1808.01491v1 [cs.CV] 4 Aug 2018

arXiv

Non-locally Enhanced Encoder-Decoder Network for Single
Image De-raining

Guanbin Li
Sun Yat-sen University
liguanbin@mail.sysu.edu.cn

Xiang He
Sun Yat-sen University
hexiang7@mail2.sysu.edu.cn

Wei Zhang
Sun Yat-sen University
zhangweihi@gmail.com

Huiyou Chang Le Dong’ Liang Lin
Sun Yat-sen University University of Electronic Science and Sun Yat-sen University
isschy@mail.sysu.edu.cn Technology of China linliang@ieee.org

ledong@uestc.edu.cn

ABSTRACT

Single image rain streaks removal has recently witnessed substan-
tial progress due to the development of deep convolutional neural
networks. However, existing deep learning based methods either
focus on the entrance and exit of the network by decomposing the
input image into high and low frequency information and employ-
ing residual learning to reduce the mapping range, or focus on the
introduction of cascaded learning scheme to decompose the task of
rain streaks removal into multi-stages. These methods treat the con-
volutional neural network as an encapsulated end-to-end mapping
module without deepening into the rationality and superiority of
neural network design. In this paper, we delve into an effective end-
to-end neural network structure for stronger feature expression and
spatial correlation learning. Specifically, we propose a non-locally
enhanced encoder-decoder network framework, which consists of
a pooling indices embedded encoder-decoder network to efficiently
learn increasingly abstract feature representation for more accurate
rain streaks modeling while perfectly preserving the image detail.
The proposed encoder-decoder framework is composed of a series
of non-locally enhanced dense blocks that are designed to not only
fully exploit hierarchical features from all the convolutional layers
but also well capture the long-distance dependencies and structural
information. Extensive experiments on synthetic and real datasets
demonstrate that the proposed method can effectively remove rain-
streaks on rainy image of various densities while well preserving
the image details, which achieves significant improvements over
the recent state-of-the-art methods.
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Figure 1: Sample examples of single image de-raining re-
sults. (a) Input images with rain-streaks. (b) Results of
DDN [6] (c) Results of JORDER [35] (d) Our results. The first
row is the enlargement of the selected regions of the second
row, which shows the advantage of our proposed NLEDN in
detail preserving. The third row demonstrates the promis-
ing result of our NLEDN in removing long rain streaks.
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1 INTRODUCTION

Images with rain streaks are often captured by outdoor surveillance
equipments, which may significantly degrade the performance of
some existing computer vision systems and may also result in a
pool visual experience for some multimedia applications. Automatic
rain streaks removal has thus become a crucial research task in the
field of computer vision and multimedia, and has been successfully
applied in the fields of driverless technology [16, 31] and content
based image editing [10, 28, 34, 39].

The research on visual de-raining can be traced back to the last
decade. Most of the early research focused on the removal of rain
streaks in video sequences captured with static cameras [2, 7, 8, 15,
27, 39]. They mostly attempted to solve the problem by exploiting
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the temporal correlation in the luminance domain between suc-
cessive frames [2, 7, 39]. Due to the lack of temporal information,
de-raining on single image is more ill-posed, however, it has re-
ceived widespread research attention due to its greater practicality
and challenge [10, 13, 14, 35, 37]. Traditional methods on single
image de-raining explore certain prior information on physical
characteristics of rain streaks and model it as a signal separation
problem [4, 13, 25, 30], or directly regard it as an image filtering
problem and solve by resorting to nonlocal mean smoothing [14].
However, since these models are based on handcrafted low-level
feature and fixed a priori rain streaks assumptions, they can only
cope with rain drops of specific shapes, scales and density, and can
easily lead to the destruction of image details which are similar to
rain streaks.

