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We present DeepCache, a principled cache design for deep learning
inference in continuous mobile vision. DeepCache benefits model
execution efficiency by exploiting temporal locality in input video
streams. It addresses a key challenge raised by mobile vision: the
cache must operate under video scene variation, while trading off
among cacheability, overhead, and loss in model accuracy. At the
input of a model, DeepCache discovers video temporal locality by ex-
ploiting the video’s internal structure, for which it borrows proven
heuristics from video compression; into the model, DeepCache prop-
agates regions of reusable results by exploiting the model’s internal
structure. Notably, DeepCache eschews applying video heuristics to
model internals which are not pixels but high-dimensional, difficult-
to-interpret data.

Our implementation of DeepCache works with unmodified deep
learning models, requires zero developer’s manual effort, and is
therefore immediately deployable on off-the-shelf mobile devices.
Our experiments show that DeepCache saves inference execution
time by 18% on average and up to 47%. DeepCache reduces system
energy consumption by 20% on average.

CCS Concepts: + Human-centered computing — Ubiquitous
and mobile computing; - Computing methodologies — Com-
puter vision tasks;

Additional Key Words and Phrases: Deep Learning; Mobile Vision;
Cache

1 INTRODUCTION

With ubiquitous cameras on mobile and wearable devices,
continuous mobile vision emerges to enable a variety of com-
pelling applications, including cognitive assistance [29], life
style monitoring [63], and street navigation [27]. To support
continuous mobile vision, Convolutional Neural Network
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Fig. 1. The overview of DeepCache.

(CNN) is recognized as the state-of-the-art algorithm: a soft-
ware runtime, called deep learning engine, ingests a continu-
ous stream of video images!; for each input frame the engine
executes a CNN model as a cascade of layers, produces in-
termediate results called feature maps, and outputs inference
results. Such CNN executions are known for their high time
and space complexity, stressing resource-constrained mobile
devices. Although CNN execution can be offloaded to the
cloud [2, 34], it becomes increasingly compelling to execute
CNN s on device [27, 45, 54], which ensures fast inference, pre-
serves user privacy, and remains unaffected by poor Internet
connectivity.

To afford costly CNN on resource-constrained mobile/wear-
able devices, we set to exploit a mobile video stream’s tempo-
ral locality, i.e., rich information redundancy among consec-
utive video frames [27, 53, 54]. Accordingly, a deep learning
engine can cache results when it executes CNN over a mo-
bile video, by using input frame contents as cache keys and
inference results as cache values. Such caching is expected
to reduce the engine’s resource demand significantly.

Towards effective caching and result reusing, we face two
major challenges. 1) Reusable results lookup: Classic caches,
e.g., the web browser cache, look up cached values (e.g., web
pages) based on key equivalence (e.g., identical URLSs). This
does not apply to a CNN cache: its keys, i.e., mobile video
contents, often undergo moderate scene variation over time.
The variation is caused by environmental changes such as

IWe refer to them as a mobile video stream in the remainder of the paper.

, Vol. 1, No. 1, Article . Publication date: March 2020.


https://doi.org/10.1145/3241539.3241563

user/camera motion, object appearance, and illumination
changes [59]. A CNN cache must systematically tolerate the
variations and evaluate key similarity. In doing so, the engine
must trade off among cacheability, overhead, and model ac-
curacy. 2) Fine-grained reuse within a CNN: In a CNN model,
expensive computations spread across multiple layers. Be-
sides caching the CNN’s final inference outputs, the engine
should cache the intermediate results (i.e., feature maps) pro-
duced by the internal layers. Furthermore, the engine should
reuse the cached feature maps at fine spatial granularity. How-
ever, feature maps are high-volume, high-dimensional, barely
interpretable data. It can be both expensive to inspect them
and difficult to assess their similarity.

Few deep learning engines address the two challenges si-
multaneously. Commodity engines [6, 11, 17] process video
frames in independent inference tasks with no reuse in be-
tween. A few recent research prototypes [24, 53] incorporate
ad-hoc cache designs: they either look up reusable results
based on pixel-wise equivalence of image regions, or perform
expensive cache lookup over feature maps at all layers inside
a CNN. As a result, they often suffer from low cacheability
and high lookup overhead, leaving much caching benefit
untapped.

To this end, we advocate a principled cache design called
DeepCache. The key ideas of DeepCache, as shown in Fig-
ure 1, are that i) it discovers reusable image regions by exploit-
ing the input video’s internal structure, for which it borrows
the wisdom from decades of video research [21, 61, 70]; ii) it
propagates the discovered reusable regions within a CNN by
exploiting the CNN’s internal structure.

