in the temporal buffer T (L4). For each identifier n in T , if n has

already been checked, the loop continues (L6-7). This is actually

achieved by starting a for loop with some offsets over T , so that

the first already-checked elements up to a certain number are not

traversed. If n is included inS, we store it in the output setU (L8-9).

The algorithm finishes if the enough (R) items are found (L10-11).

If an insufficient number of items are found, then r is updated to a

larger number by simply multiplying a constant value (L12). The

search continues with the updated r until R items are found.

With thismodule, searching over a target subset ismade available

for the existing methods. Note that Q cannot always return r items

when r is large. This depends on the design of the query function,

and some methods have a limit on r in order not to make the search

too slow. We found that FALCONN and NMSLIB do not return r

items if r is large. Therefore, we compared Rii with Annoy using

the post-checking module (Annoy + PC).

Results. Fig. 3 illustrates the results. We point out the following:

• Rii was fast under all conditions (less than 2 ms/query). We can

conclude that Rii was stable and effective for the subset-search.

• As with IVFADC, Rii is robust against R.

• Annoy + PC became drastically slow for small |S|, which is

further highlighted when R is large. This is an obvious result,

because the while loop (L3 in Alg. 5) must be repeated several

times for large r . Here, r can be even N . ANN systems are

usually not designed to handle such r values.

5.4 Robustness Against Data Addition

We describe the experiments for our other main function, reconfig-

ure. The conclusion is that Rii becomes fast by using reconfigure,

even after many new vectors are added. First, the task is explained,

then the results are presented. Here, we used the Deep1B dataset

to demonstrate the robustness against billion-scale data.

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1720

https://github.com/matsui528/rii

Algorithm 5: Post-checking module for existing methods.

Input: Q , # Query function

q ∈ RD , # Query vector

S ⊆ {1, . . . ,N }, # Target subset identifiers

R ∈ {1, . . . ,N }, # # of returned items

Output:U ⊆ S # U is sorted

1 U ← ∅ # An array of integers

2 r ← R

3 while 1 do

4 T ← Q(q, r) # Return top-r results

5 for n ∈ T do

6 if n has been already checked then

7 continue

8 if n ∈ S then

9 PushBack(U,n)
10 if |U| = R then

11 returnU

12 r ← r × 5 # User defined constant value

Figure 3: Subset search using the SIFT1M dataset over 10

queries. Note that K = L = 1000,M = 64.

Task. The index is first constructed using N = 106 vectors with

K =
√
N = 103, and then the runtime is evaluated. Next, new items

are added to the index, so that the final N becomes 107. Then, the

runtime is evaluated in two ways: (1) a search is performed with

K = 103, and (2) the data structure is updated using the reconfigure

function with K =
√
107, and then the search is conducted. We run

this experiment with the final N as 107, 108, and 109.

Results. Fig. 4 illustrates the result. It is clear that the search

becomes dramatically faster after the reconfigure function is called.

For example, if the user keeps the same data structure after 99M

new items are added, the search takes an average of 3.9 ms. This

can be made 7.8× faster after applying the reconfigure function.

Most importantly, because the data structure can be always ad-

justed for the new N , the user need not face the burden of selecting

K when the system is constructed. This is a clear advantage over the

other existing methods. Note that the runtime for adding 9×106 vec-
tors was 109 s, and that of the reconfigure function with K =

√
107

was 111 s. These times can be considered moderate.

Figure 4: The runtime performance with and without the

reconfigure function over the Deep1B dataset, where R = 1,

M = 8, and L = N /K .
5.5 Comparison with Existing Methods

Finally, we compare Rii (and its variant Rii-OPQ) with Annoy, FAL-

CONN, NMSLIB (HNSW), and Faiss (IVFADC), using SIFT1M and

GIST1M. The conclusion is that our Rii method achieved a compa-

rable performance to the state-of-the-art system Faiss. Note that

the searches were conducted over the whole datasets.

The accuracy was measured using Recall@1, which measures

the fraction of queries for which the ground truth nearest neighbor

is returned within the top-1 result. The average Recall@1 over the

query set is reported. We evaluated the methods with several pa-

rameter combinations, and report the results with a fixed Recall@1

(0.65 for SIFT1M and 0.5 for GIST1M) for a fair comparison. Because

the ranges of some parameters are discrete, we cannot achieve an

exact target Recall@1. Thus, the target Recall@1 was selected as

best as possible as a value that all methods can achieve.

The disk consumption of the index data structure is also reported.

This was measured by storing the data structure on the disk and

checking its size in bytes. Note that the runtime (peak-time) mem-

ory consumption is the more important measure, but measuring the

peak-time memory usage is not always stable, and can vary depend-

ing on the computer. Thus, we report the disk space instead, which

is reproducible and strongly related to the memory consumption.