In recent years, due to the powerful feature representation and
end-to-end data inference capabilities, deep convolutional neural
networks have been widely applied to single image de-raining and
have achieved significant performance improvement. These meth-
ods generally model the problem as a pixel-wise image regression
process which directly learns to map an input rainy image to its
clean version or a negative residual map in an end-to-end mode
through a series of convolution, pooling, and non-linear operations,
etc. Although considerable progress has been made in comparison
with traditional methods, existing deep models still suffer from
several limitations. Firstly, most of the deep CNN based models
emulate the experience of low-level image processing such as im-
age denoising, super-resolution and filtering, design shallow neural
network structure, and maintain a constant feature map resolution
during network propagation. As the size of the network receptive
field is limited, the pixel value inference of each spatial location only
relies on small local surrounding regions, it is usually arduous to
remove longer rain streaks (e.g. third row of Fig. 1). Moreover, due
to the ignorance of long-distance spatial context modeling, these
models often have difficulty in accurately filling raindrop-removed
image content while detecting heavy rain streaks, resulting in an
often overly blurred result, especially on texture-rich edges (e.g.
first row in Fig. 1). Although various deep CNN based solutions
have been proposed, existing efforts either focus on the entrance of
the networks by decomposing the input image into high and low
frequency information [6] or design cascaded learning schemes to
decompose the task of rain removal into multi-stages [35, 37]. A
contextualized dilated network is proposed in [35] to aggregate
context information from three scales of receptive filed for more
effective rain streak feature learning. All of these methods use con-
volutional neural network as an encapsulated end-to-end mapping
module without deepening into the rationality and superiority of
neural network design towards more effective rain streaks removal.

Inspired by the adaptive nonlocal means filter [14] for efficient
single-image rain streaks removal, we proposed to incorporate non-
local operation [32] to the design of our end-to-end de-raining
network framework. The non-local operation computes the feature
response at a spatial position as a weighted sum of the features at
a specific range of positions in the considered feature maps [32].
Specifically, we propose a non-locally enhanced encoder-decoder
network framework for single-image de-raining. The core archi-
tecture of our trainable de-raining engine is a concatenation of
an encoder network and a corresponding decoder network. It is
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designed to be a symmetrical structure and both the encoder and
the decoder network are composed of three cascaded non-locally
enhanced dense blocks (abbr. NEDB). Each NEDB is designed as a
residual learning module which contains a non-local feature map
weighting followed by four densely connected convolution layers
for hierarchical feature encoding and another convolution layer
for residual inference. Moreover, we introduce the pooling striding
mechanism in our encoder network to learn increasingly abstract
feature representation, which results in a decrease in resolution
with the enlargement of receptive filed. We further incorporate pool-
ing indices computed in the max-pooling step of the corresponding
encoder to perform non-linear upsampling in our decoder, which
helps to preserve the structure and details in the resulted image.
In summary, this paper has the following contributions:

e We propose a non-locally enhanced encoder-decoder net-
work framework for single-image rain streaks removal. It is
able to learn increasingly abstract feature representation for
more accurate rain streaks modeling in the encoding stage,
and can remove all levels of rain streaks while promisingly
preserving the texture details during decoding.

e We propose to incorporate a non-locally enhanced dense
block (NEDB) in our encoder-decoder framework, which can
not only fully exploit hierarchical features from all embedded
convolutional layers but also well capture the long-distance
dependencies for spatial context modeling.

o Experimental results on both synthetic and real datasets have
demonstrated the superiority of our proposed method, which
achieves significant improvements over the state-of-the-art
methods.

2 RELATED WORKS

2.1 Single Image De-raining

Single image de-raining is a challenging and highly ill-posed task.
Traditional approaches treat single image de-raining as an image
decomposition problem, in which they model the rain streaks and
rain-free scene lie in two separate sub-spaces. For example, Kang et
al. [13] and Li et al. [24] rely on morphological component analysis
and Gaussian mixture models (GMMs) based dictionary learning,
respectively. Yu et al. [25] distinguishes the dictionaries of rain
streak and rain-free scene via discriminative sparse coding. Zhu
et al. [41] further considers rain direction in a joint optimization
process. In these methods, although varies prior information of both
rain streaks and rain-free images have been extensively exploited,
due to the handcraft low-level feature representation and strong
prior assumptions, they usually tend to overly smooth the details
in rain free scenes.