As shown in Figure 1, DeepCache stores recent input frames
as cache keys and stores recent feature maps for individual
CNN layers as cache values. To manage the cache, it provides
two core mechanisms.

e At the engine input, DeepCache performs cache key
lookup: it partitions each video frame into fine-grained
regions and searches for similar regions in (cached)
recent input frames. It does so by running its region
matcher. Inspired by video compression [70], the matcher
searches neighboring regions in specific patterns guided
by video motion heuristics. DeepCache keeps merging
adjacent discovered regions in order to tackle cache
erosion, i.e., diminishing reusability at deeper layers.
In contrast to ad-hoc image comparison used by prior
CNN caches [24, 53], our matcher is more robust to the
aforementioned scene variations; the matcher runs fast
to process more than 1,000 227x227 frames per second.

e Into the CNN execution, DeepCache maps the matched
regions on input images to reusable regions on feature
maps. It propagates the reusable regions across the

feature maps of all CNN layers. At each layer, Deep-
Cache transforms the reusable region boundaries based
on the operators of this layer; it fills the reusable re-
gions with cached feature map values in lieu of ac-
tual CNN execution. During the process, DeepCache
weaves cache queries into CNN computations, keeping
the cache queries transparent to CNN models.

With these two mechanisms, DeepCache runs its region
matcher only once per video frame at the input; it then loads
cached feature maps at all layers inside CNN. This contrasts
to ad-hoc approaches that repeat matching processes over
both images and feature maps, in and out of CNN. Our ratio-
nale is that, while humans have reliable heuristics on simi-
larity of image contents (which allows DeepCache to assess
cache key similarity), they still lack knowledge on evaluating
similarity of CNN’s internal feature maps that are in disparate
dimensions. By always treating feature maps as cache values
not keys, DeepCache eschews high-cost, low-return searches
over them, while still harvesting substantial caching benefit.

We implement DeepCache in ncnn [11], a popular deep
learning engine, atop Android 6.0. DeepCache executes stan-
dard, unmodified CNN models such as ResNet-50 [35]. We
evaluate DeepCache on Nexus 6 with five popular CNN mod-
els over two large, real-world video datasets. Compared to a
baseline engine version without enabling cache, DeepCache
reduces the inference time by 18% on average and up to 47%.
The reduction in inference time by DeepCache is 2 of the
reduction achieved by existing CNN caches design [53]. Deep-
Cache reduces system energy consumption by around 20%.
Its incurred accuracy loss is no more than 3%. Across all the
models, DeepCache uses 2.5 MB - 44 MB of memory, less
than 2% of the total system DRAM.

To summarize, we make the following contributions.

e We present DeepCache, a principled cache for executing
CNN over mobile videos (Section 3). DeepCache exploits
temporal locality in input mobile videos with proven video
heuristics (Section 4), propagates cacheable regions across
CNN layers with the CNN knowledge (Section 5), and es-
chews applying video heuristics to CNN internals.

o We implement DeepCache in a commodity engine. The
resultant prototype runs unmodified CNN models, requires
zero effort from developers, and is immediately deployable
on off-the-shelf Android devices (Section 6).

e We evaluate DeepCache on popular CNN models with real-
world datasets (Section 7). The results show that DeepCache
can reduce model inference time and energy consumption
effectively.

The full source code of DeepCache is at:

https://github.com/xumengwei/DeepCache
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Fig. 2. A typical CNN model structure.
Model Lib conv | fc pl act | rest

TF 79.2% | 6.4% 11.1% | 2.7% | 0.6%
nenn | 77.9% | 7.1% 121% | 1.8% | 1.1%
TF 80.2% | 0.1% 7.5% 8.1% | 4.3%
ncnn | 78.8% | 0.7% 8.6% 9.3% | 2.6%
TF 91.8% | 5.8% 0.5% 1.7% | 0.2%
ncnn | 93.7% | 4.9% 0.8% 0.4% | 0.2%
TF 82.4% | 12.8% | 2.1% 1.8% | 0.9%
ncnn | 84.1% | 12.2% | 2.6% 0.9% | 0.2%
TF 58.8% | 28.6% | 4.8% 2.9% | 5.2%
ncnn | 62.7% | 25.9% | 5.8% 3.7% | 1.9%
Table 1. Processing time breakdown of popular CNN models, show-
ing that convolutional layers dominate the time. Layer types: con-
volutional (conv); fully-connected (fc); pooling (pl), activation (act).
Hardware: Nexus 6. Engines: Tensorflow (TF) [17]; ncnn [11].

AlexNet [44]

GoogLeNet [60]

ResNet-50 [35]

YOLO [56]

Dave-orig [22]

2 BACKGROUND AND CHALLENGES

In this section, we present CNN background and identify
the major challenges to cache for continuous mobile vision.

2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is the state-of-the-
art algorithm in many computer vision tasks, and is recently
adopted in many mobile scenarios [3, 18, 54, 55, 66, 68]. As
shown in Figure 2, a typical CNN model repeatedly uses con-
volution and pooling layers to extract features from the whole
image, and then applies fully-connected layers (fc) to finalize
the vision tasks. Convolutional layers (conv) apply kernels
on the input data to extract embedded visual characteristics
and generate output data (called feature map). For continuous
mobile vision, CNN inference operates only on one single
segment of data (i.e., an RGB image) at a time.