The runtime of building the data structure is also reported.

Table 2 presents the results. We summarize our findings:

• Rii was comparable with the state-of-the-art system Faiss. In

particular, although our method is basically an approximation

of IVFADC, the decrease in the accuracy is not significant.

• Rii was the most memory efficient among the methods. The

measured value is almost same as the theoretically predicted

value (68 MB against 69 MB and 244 MB against 249 MB).

• If we compare Rii and Rii-OPQ, Rii-OPQ was slightly slower

but a little more accurate with the same parameter settings.

• Annoy achieved the second fastest result. Because Annoy sup-

ports the direct memory map system, the construction required

some time and consumed a relatively large disk space.

• FALCONN achieved a comparable (or slightly slower) perfor-

mance to Faiss/Rii. We note that the building cost of FALCONN

is considerably smaller than for other methods. As FALCONN

does not provide IO functions, we did not report the disk space.

• As reported in the benchmark [4, 12], NMSLIB achieved the

fastest performance. On the other hand, the building time and

memory consumption are inferior relative to Faiss/Rii.

• The results for SIFT1M and GIST1M follow similar tendencies.

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1721

Table 2: Comparison to existing methods using SIFT1M/GIST1M. Note that R = 1 for all methods. Unless explicitly denoted,

we adopt the default parameters for each method. The bold fonts indicate the best scores among the methods.

Dataset Method Parameters Recall@1 (fixed) Runtime/query Disk space Build time

SIFT1M

Annoy [11] ntrees = 2000, ksearch = 400 0.67 0.18 ms 1703 MB 899 sec

FALCONN [1, 41] nprobes = 16 0.63 0.87 ms - 1.8 sec

NMSLIB (HNSW) [14, 33, 39] efS = 4 0.67 0.043 ms 669 MB 436 sec

Faiss (IVFADC) [25, 26] K = 103,M = 64,nprobe = 4 0.67 0.61 ms 73 MB 30 sec

Rii (proposed) K = 103,M = 64,L = 5000 0.64 0.73 ms 69 MB 82 sec

Rii-OPQ (proposed) K = 103,M = 64,L = 5000 0.65 0.82 ms 69 MB 85 sec

GIST1M

Annoy [11] ntrees = 2000, ksearch = 2000 0.49 1.2 ms 5023 MB 2088 sec

FALCONN [1, 41] nprobes = 512 0.53 8.6 ms - 7.2 sec

NMSLIB (HNSW) [14, 33, 39] efS = 8 0.49 0.19 ms 3997 MB 1576 sec

Faiss (IVFADC) [25, 26] K = 103,M = 240,nprobe = 8 0.52 3.8 ms 253 MB 51 sec

Rii (proposed) K = 103,M = 240,L = 8000 0.45 3.2 ms 246 MB 353 sec

Rii-OPQ (proposed) K = 103,M = 240,L = 8000 0.50 3.8 ms 249 MB 388 sec

Table 3: Metadata of MET dataset. Each item has several at-

tributes, such as title and data.

ID title date country · · ·
0 Bust of Abraham Lincoln 1876 United States

1 Acorn Clock 1847 United States
.
.
.

6 APPLICATION

We present an application to highlight the subset search function

of Rii. For this demonstration, we leverage the data of The Metro-

politan Museum of Art (MET) Open Access7. This dataset contains

more than 420,000 items from MET, with both the image and ex-

tensive metadata for each item (Table 3). From this data, we select

201,998 items that are provided with the Creative Common license.

For each image, we extracted a 1,920-dimensional activation of last

average pooling layer of the DenseNet-201 [22] architecture trained

with ImageNet. The features are stored in Rii withM = 192. Several

meta-information is stored in a table using Pandas8, which is a

popular on-memory data management system for Python.

Fig. 5 demonstrates the system, including Python codes and the

search results. The metadata and DenseNet vectors are first read.

Then, the search is conducted based on the metadata. Here, the

items that were created before A.D. 500 in Egypt are specified. Next,

the target identifiers S are prepared. This is simply a set of IDs of

the selected items. The image-based search is then conducted over

them. The query here is Chinese tapestry. We can find similar items

to the Chinese tapestry from the museum items in ancient Egypt.

As this demonstration reveals, the search using the target subset

is a general problem setting. Rii can solve this type of problem

easily. As Sec. 5.3 shows, existing methods using the late checking

module do not perform well when |S| is small. For example, in

this case the result of the metadata search can have any number of

items. Rii can handle a subset search for any size of S.
7https://github.com/metmuseum/openaccess
8https://pandas.pydata.org/

import pandas as pd

import rii

Read data

df = pd.read_csv('metadata.csv')

engine = pkl.load(open('rii_densenet.pkl', 'rb'))

Metadata search (13.5 ms)

S = df[(df['data']<500) & (df['country']=='Egypt')]['ID']

S = np.sort(np.array(S)) # Target identifiers

ANN for subset (2 ms)

q = # Read query feature

result = engine.query(q=q, target_ids=S, topk=3)

Query The nearest The 2nd nearest The 3rd nearest

Figure 5: Demonstration of the subset search. The target

items are first selected using metadata information. Then,

an image-based search is conducted over the target items.