Recently, deep learning based approaches dominate the research
of image-to-image mapping for various of computer vision tasks,
such as image inpainting [23], saliency detection [19-22], automatic
image colorization [38] and image super-resolution(3, 5, 17, 18, 29,
40]. With the integration of several commonly used advances in
network architectures such as residual connections [9] and dilated
convolutions [36], recent de-raining methods [6, 35, 37] obtain
impressive results by building fully convolutional architectures that
learns pixel-wise mapping from rainy image to the rain-free version.
Although additional considerations have been taken, such as rain
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Figure 2: The overall architecture of our proposed non-locally enhanced encoder-decoder network (NLEDN). As can be ob-
served, the input image and low-level feature activation are linked to the very end of the whole architecture via long-range
skip-connections. The core of the whole architecture is a non-locally enhanced encoder-decoder, in which novel non-locally
enhanced dense blocks (NEDBs) and pooling indices guided scheme are adopted.
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Figure 3: The architecture of our proposed non-locally enhanced dense block (NEDB). Left part shows the multi-scale input
via either adopting global-level non-local enhancement which feeds the entire feature map to NEDB or dividing the feature
map into a grid of regions to realize region-level non-local enhancement. Here we show by a 2 X 2 grid for convenience.

density [37], frequency domain knowledge [6], etc., they are still
weak in removing long rain streaks in complex background scenes
as well as distinguishing dense rain streaks with similar image
patterns in rain-free ones. This is due to the fact that convolutions
in existing CNN-based de-raining neural networks are inherently
local operations with small range of spatial receptive field in each
computation.

2.2 Non-local Networks

Very recently, non-local neural network is proposed to realize the
computation of long-range dependencies [32] for video classifica-
tion task. In each 2D non-local operation, the response at a position
is computed as a weighted sum of the features at all spatial posi-
tions. This is the first component of neural network that is able to
enlarge the receptive field from neighbor positions to the entire
image. Interestingly, such non-local operation is majorly inspired
by traditional non-local mean filtering which is also exploited in
early single image de-raining method [14]. This verifies importance
of the non-local enhancement in our proposed de-raining CNN
engine. As far as we know, our proposed non-locally enhanced
CNN architecture is the first piece of work that attempts to incor-
porate non-local mean calculation into a fully convolutional neural
network architecture with correlation propagation for the task of
pixel-wise image restoration.

3 METHOD

We introduce an end-to-end convolutional neural network for single
image de-raining, called non-locally enhanced encoder-decoder
network (NLEDN). Our framework contains a fully convolutional
encoder-decoder network which has been proven able to learn
complex pixel-wise mappings from large amount of input-output
image pairs. The overall architecture of the proposed network is
illustrated in Figure 2. Particularly, in order to exploit the abundant
structure cues in rain streak maps and the self-similarities in rain-
free nature scenes, we propose the non-locally enhanced dense
block (NEDB) as the basic component in our network architecture.
We carefully integrate NEDBs with both encoding and decoding
layers to enable the computation of long-range spatial dependencies
as well as efficient usage of the feature activation of proceeding
layers. In the following sections, we introduce each component of
the proposed architecture with more detail.

3.1 Entrance and Exit Layers

The proposed de-raining NLEDN takes one image with rain-streaks
as input in the entrance and outputs its rain-free version in the exit.
In this section, we focus on the network structure of the entrance
and exit of our entire framework.