Convolutional layers are hotspots Among all layer types,
convolutional layers are the primary performance hotspots.
We summarize the latency breakdown of five popular CNN
models in Table 1. We use two libraries that support deep
learning inference on Android to run these models on a Nexus
6 device: TensorFlow [17] and ncnn [11]. It should be noted
that each layer type (e.g., a convolutional layer) can have

multiple instances in a model. In the breakdown, convolu-
tional layers dominate the processing time, contributing at
least 60% and even up to 90% (ResNet-50). This observation
motivates us to focus on caching for convolutional layers in
this work.

2.2 Objective and Challenges

Our overall approach to reduce CNN execution workloads
is exploiting temporal locality on a mobile video stream. That
is, consecutive video frames often have substantial similar or
overlapped regions. In general, temporal locality in videos has
been known for decades and widely exploited for video com-
pression standards [47, 57]. It is particularly pronounced in
mobile videos: mobile devices (e.g., smartphones and glasses),
when performing continuous vision tasks [27, 53], capture
similar but non-identical image regions continuously. To this
end, a deep learning engine can cache the CNN execution out-
come from processing earlier frames for reuse in processing
a later frame. Of the cache, the keys are input image con-
tents and the values are the corresponding inference results,
i.e., feature maps. This objective, while simple, raises a few
unique challenges.

o Cache lookup under scene variations In general, cache
stores key-value pairs. Classic caches, e.g., for web browsers
or disks, look up cached values (e.g., web pages or disk blocks)
by evaluating the equivalence of keys (e.g., web URLs or block
IDs). However, to look up reusable CNN execution results, the
cache should evaluate the similarity of keys (i.e., input image
contents). Images consecutively captured in real world can
have various aspects of differences for the presence of large
variations in camera motion, object appearance, object scale,
illumination conditions, etc. Those complicated conditions
make it non-trivial to find out “what should be reused and
what should not”.

o Fine-grained reuse of intermediate results The compu-
tation cost of a CNN model spreads over a cascade of internal
layers, which produce feature maps as intermediate results.
An effective CNN cache should store these feature maps
and reuse them at fine spatial granularity whenever possible.
However, deciding reusability for feature maps is challeng-
ing: since the data volume of feature maps is large, it incurs
high overhead for the engine to inspect them; since feature
maps consist of data points in higher dimension spaces, it is
difficult for the engine to interpret their semantics.

e Balancing cacheability, model accuracy, and cache over-
head In using cache, the engine will lose CNN model ac-
curacy: it will have to reuse cached values for similar, yet
nonidentical, image regions. This entails a complex trade-off.
First, while relaxing the criteria for image similarity boosts
cacheability, it also reduces model accuracy. Second, while
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Fig. 4. Latency breakdown at layer granularity for AlexNet [44].
Layers are presented at the order of execution: left-side layer will
be executed first and the output will be fed to the right-side layer
as input.

more thorough cache lookup improves cacheability, its addi-
tional overhead must be justified by sufficient performance
gain.
e Battling cache erosion Of a CNN, reusability tends to
diminish at its deeper layers, a behavior we dubbed cache ero-
sion. More specifically, given an input image region deemed
as similar (reusable) to an existing region of previous frame,
the amount of reusable results on each layer’s feature map
shrinks as execution progresses into the model. Figure 3
shows an example of a convolutional layer, for which the
input is a cached region of 5x5 pixels. However, the periph-
eral pixels (in gray) in the output cannot be loaded from
cache as the central ones (in green), and must be exhaus-
tively computed. This is because these peripheral pixels are
derived from both reusable and non-reusable results in the
input feature map. As a result, the reusable region has eroded.
Among various CNN layers, convolution, pooling, and LRN
erode cache as above; fully-connected layer may completely
destroy reusability, since each its output value depends on
all its input values, which can hardly be all cached.

Fortunately, in most CNN models, early layers contribute
most of the computation cost and also suffer less cache ero-
sion. Fully-connected layers come last in a CNN and con-
tribute minor cost. These are exemplified in Figure 4, which
breaks down the execution latency of a popular CNN model.
Of the total latency, only 11.5% is contributed by fully-connected
layers, while the remaining 88.5% is contributed by earlier
layers that can benefit from cache. To further tackle cache
erosion, we merge reusable regions into the largest possible
ones, as will be discussed in Section 4.