7 CONCLUSIONS

We developed an approximate nearest neighbor search method,

called Rii. Rii provides the two functions of searching over a subset

and a reconfigure function for newly added vectors. Extensive

comparisons showed that Rii achieved a comparable performance

to state-of-the art systems, such as Faiss.

Note that the latest systems incorporate HNSW for the coarse as-

signment of IVFADC [10, 17]. Our Rii architecture can be combined

to them, but that will be remained as a future work.

Acknowledgments: This work was supported by JST ACT-I

Grant Number JPMJPR16UO, Japan.

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1722

https://github.com/metmuseum/openaccess
https://pandas.pydata.org/

REFERENCES
[1] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig

Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Proc. NIPS.
[2] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache

Locality is Not Enough: High-performance Nearest Neighbor Search with Product
Quantization Fast Scan. In Proc. VLDB.

[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2017. Acceler-
ated Nearest Neighbor Search with Quick ADC. In Proc. ICMR.

[4] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2017. ANN-
Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algo-
rithms. In Proc. SISAP.

[5] Artem Babenko and Victor Lemitsky. 2017. AnnArbor: Approximate Nearest
Neighbors Using Arborescence Coding. In Proc. IEEE ICCV.

[6] Artem Babenko and Victor Lempitsky. 2014. Additive Quantization for Extreme
Vector Compression. In Proc. IEEE CVPR.

[7] Artem Babenko and Victor Lempitsky. 2015. The Inverted Multi-Index. IEEE
TPAMI 37, 6 (2015), 1247ś1260.

[8] Artem Babenko and Victor Lempitsky. 2015. Tree Quantization for Large-Scale
Similarity Search and Classification. In Proc. IEEE CVPR.

[9] Artem Babenko and Victor Lempitsky. 2016. Efficient Indexing of Billion-Scale
Datasets of Deep Descriptors. In Proc. IEEE CVPR.

[10] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the
Inverted Indices for Billion-Scale Approximate Nearest Neighbors. In Proc. ECCV.

[11] Erik Bernhardsson. 2018. Annoy. https://github.com/spotify/annoy.
[12] Erik Bernhardsson, Martin Aumüller, and Alexander Faithfull. 2018. ann-

benchmarks. https://github.com/erikbern/ann-benchmarks.
[13] Davis W. Blalock and John V. Guttag. 2017. Bolt: Accelerated Data Mining with

Fast Vector Compression. In Proc. ACM KDD.
[14] Leonid Boytsov and Bilegsaikhan Naidan. 2013. Engineering Efficient and Effec-

tive Non-metric Space Library. In Proc. SISAP.
[15] MayurDatar, Nicole Immorlica, Piotr Indyk, and Vahab S.Mirrokni. 2004. Locality-

Sensitive Hashing Scheme Based on p-Stable Distributions. In Proc. SCG.
[16] Matthijs Douze, Hervé Jégou, and Florent Perronnin. 2016. Polysemous Codes.

In Proc. ECCV.
[17] Matthijs Douze, Alexandre Sablayrolles, and Hervé Jégou. 2018. Link and code:

Fast indexing with graphs and compact regression codes. In Proc. IEEE CVPR.
[18] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product

Quantization. IEEE TPAMI 36, 4 (2014), 744ś755.
[19] Gylfi Þór Gudmundsson, Björn Þór Jónsson, Laurent Amsaleg, and Michael J.

Franklin. 2018. Prototyping a Web-Scale Multimedia Retrieval Service Using
Spark. ACM TOMM 14, 3s (2018), 65:1ś65:24.

[20] Jae-Pil Heo, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Sung-Eui Yoon. 2016.
Shortlist Selection With Residual-Aware Distance Estimator for K-Nearest Neigh-
bor Search. In Proc. IEEE CVPR.

[21] Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon. 2014. Distance Encoded Product
Quantization. In Proc. IEEE CVPR.

[22] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks. In Proc. IEEE CVPR.

[23] Masakazu Iwamura, Tomokazu Sato, and Koichi Kise. 2013. What Is the Most Ef-
ficient Way to Select Nearest Neighbor Candidates for Fast Approximate Nearest
Neighbor Search?. In Proc. IEEE ICCV.

[24] Himalaya Jain, , Patrick Pérez, Rémi Gribonval, Joaquin Zepeda, and Hervé Jégou.
2016. Approximate Search with Quantized Sparse Representations. In Proc. ECCV.