Shallow Feature Extraction In the very beginning of the whole
architecture, we use two convolution layers to extract shallow
features of the input rainy image, as shown in Figure 2. Formally,
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we have
Fo = Ho(lp), 1)

where Iy and Hy(-) denote the input rainy image and the first shal-
low feature extraction convolution layer, respectively. As shown
in Figure 2, using the long-range skip-connections which bypass
intermediate layers, we link both the input image Iy and the shal-
low features Fy with layers that are close to the exit of the whole
network. The benefits of such skip-connections here are two folds:
first, they provide long-range information compensation such that
raw pixel values and low level feature activation are still available
in the very end of the whole architecture; Second, they enable the
residual learning that facilitates gradient back-propagation and the
pixel-wise prediction. Next, the shallow features Fj is fed into the
second convolution layer Hj(-) to obtain shallow features F;:

Fi = Hi(Fp), 2)

F1 is used as the input to the subsequent encoding layers.
Exit layers As shown in Figure 2, the input image Iy and the shal-
low features Fy are gradually added to the feature activation of
layers near the exit of the whole architecture. Particularly, one tanh
layer is adopted as the nonlinear unit of the final convolution layer
to obtain a rain map R with pixel value within (-1, 1). The final
rain-free image ¥ can be computed via
Y=I+R, 3)

Noted that the architecture of entrance and exit layers here are
not unique, we choose such architecture in order to effectively in-
corporate our core modules, the non-locally enhanced encoding and
decoding layers, which will be elaborated in subsequent sections.

3.2 Non-locally Enhanced Encoding and
Decoding

Conventional encoding-decoding networks are widely used in image-
to-image translation or other pixel-wise prediction tasks. Here, the
proposed architecture can be regarded as an enhanced version with
non-local operations and dense connections. To achieve this, a
novel non-locally enhanced dense block (NEDB) is plugged into
each stage of both the encoder and the decoder.

Non-locally Enhanced Dense Block (NEDB) The detailed archi-
tecture of the proposed NEDB is illustrated in Figure 3. Specifically,
we denote the input feature activation to the NEDB as Fy,, which
has the spatial dimension of H,, X W, X Cy,. The pair-wise function
f that calculates the pair-wise relationship is defined as

F(Fn,i.Fnj) = 0(Fn,i)" $(Fn.j) @

where Fp, ;, Fy, j denote the feature activation F, at position i, j

respectively. 8(-) and ¢(-) are two feature embedding operations

with different learned parameters Wy and W, denoted as 0(Fp,;) =

WyFp,i and ¢(Fp i) = Wy Fp,i. Following [32], we define the non-
local operation in NEDB as

)

where g(-) is the unary function that computes the representation
of F,, while C(F) is the normalization factor, defined as C(F) =

Yn,i = %;f(Fn,ian,j)g(Fn,j) (5)
J
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2vj f(Fn,i, Fn,j). In this way, the feature representation is non-
locally enhanced via considering all positions (V) for each location
i

Next, the non-locally enhanced feature activation is fed to five
consecutive convolution layers which are densely connected. Specif-
ically, following [11], we adopt direct connections from each layer to
all subsequent layers. The architecture is shown in Figure 3. Hence,
the [th layer receives the feature activations from all preceding
layers, D,....D;_; as input:

Dy = H|([Do, ..., Dj_1]) (6)

where [Dy,....D;_;] denotes the concatenation of the feature activa-
tions produced in layer 0,...,] — 1.

Moreover, to avoid the notorious problem of gradients vanish-
ing/exploding caused by an increase in the number of network
layers and connections, we adopt local residual learning in the de-
sign of each NEDB. Formally, the final output of the m-th NEDB
can be achieved by

Fm = 7:(Fm—ls‘/vvm)"’Fm—l, (7)

where ¥ (Fp;—1, Wp,) represents the residual mapping to be learned
in the considered block, which is actually inferred from a concate-
nation of feature activations from all preceding layers witha 1 x 1
convolution layer, as illustrated in Fig. 3 and formally written as

F (Fm-1, Wm) = Convix1 ([Do, ..., DL]) . (8)

Pooling Indices Guided Decoding As shown in Figure 2, the
encoding part consists of three consecutive NEDBs, each of which is
followed by one max-pooling layer with striding that downsamples
the feature activation. Symmetrically, another three NEDBs are
stacked in the decoding part, each of which is followed by one max-
unpooling layer that upsamples the feature activation. Moreover,
skip-connections are utilized to link feature activations of encoding
layers to their counterpart in the decoding layers.