3 SYSTEM OVERVIEW

DeepCache reduces CNN execution workloads by compu-
tation reuse. The key advantages of DeepCache include: 1)
No cloud offloading: DeepCache completely runs on a mo-
bile/wearable device without any offloading onto the cloud.
2) Widely deployable: DeepCache works well with popular
CNN models. 3) Transparency and zero developer-effort:
DeepCache caches inference results for unmodified CNN mod-
els, without requiring the developers to re-train the models
or tuning the parameters. This contrasts to disruptive CNN
cache designs [24]. In addition, DeepCache exposes optional
APIs for apps to fine-control cache behaviors (Section 6), anal-
ogous to that a browser cache exposes various policy knobs
to web apps [9]. 4) Minor accuracy loss: DeepCache minimizes
the model accuracy loss, which it trades for cacheability.

Figure 5 shows the architecture of DeepCache. DeepCache
works as a lightweight extension to a commodity deep learn-
ing inference engine. It augments existing model inference
with cache, while keeping all other engine components un-
changed, including loading CNN model file, ingesting video
from the camera, pre-processing video frames, executing
CNN models on CPU/GPU, and emitting the final output.

DeepCache in a nutshell For a CNN model, DeepCache
maintains a cache, covering the model’s input as well as its
internal layers. The cache stores recent video frames for the
model input, and recent feature maps for the internal layers.
The cache keys are equal-sized, fine-grained regions on the
cached input frames. The cache values are the cached feature
maps produced by the layers.

For a new input frame, DeepCache does one-time key
lookup by searching for similar regions in cached input im-
ages. Upon match, DeepCache supplies the engine with cor-
responding cache values, i.e., feature map regions directly
derived from the matched image regions. It further propa-
gates these regions to deeper CNN layers: between layer L,
and layer L,,+;, DeepCache maps the reusable regions on L,’s
feature map to L, s feature map. It fills these regions with
cached feature maps without further key lookup, i.e., search,
over these feature maps.
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Key lookup: image region matcher (Section 4) Prior to
executing CNN over a newly captured video frame, Deep-
Cache partitions the frame into equal-sized, fine-grained
regions (default 10x10 pixels in each region). For each re-
gion, DeepCache searches for similar regions in recent in-
put frames. It does so based on diamond search [70], a fa-
mous algorithm in motion estimation and video compres-
sion. Compared to ad-hoc, roll-your-own image match, a
mature algorithm is not only proven by decades of practice
but also may enjoy pervasive hardware acceleration, e.g.,
hardware video encoders on mobile SoCs [20]. The match-
ing results are a set of rectangle-to-rectangle mappings, e.g.,
(xi,yi, w,h) — (x],y;, w, h), where (x;,y:) ((x],y;)) is the
left-top point in the current (previous) frame and w (h) is the
width (height) of a certain rectangle.

Value mapping: propagating regions across layers (Sec-
tion 5) After matching image regions on a new input frame,
DeepCache sends the frame and the discovered reusable re-
gions into the CNN model. DeepCache augments normal
CNN execution with three functions. First, it propagates the
mappings between reusable regions (on the new frame) and
cached regions (on an old frame), alongside the input data.
Second, the spatial convolution operation skips computa-
tion for the reusable regions and instead directly loads from
cached feature maps. Third, DeepCache caches the output
feature map at each convolutional layer for future inference.

4 IMAGE BLOCK MATCHING

Now we present the detailed design of our region matcher
and how it deals with cache erosion. The goal of our image
matching algorithm is to find “similar” regions (rectangles)
between two images. There are two ways to match: block-wise
matching and pixel-wise matching. Theoretically, identifying
each pixel’s matching level (pixel-wise matching) and reusing
its cached results can be more fine-grained and minimize the
model accuracy loss. However, we have observed that even
similar scenes in two sequential images can have relatively
low matching scores of corresponding pixels (pixel mutation),

previous frame current frame previous frame

(a) The “best” match, with
highest matching score

(b) The “proper” match,
with a high matching score

Fig. 6. Two matching examples, showing that the best matched
block are not always desirable.

due to barely unnoticeable environment variations such as
light and moving objects. Those “unmatched” pixels can lead
to significant reduction of cache reuse due to the cache erosion
mentioned in Section 2.2. Thus, we use block-wise matching
rather than pixel-wise matching, taking a block (e.g., 10x10
pixels) as the basic unit to tell if it’s successfully matched to
a corresponding block in the previous image. In this way, a
mutated pixel will not affect the block-wise matching decision
if other surrounding pixels in the block are well matched.
Two principles should be considered into the design of our
block-wise matching algorithm. First, the matching algorithm
should run fast, keeping the processing overhead negligible
compared to the improvement gained via cache reuse. Second,
we want the resulted blocks to be likely merged into larger
blocks. The second principle is exemplified by the case shown
in Figure 6: match(a) might have the highest matching scores
for block B1 and B2, but it’s not suitable in our cache mech-
anism since these small reusable blocks will quickly vanish
after several layers due to cache erosion (Section 2.2). Imagine
that B1 and B2 have size 5x5, and the convolutional kernel
is 3x3. After the cache erosion, the reusable regions become
two 3x3 rectangles, 18 pixels in total. By contrast, match(b)
finds two adjacent blocks in current frame that are similar
to the blocks in previous frame, so that these two blocks can
be merged into a larger one. In this case, the reusable region



Fig. 7. Matched rectangles in two consecutive images via our pro-
posed algorithm.

becomes one 3x8 rectangle after convolution, 24 pixels in
total.