[25] Hervé Jégou, Matthijs Douze, and Jeff Johnson. 2018. Faiss.
https://github.com/facebookresearch/faiss.

[26] Hervé Jégou, Matthijis Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE TPAMI 33, 1 (2011), 117ś128.

[27] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in One Billion Vectors: Re-rank with Source Coding. In Proc. IEEE
ICASSP.

[28] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale Similarity
Search with GPUs. CoRR abs/1702.08734 (2017).

[29] Yannis Kalantidis and Yannis Avrithis. 2014. Locally Optimized Product Quanti-
zation for Approximate Nearest Neighbor Search. In Proc. IEEE CVPR.

[30] Yingfan Liu, Hong Cheng, and Jiangtao Cui. 2017. PQBF: I/O-Efficient Approxi-
mate Nearest Neighbor Search by Product Quantization. In Proc. CIKM.

[31] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In Proc.
VLDB.

[32] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2014. Approximate Nearest Neighbor Algorithm Based on Navigable Small World
Graphs. Inf. Syst. 45 (2014), 61ś68.

[33] Yury A. Malkov and Dmitry A. Yashunin. 2016. Efficient and Robust Approximate
Nearest Neighbor Search using Hierarchical Navigable SmallWorld Graphs. CoRR
abs/1603.09320 (2016).

[34] Julieta Martinez, Joris Clement, Holger H. Hoos, and James J. Little. 2016. Revis-
iting Additive Quantization. In Proc. ECCV.

[35] Yusuke Matsui, Keisuke Ogaki, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2017.
PQk-means: Billion-scale Clustering for Product-quantized Codes. In Proc. MM.

[36] Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. 2018. A Survey
of Product Quantization. ITE Transactions on Media Technology and Applications
6, 1 (2018), 2ś10.

[37] Yusuke Matsui, Toshihiko Yamasaki, and Kiyoharu Aizawa. 2018. PQTable: Non-
exhaustive Fast Search for Product-quantized Codes using Hash Tables. IEEE
TMM 20, 7 (2018), 1809ś1822.

[38] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE TPAMI 36, 11 (2014), 2227ś2240.

[39] Bilegsaikhan Naidan, Leonid Boytsov, Yury Malkov, David Novak,
and Ben Frederickson. 2018. Non-Metric Space Library (NMSLIB).
https://github.com/searchivarius/nmslib.

[40] Mohammad Norouzi and David J. Fleet. 2013. Cartesian k-means. In Proc. IEEE
CVPR.

[41] Ilya Razenshteyn and Ludwig Schmidt. 2018. FALCONN - FAst Lookups of Cosine
and Other Nearest Neighbors. https://github.com/FALCONN-LIB/FALCONN.

[42] Eleftherios Spyromitros-Xioufis, Symeon Papadopoulos, Ioannis (Yiannis) Kom-
patsiaris, Grigorios Tsoumakas, and Ioannis Vlahavas. 2014. A Comprehensive
Study Over VLAD and Product Quantization in Large-Scale Image Retrieval. IEEE
TMM 16, 6 (2014), 1713ś1728.

[43] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper With Convolutions. In Proc. IEEE CVPR.

[44] Jianfeng Wang, Jingdong Wang, Jingkuan Song, Xin-Shun Xu, Heng Tao Shen,
and Shipeng Li. 2015. Optimized Cartesian K-Means. IEEE TKDE 27, 1 (2015),
180ś192.

[45] Patrick Wieschollek, Oliver Wang, Alexander Sorkine-Hornung, and Hendrik
P. A. Lensch. 2016. Efficient Large-Scale Approximate Nearest Neighbor Search
on the GPU. In Proc. IEEE CVPR.

[46] Yan Xia, Kaiming He, Fang Wen, and Jian Sun. 2013. Joint Inverted Indexing. In
Proc. IEEE ICCV.

[47] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient Large-Scale Approx-
imate Nearest Neighbor Search on OpenCL FPGA. In Proc. IEEE CVPR.

[48] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite Quantization for
Approximate Nearest Neighbor Search. In Proc. ICML.

[49] Ting Zhang, Guo-Jun Qi, Jinhui Tang, and Jingdong Wang. 2015. Sparse Com-
posite Quantization. In Proc. IEEE CVPR.

Session: System-2 (Smart Multimedia Systems) MM’18, October 22-26, 2018, Seoul, Republic of Korea

1723

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Product Quantization
	4 Reconfigurable Inverted Index
	4.1 Data Structure
	4.2 Search
	4.3 Reconfiguration
	4.4 Connection to IVFADC
	4.5 Advanced Encoding

	5 Evaluations
	5.1 Datasets
	5.2 Methods
	5.3 Subset Search
	5.4 Robustness Against Data Addition
	5.5 Comparison with Existing Methods

	6 Application
	7 Conclusions
	References