Particularly, we propose to record pooling indices [1] during
encoding for further upsample inferring in the decoding stage. The
max-unpooling layer uses the pooling indices computed in the
max-pooling step of the corresponding encoding layer to perform
non-linear upsampling. Given the recorded pooling index matrix,
the output feature map of max-unpooling is calculated by first ini-
tializing to the size before the max pooling operation, and then
assigning the feature column at each position of the input feature
map to the corresponding position (given by the index matrix) and
zeroing the remaining positions. The upsampled feature activations
are sparse and convolved with subsequent trainable filters to pro-
duce dense feature maps. We will show by experiments that such
pooling indices guided decoding scheme is more suitable here for
rain streaks removal compared with conventional bilinear upsam-
pling.

Multi-scale Non-Local Enhancement With the above mentioned
max-pooling and max-unpooling operations, the spatial size of in-
termediate feature activations gradually decreases in the encoding
stage while gradually increases during decoding. Therefore, as the
non-local operation in NEDB requires to compute pair-wise rela-
tions between every two spatial positions of the feature activation
map, the computation burden increases dramatically when spatial
dimension gets larger. To address this problem and construct a more
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flexible non-local enhancement across feature activations with dif-
ferent spatial resolution, we implement the non-local operation in
a multi-scale manner when building the encoding and decoding
layers.

Specifically, for the feature activation with lowest spatial resolu-
tion (e.g. F4 in Figure 2), the subsequent NEDB directly works on
the whole feature activation map to realize a global-level non-local
enhancement. For the feature activation with higher spatial resolu-
tion, we first divide it into a grid of regions (As shown in Fig. 2, the
k X k NEDB indicates how the input feature map is divided before
performing region-wise nonlocal operation. e.g. Fy is divided into a
grid of 8 X 8) and then let the subsequent NEDB work on the feature
activation inside each region. Accordingly, such region-level non-
local enhancement is able to prevent unacceptable computational
consumption caused by directly working on high resolution feature
activation. One the other hand, comparing with conventional local
convolution operation which operates inside 3 X3 or 5 X 5 windows,
region-level non-local enhancement is able to retrieve long-range
structural cues to facilitate better rain-streaks removal.

3.3 Loss Function

The loss function is defined as the mean absolute error (MAE) be-
tween the resulted rain-free image and its corresponding groundtruth,
which is formulated as follow:

L= Pﬁ;;;”?ﬁj,k_yi,j,knl, )

where H, W and C denotes the height, width and channel number
of the rain-free image. Y and Y denote the predicted rain-free image
and ground-truth respectively.

4 EXPERIMENTAL RESULTS

4.1 Datasets and Evaluation Criteria

We evaluate the performance of our proposed method (NLEDN)
on both synthetic datasets and real data. For synthetic data, we
use four benchmark datasets, including the dataset provided by
Fu et al. [6], denoted as DDN-Data; the dataset synthesized by
Zhang et al. [37], denoted as DIDMDN-Data; the Rain100L and
the Rain100H dataset provided in [35]. Specifically, the DDN-Data
contains 14,000 rainy/clean image pairs, which is synthesized from
1,000 clean images with 14 kinds of different rain-streak orientations
and magnitudes. Following Fu et al. [6], we select 9,100 pairs of them
for training and the remaining 4,900 image pairs for evaluation. The
DIDMDN-Data consists of 12,000 image pairs of three rain density
levels (i.e. light, medium and heavy). There are roughly 4,000 images
per rain-density level in the dataset. The rain-density labels are also
provided and are used as extra data for model training in [37]. Noted
that we did not use this extra information in our model. Rain100L
is the synthesized dataset selected from BSD200 [26] with only one
type of rain streaks, which consists of 200 image pairs for training
and the other 100 images for testing. Compared with Rain100L,
Rain100H is more challenging. It is synthesized with five streaks
directions and contains 1,800 images for training plus 100 images
for testing. As pointed out in [35], although some of the synthesized
examples in Rain100H are inconsistent with real images, adding
these data as training can further enhance the robustness of the

MM 18, October 22-26, 2018, Seoul, Republic of Korea

network. For real data, we collected some of the images from the
Internet and some from the released images of [37]. We have also
taken some real cases using our own cameras for testing.