The overall flow of our matching algorithm is as follows.
o Step 1. The current frame (image) is divided into an NxN
grid, where each grid block contains certain number of pixels.
o Step 2. For each divided grid block we find the most matched
same-size block in previous frame. Here, we denote the left-
top point of i-th block (i = 1 to N?) in current frame as (x;, y;),
and the corresponding matched block position in previous
frame as (x;, y;). We leverage the diamond search [70] algo-
rithm which is widely used in video compression to quickly
identify the most matched block. The matching level (similar-
ity) between two image blocks is represented by the PSNR [70]
metric: higher PSNR indicates that two blocks are more simi-
lar.
e Step 3. We calculate the average block movement (M,, M)
as the mean movement of the matched blocks whose PSNR is
larger than the given threshold 7.

3(x; —xi) 2(y; —vi)
K ’ K
where S is the collection of matched block pair whose PSNR

is larger than 77, and K is the cardinality of S.

o Step 4. For each block (x;,y;) in the current frame, we
calculate its PSNR with block (x; + My, y; + M) in the pre-
vious frame. If PSNR is larger than 7, these two blocks are
considered to be properly matched.

o Step 5. We merge the small blocks that are properly matched
in last step to larger ones. For example, if (x;,y;) and (x;,y;)
in current frame are adjacent, then their matched blocks in
Step 4 should also be adjacent since they share the same off-
set (M, M ). Thus, we can directly merge them into a larger
rectangle as well as their matched blocks.

Figure 7 shows an output example of applying our match-
ing algorithm on two consecutively captured images. As ob-
served, the second frame image is different from the first one
in two aspects. First, the camera is moving, so the overall
background also moves in certain direction. This movement
is captured in Step 3 by looking into the movement of each
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Layer

Layer Type Parameters Output(D;)

Convolution kernel=k x k X =Tx+p)/sT,y =Ty +p)/s]
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padding=p
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Concat [7] input overlapped region of these N rectangles
number=N

Fully-connected P st B —
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Table 2. Transformation of reusable region boundaries for layer
type (Dy). Input region is a rectangle (x,y, w, h).

small block and combining them together. Second, the ob-
jects in sight are also moving. Those moved objects (regions)
should be detected and marked as non-reusable. This detec-
tion is achieved in Step 4.

Our experiments show that most of the processing time of
the above matching algorithm is spent at Step 2 and Step 4.
In Step 2, we need to explore the previous frame to identify
the most matched block for every block in current image. We
can accelerate this step by skipping some blocks in current
frame, e.g., only matching blocks at (i*k)-th row and (jk)-th
column (i*k, j*k < N). Theoretically, a 2-skip (k=2) can save
75% of the computation time in this step, and a higher k can
even achieve better improvements. However, a higher k might
also result in inappropriately calculated (M,, M,), resulting
in fewer blocks to be properly matched at the last step. We
can further accelerate the computation of Step 4 by reusing
the results in Step 2 since both of them need to calculate PSNR
between two blocks. More specifically, if the PSNR between
(%, y;) (current frame) and (x; + My, y; +M,) (previous frame)
is already calculated in Step 2, we simply reuse the result. We
demonstrate the efficiency of our proposed algorithm as well
as these acceleration approaches in Section 7.6.

5 CACHE MECHANISMS INSIDE MODEL
EXECUTION

To cache a model’s internal inference results, DeepCache
provides two facilities: propagation and reuse.

Propagation To reuse the computation results inside CNN
inference, DeepCache needs to identify which regions can
be reused and where they are mapped to for each layer’s
output. As previously explained in Section 2.2, the map-
pings obtained by matching raw images (Section 4) need
to be dynamically adjusted at inference runtime. This adjust-
ing should also be performed on the corresponding cached
blocks of previous frame. Obviously, the strategy about how
reusable regions are adjusted is based on the forward oper-
ation of different layer types. More specifically, a caching
mapping (x;,y;, w,h) — (x{,y;, w, h) will be adjusted to
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Fig. 8. An example showing how the mappings obtained by image
matching are adjusted during the CNN inference. The grey rectan-
gles represent the data flow among CNN layers, while the black
arrows represent the operations performed on the data.

Dy(xi,yi, w,h) — Dyx],y!, w,h) after operation ¢, where
function D, indicates how a reusable region should be ad-
justed after going through a layer type t. We show the design
details of D, for every layer type in Table 2. There are three
main types of layers in consideration of how they affect the
reusable regions: 1) Locally coherent layers that computes
each pixel based on a part of input such as convolutional
and pooling layers. These layers will diminish the reusable
regions. 2) Fully-connected and softmax layers that connect
each neuron in input and output. These layers totally destroy
the data localization so that there will be no reusable regions.
3) Activation layers such as ReLu, Sigmoid that produce each
output neuron based on the corresponding input neuron.
These layers have no effect on the reusable regions.