We evaluate the performance of the synthesized data using two
metrics, including Peak Signal-to-Noise Ratio (PSNR) [12] and Struc-
ture Similarity Index (SSIM) [33]. As with existing works [35, 37],
we evaluate the results in the luminance channel (i.e. Y channel of
YCbCr space), which has the most significant impact on the human
visual system. As the rain-free groundtruth are not available on
real-world image, we evaluate the performance on real data singly
based on visual comparison.

4.2 Implementation

Our proposed NLEDN has been implemented on the Pytorch frame-
work, a flexible open source deep learning frame network. During
training, we use horizontal flipping for data augmentation and re-
size the image to have long side smaller than 512. As the network
is fully convolutional, and we set the mini-batch size to 1, the size
of the input image does not have to be the same. We use adam
optimizer to update the parameters of network during training. The
learning rate is initially set to 0.0005, and we reduce it by 10% when
the training loss stops decreasing, until 0.0001. We use a weight
decay of 0.0001 and a momentum of 0.9. Because of the large differ-
ences in the size of each datasets, the time spent on training each
specific model is different. It takes around 3.5 days to train a model
using the training set of DDN-Data or DIDMDN-Data, and it cost
around 15 hours for training on Rain100H dataset. For Rain100L
dataset, it is much faster and only takes about four hours to com-
plete a whole model training. Therefore, we conduct ablation study
on Rain100L dataset in our experiment. However, as our entire
model is fully convolutional, the testing process is very efficient,
which only takes 1.44 seconds for the trained model to process a
testing image with 512 X 512 pixels on a PC with an NVIDIA X
GPU and a 3.4GHz Intel processor.

4.3 Comparison with the state-of-the-art

We compare our proposed NLEDN method against five state-of-
the-art single-image de-raining methods, including discriminative
sparse coding (DSC) [25], GMM-based layer prior (GMM) [24],
deep detail network (DDN) [6], joint rain detection and removal
(JORDER) [35] and density-aware single image de-raining using a
multi-stream dense network (DID-MDN) [37]. The last three are
the latest deep learning based methods. As all of these methods use
different data in training their models, we trained four versions of
our model based on the training set of the four synthesized dataset
respectively. Moreover, for fair comparison, we have also fine-tuned
the released deep model of the comparison methods on each specific
training set before evaluation. When evaluating on real-world data,
we test four versions of the models for each deep learning based
methods (including our NLEDN) on each image and select the one
with best visualization as the result for comparison.

Quantitative Evaluation. We report a quantitative compari-
son w.r.t PSNR and SSIM in Table 1. As can be observed, our pro-
posed method (NLEDN) increases the PSNR metric achieved by
the existing best-performing algorithms by an average of 1.07db,
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Dataset Metric | DSC [25] (ICCV'15) | GMM [24] (CVPR'16) | DDN [6] (CVPR'17) | JORDER [35] (CVPR'17) | DID-MDN [37] (CVPR'18) | Our NLEDN

PSNR 22.03 25.64 28.24 28.72 26.17 29.79

DDN-Data [ —eqpy 0.7985 0.8360 0.8654 0.8740 0.8409 0.8976
PSNR 20.89 2137 2353 3035 "28.30 33.16

DIDMDN-Data =gy 0.7321 07923 07057 0.8763 "0.8707 0.9192
raiiooL  |_DSNR 2339 28.25 25.99 35.23 30.48 3657
SSIM 0.8672 0.8763 08141 *0.9676 0.9323 0.9747

ramtoon PSR 17.55 15.96 16.02 "25.21 2635 30.38
SSIM 0.5379 0.4180 0.3579 70.8001 0.8287 0.8939

Table 1: Comparison of quantitative results in terms of PSNR and SSIM on four synthesized benchmark datasets. The three
best performing algorithms are marked in red, blue, and green, respectively. Our proposed NLEDN consistently achieves the
best performance. ‘+’ indicates that the method uses additional data (e.g. rain density level, rain mask annotation) provided

by the dataset.

TR \v
‘ «\‘« i '

(b) DDN (c) JORDER

b
(a) Input

6] Groun Truth

(e) Ors

(d) DID-MDN

Figure 4: Visual comparison of rain-streaks removal results generated from state-of-the-art deep learning based methods
(including our NLEDN) on synthesized rainy images. Our model consistently achieves the best visualization results in terms
of effectively removing the rain streaks while preserving the image structure details.

2.81db, 1.34db and 4.03db respectively on DDN-Data, DIDMDN-
Data, Rain100L and Rain100H. And at the same time, our model
improves the SSIM by 2.70%, 4.90%, 0.73% and 7.87% respectively on
the above four datasets. We can find that, on average, the rain-
free images restored by our NLEDN are consistently closer to
the groundtruth than existing state-of-the-art on the synthesized
datasets, and the higher SSIM value also indicates that our method
can better restore the structural information of an image. Moreover,
the more complex the data set, the more significant the perfor-
mance of our algorithm compared to existing algorithms. Noted
that JORDER [35] use additionally provided rain mask and rain-
streak annotation while training their models on Rain100L and

Rain100H datasets and DID-MDN [37] use extra rain density level
information while training on their DIDMDN-Data. Nonetheless,
our proposed model can still greatly outperform their results with-
out resorting to any additional data.

Qualitative Evaluation. Fig. 4 shows visual comparisons of
rain-streaks removal results for five synthesized rainy images. The
first three examples are synthetic heavy rain cases which are similar
to real-world scenes, our models consistently achieves the best vi-
sualization results in terms of effectively removing the rain streaks
while preserving the image structure details. The latter two are
hard examples chosen from the Rain100H dataset, and may be rare
in real world. As can be observed, both DDN [6] and DID-MDN [37]
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(c) JORDER

Figure 5: Visual comparison of rain-streaks removal results generated from state-of-the-art methods on real-world rainy im-
ages. Our model consistently achieves the best visualization results.

(c) w/ non-local (d) Ground Truth

weighting

(a) Input (b) w/o non-local

weighting

Figure 6: Visual comparison of rain-streaks removal results
with and without non-local weighting enhancement in our
proposed model.

are fail to remove rain streaks of these extreme cases though having
been fine-tuned on this dataset. Although JORDER [35] is designed
to handle such hard cases, the restored images are over-smoothing
and full of artifacts. Our proposed NLEDN generates much cleaner
results with promisingly structure details preserving as it is able
to fully exploit the long-range spatial context information based
on gradually increased size of receptive field and the non-locally
weighting scheme. Fig. 5 demonstrates the results of some real
images with rain-streaks in various rain densities. As can be ob-
served, our proposed model shows the best visual performance on

rain-streaks removal. It is particularly effective in removing long
rain-streaks while perfectly preserving the image structural details.
Though the existing best-performing DID-MDN [37] can remove
long rain-streaks of high density to some extent, it suffers from
artifacts and blurry if observed in a zoom-in view.

4.4 Ablation Study

As discussed in Section 3, our proposed NLEDN contains two core
components towards more effective rain-streaks removal, including
the encoder-decoder framework with pooling striding and max-
unpooling operation, and the tailored non-locally enhanced dense
block with densely connected convolution layers and a non-local
feature weighting scheme. To validate the effectiveness and neces-
sity of the internal network design of each of these two modules,
we exhaustively compare NLEDN with its five variants trained and
tested on the Rain100L dataset. The specific performance changes
in terms of PSNR and SSIM are listed in Table 2.