Figure 8 shows an illustrating example about how a reusable
region is propagated among different layers. The current
image has been matched to previous image, and a block
(100, 100, 100, 40) (left-top=(100, 100), width=100, height=40)
is identified to be similar to the block (120, 120, 100, 40) of
last frame. This image is the input of a convolutional layer,
with kernel=11x11, stride=2, and padding=>5. The reusable
region of computational output of this layer can be calcu-
lated as (53, 53, 45, 15). This output is passed to an activation
layer (ReLu) as input, but the reusable region is not changed
since the activation layer performs just a certain activation
function on every single input unit. Then, the output of ReLu
is consumed by a pooling layer, with kernel=3x3, stride=2,
padding=1. Similar to the convolutional layer, the reusable
region becomes smaller due to the kernel padding.

Reuse After knowing which regions can be reused, Deep-
Cache customizes the convolutional forward so that the com-
putations of these reusable regions are skipped. Instead, they
will be directly copied from the corresponding cached re-
gion from previous frame. When customizing convolution
operations, it’s important to achieve good data locality since
data movement is one of the computational bottlenecks [28]
during convolution processing. To this end, DeepCache splits
the convolution operation into three steps. First, reusable re-
gions are directly copied from cache of last frame. Second, a
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Fig. 9. Comparison of match cost (i.e., cache lookup) between Deep-
Cache and “matching internal layers” (MIL), an alternative that
attempts to match on all internal feature maps. MIL-N%: matching
feature maps at the first N% convolutional layers in the model.
Compared to DeepCache, the overhead of MIL is prohibitive.

boolean (bit) map is created to specify whether a pixel (x, y) is
already cached. Third, kernel travels on the input feature map
and performs convolution only on the non-reusable pixels
but skips reusable ones.

DeepCache caches and reuses the computational results
only in convolutional layers for two reasons. 1) As mentioned
in Section 2, convolution is usually the dominant layer in
CNN inference time (e.g., 79.2% for AlexNet). 2) Caching
the intermediate output for other layer types (e.g., pooling)
requires additional memory overhead. In other words, Deep-
Cache supports caching reuse only in convolutional layers
to make proper trade-off among latency improvement and
memory overhead. But it’s worth mentioning that we can
easily extend our cache mechanism to other layer types.

Though DeepCache reuses only the computation of similar
image blocks, there is still accuracy loss since the matched
blocks may not be numerically identical. For two consecutive
frames, the output disparity can be negligible. However, if the
caching goes on for more frames, the accuracy loss might be
non-ignorable. To mitigate the superposition of accuracy loss
caused by caching, DeepCache periodically cleans its cache
and calculates a whole new frame every N frames (default
to 10).

Compared to matching internal layers Cache erosion
hurts reusability (Section 2.2). An ad-hoc approach to mit-
igating cache erosion would be aggressively searching for
reusable regions on feature maps [24] cached for all layers,
as we call “matching internal layers” (abbreviated as MIL).
Hence, this approach not only matches regions on input
frames as DeepCache does, but also matches regions on fea-
ture maps that are generated during inference. By doing so,
it essentially treats feature map regions as cache keys and
looks them up in cache.



Conceptually, MIL may help reusability. Yet, we deem it
impractical for the following reasons.

1) High cost. Cached feature maps are in high volume. Scan-
ning them for each input frame is expensive. Figure 9 com-
pares the latency in match (i.e., cache lookup) with Deep-
Cache’s approach (propagation of regions) with that of MIL.
We thoroughly test MIL by varying the number of convolu-
tional layers it attempts to match on. The results show that
MIL incurs much higher latency than DeepCache, even when
MIL only covers 50% of the total convolutional layers. This
performance gap can be as large as 35x! (e.g., for ResNet)

2) Low return. Decades of image research have yielded
reliable heuristics on image similarity estimation [61, 70].
By contrast, we know much less about evaluating similarity
among CNN feature maps. Hence, when feature maps are
used as keys, evaluating their similarity for reuse is funda-
mentally difficult. One might, for example, devise numerical
thresholds for feature map differences [24]. However, our ex-
periences suggest this as intractable: good thresholds, if exist
at all, are specific to models, layers, or even inputs. In other
words, MIL inevitably requires extra efforts from applica-
tion/model developers to identify a good threshold for every
single layer of a given CNN model. In comparison, our design
of key lookup doesn’t need such efforts from developers.