R, refers to the result of a very basic baseline which only includes
the convolution layers of a single NEDB without dense connection
or non-local weighting enhancement, as well as the same entrance
and exit layer settings as NLEDN. Actually, it is a degenerate FCN
based de-raining model with residual connection. It reaches the
PSNR = 33.23db and SSIM = 0.9533 which already outperforms



MM ’18, October 22-26, 2018, Seoul, Republic of Korea

Guanbin Li, Xiang He, Wei Zhang, Huiyou Chang, Le Dong, and Liang Lin

Methods R, R, Ry Re Rf
without dense connection? v
single block? v

multiple blocks?

pooling striding?

pooling indices?
non-local operation?

v
v
v

ANENENEN

v

PSNR 33.23

33.82 | 35.44 | 35.80 | 35.91 36.57

SSIM 0.9533

0.9596 | 0.9691 | 0.9716 | 0.9720 | 0.9747

Table 2: Ablation study on different components of our proposed non-locally enhanced encoder-decoder network framework.

the two recent deep learning based methods DDN [6] and DID-
MDN [37] but inferior to JORDER [35]. R;, adds dense connection
between convolutional layers to R,. As shown in the table, adding
dense connection leads to an average increase of 0.59db in terms
of PSNR and 0.7% improvement on SSIM. This proves the effective-
ness of dense connections. Due to space limitations, in subsequent
ablation studies, we add dense connection to each NEDB by default
and discuss on the role of other network components.

R is a simple concatenation of multiple dense blocks with nei-
ther non-local weighting nor receptive field controlling (pooling
striding). For comparison, the number of blocks is set to the same
as that of NLEDN. As shown in Table 2, simply concatenating mul-
tiple dense blocks can bring significant performance improvement,
which increases the average PSNR by 1.62db while at the same time
boosts the SSIM by 1% when compared to its single block version Ry,.
This verifies the effectiveness of deeper feature representation in
rain-streaks removal. In our experiments, we find that a cascade of
6 dense blocks leads to the best performance in our validation. Con-
catenating more than 6 dense blocks even leads to a performance
deterioration. R is directly modified on R, by adding pooling strid-
ing and corresponding skip connection between blocks guided by
pooling indices. As illustrated in the table, adding a pooling indices
based receptive filed controlling scheme further leads to an increase
of 0.36db in terms of PSNR and a 0.3% improvement on SSIM.

Re and Ry focus on the effectiveness of introducing non-local
feature weighting to the network design. Firstly, we directly add
multi-scale non-local enhancement to R; and observe a perfor-
mance boost on PSNR from 35.44db to 35.91db and an increase of
0.3% in terms of SSIM. The performance improvement is more signif-
icant when adding non-local operation to Ry, which forms our full
model Ry (R = NLEDN). As shown in the table, the introduction
of non-local operation contributes an average of 0.77db and 0.32%
improvement in terms of PSNR and SSIM respectively. This verifies
the effectiveness and universality of non-local optimization for rain-
streaks removal on single images. A visual comparison is provided
in Fig. 6. As can be seen, the model without non-local enhancement
suffers from some obvious artifacts and shows powerless for most
of the long rain streaks. This further proves the effectiveness of
long-distance dependencies modeling in rain-streaks removal.

5 CONCLUSION

In this paper, we have introduced a non-locally enhanced encoder-
decoder network framework for rain streaks removal from single
images. It is designed as a concatenation of an encoder network

followed by a corresponding decoder network, which are both com-
posed of a series of tailored, non-locally enhanced dense blocks
(NEDB). The NEDB is designed to not only fully exploit hierarchical
features from densely connected convolutional layers but also well
capture the long-distance dependencies and structural information
by employing a non-locally weighting operation at a specific range
of feature maps. Experimental results on both synthetic and real
datasets have demonstrated that our proposed method can effec-
tively remove rain-streaks on rainy image of various density while
promisingly preserve the image texture similar to the rain streaks,
which greatly outperforms the state-of-the-art. In our future re-
search work, we plan to extend the proposed algorithm to a wider
range of image restoration tasks, including but not limited to image
denoising, image dehazing and image super-resolution.
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