6 IMPLEMENTATION

We implement our image matcher (Section 4) in Render-
Script [14], the Android’s counterpart of CUDA. Thanks to
RenderScript, the image matcher execution can be offloaded
to GPU for acceleration. Since RenderScript is a generic An-
droid API, our image matcher is portable across Android
devices.

We prototype the engine feature of DeepCache atop ncnn [11],

an open-source deep learning engine optimized for mobile
(Android and iOS). ncnn works with standard CNN models.
DeepCache are directly compatible with those models with-
out requiring extra model changes.

For each supported layer type, ncnn provides a function
forward(top_blob, bottom_blob), where top_blob and
bottom_blob encapsulate the output and input of this for-
ward step, respectively. We replace forward() with our cus-
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Fig. 10. Average processing time of all five CNN models over their
test scenarios.

calculates how cached regions are propagated among differ-
ent layers. We also implement some custom layers such as
atan that are unsupported in the current ncnn but necessary
for our benchmark models. Overall, our new implementation
contains 4,030 lines of code.

DeepCache is fully compatible with ncnn APIs. Any exist-
ing vision applications built on ncnn will work with Deep-
Cache out of box. In addition, DeepCache exposes a few cache
parameters, e.g., threshold 7 (Section 4), block size N (Sec-
tion 4), and cache expiration time (Section 5) for developers
to optionally fine control DeepCache behavior. This is anal-
ogous to a browser cache exposing various policy knobs to
web apps [9].

7 EVALUATION

We thoroughly evaluate DeepCache using five typical CNN
models on two real-world, large-scale datasets. In summary,
DeepCache saves the execution time of CNN models by 18.2%
on average and up to 47.1%, while incurring accuracy loss as
low as 3%. In addition, we directly compare DeepCache with
the cache mechanism presented in DeepMon [53], a cutting-
edge deep learning engine, and the results show that Deep-
Cache outperforms DeepMon on all models and all datasets.

7.1 Experimental Setup

tomized c_forward(top_blob, bottom_blob, c_blob, c_regions),

where c_blob stores the computation results of current layer
from the last frame, and c_regions specifies which parts can
be reused. c_forward calculates the output just as forward
does, except that c_forward skips the calculation of cached
regions but copies from c_blob directly. Before c_forward
invoked, c_regions will be propagated from last layer. As
mentioned in Section 5, cached regions will erode (conv, pool-
ing) or vanish (full-connected) during the inference process,
thus we use another function named reg_forward which

Test Platform We use Nexus 6 (Qualcomm 2.7 GHz quad-
core CPU; Adreno 420 GPU) with Android 6.0 as the test
platform.

Benchmark Datasets We use two kinds of datasets to evalu-
ate our framework. UCF101 dataset [59] contains 101 types
of human activities and 13,421 short videos (< one minute)
created for activity recognition. We randomly select 10 types
from these activities and evaluate DeepCache across them:
Basketball (T1), ApplyEyeMakeup (T2), CleanAndJerk (T3),



Application Model Name | Model Architecture | # of Conv | Model Output Dataset
REC_1 AlexNet [44] 5
Activity recognition | REC_2 GoogLeNet [60] 57 human activity type
REC_3 ResNet-50 [35] 53 UCF101 [59]
Object detection DET YOLO [56] 8 object types and positions
Self-driving DRV Dave-orig [5, 22] 5 steering angle Nvidia driving dataset [12]

Table 3. List of CNN models used to evaluate DeepCache.
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Fig. 11. Per-scenario processing time of four CNN models. (For each model, the average time across all scenarios is shown in Figure 10.)

Billiards (T4), BandMarching (T5), ApplyLipstick (T6), Cliff-
Diving (T7), BrushingTeeth (T8), BlowDryHair (T9), and Bal-
anceBeam (T10). In total, 55,680 images have been processed
in our evaluation for each selected CNN model. Nvidia driv-
ing dataset [22] is collected by driving on a wide variety
of roads and in a diverse set of lighting and weather con-
ditions. It contains 45,568 static images captured at 10 FPS
and the corresponding steering angles made by the driver.
We randomly select 10 scenarios? (100 images for each) as
the testing set. We use ffmpeg [8] tool to extract raw images

2A scenario, in video dataset lingo, refers to a video recorded at specific
scene, location, and time.

from the above video datasets and feed the images to Deep-
Cache sequentially, mimicking video ingestion in real-world
continuous vision applications.

Workloads We use a variety of five CNN models to verify
DeepCache as shown in Table 3. For activity recognition,
our models (REC_1, REC_2, and REC_3) are pre-trained on
ILSVRC 2012 dataset [58], and then transferred learned on
UCF101. The architectures of those models are initially used
for image classification. In our case, we use them to run each
single image in the video and average the final result [42]. For
object detection, the model (DET) is trained via Pascal VOC
2007 dataset [19]. The model (DRV) used for self-driving is
trained and tested on the Nvidia driving dataset mentioned
above. It is worth mentioning that these CNN models are



quite generalized and can be used in many different tasks
with few customization efforts.

Metrics We use accuracy, processing latency, and power
consumption to evaluate the performance of our framework.
To report the accuracy results, we use different metrics to fit
into different applications. We report the top-k accuracy for
our activity recognition models, and MSE (Mean Squared Er-
ror) as the accuracy for object detection and self-driving tasks
because their outputs are continuous values. Since the dataset
used (UCF101) has no labels for object detection, we treat
the output of exhaustively running complete model without
cache mechanism as ground truth (observed values). For la-
tency, we log the starting time when DeepCache receives
the image and the ending time when DeepCache outputs
the inference result. The subtracted duration is reported as
the processing latency, including the time spent on image
matching and CNN inference. Finally, we measure the en-
ergy consumption via Qualcomm Snapdragon Profiler [15].
The baseline of phone’s idle state is always subtracted.

DeepCache Configuration If not otherwise specified, we
use a default block size of 10x10, the matching threshold 7~
of 20 in our image matching algorithm (Section 4), and the
expiration time N of cache is set as 10 (Section 3).

Comparison to Alternatives We experimentally compare
the performance of DeepCache to two alternative approaches:
no-cache: exhaustively running the complete model without
cache reuse (ground truth used in measuring accuracy); Deep-
Mon [53]: the cache mechanism in a state-of-the-art deep
learning engine. To make the comparison fair, we have care-
fully ported DeepMon’s cache to the ncnn engine executed
on the CPU of our test platform, where DeepCache also runs.
Note that we have contrasted the design of DeepMon cache
with DeepCache (Section 1), and will present more details in
related work discussion (Section 9).

7.2 Latency Improvement

Figure 10 summarizes the achieved improvements via ap-
plying cache mechanism on average. Our primary obser-
vation is that applying DeepCache can have substantial la-
tency reduction compared to no-cache, i.e., 18.2% on aver-
age, while DeepMon has only 8.9%. This improvement varies
across different CNN models. For a relatively small model
REC_1 (5 convolutions, 25 layers in total), DeepCache re-
sults in 28.1% saving up of total processing time on average,
while DeepMon only has 13.1% improvement. For a deeper
model REC_2 (57 convolutions, 153 layers in total), the ben-
efit from DeepCache reduces to 19.7%, while DeepMon has
only 10.2%. For DET, DeepCache can have only 14.2% la-
tency improvement. The reason is that, differently from other
classification models, DET is applied in object detection ap-
plications and outputs location-sensitive information. Thus,
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Fig. 12. Processing time for individual convolutional layers in model
REC_2.

many computation-intensive fully-connected layers reside at
the end of DET, making the benefit from convolution-layer
cache smaller. The similar situation also applies for the DRV
model.

We further illustrate the results under different video bench-
marks (UCF101) in Figure 11. We observe that the perfor-
mance of DeepCache can differ a lot under different bench-
marks. Taking REC_1 as an instance, DeepCache saves up
47.1% processing time under Billiards (T4) scenarios. We
manually check the dataset videos and identify the reasons of
such high speedup as following: 1) camera is in slow motion,
2) most objects are still except the player and balls, 3) indoor
lighting is stable. In comparison, DeepCache has only 11.0%
latency improvement when processing BandMarching (T5)
videos because the camera and most objects (people) in view
are moving brokenly. Similarly, for REC_3, DeepCache saves
38.7% processing time when dealing with T4 but only 3.8% un-
der T5. Importantly, we observe that DeepCache consistently
beats DeepMon for each scenario.

We further dig into the achieved improvement at each
individual convolutional layer. As shown in Figure 12, the
latency improvement mainly comes from the first few layers
due to the cache erosion mentioned previously. Fortunately,
these layers often contribute to the majority of overall latency,
indicating that the benefit remains meaningful when models
grow deeper. For example, the third convolutional layer takes
165ms to run, which contributes around 18.4% to the total
model. DeepCache is able to save 90.2ms from this single
layer since this layer resides at the beginning of the overall
model.

7.3 Accuracy Loss

We then investigate how much accuracy DeepCache com-
promises in return for the latency benefits. The top-k accu-
racy drop for our activity recognition is shown in Figure 13.
In overall, DeepCache and DeepMon both have very small
accuracy drop (< 3% for top-1 and < 1.5% for top-3). These
loss is acceptable given the observation that our baseline
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Fig. 14. MSE between the output of caching approaches (Deep-
Cache, DeepMon) and ground truth (no-cache).

(no-cache) can achieve round 62.8% top-1 accuracy and 76.1%
top-3 accuracy. We have even observed cases where the base-
line wrongly classifies the image while our DeepCache does
it correctly. This is because that we have designed our image
matching algorithm to carefully choose which part of com-
putations to reuse, and this reusable information is properly
propagated during inference, thus minimizing the impact on
the recognition output.

Figure 14 shows the MSE between ground truth (no-cache)
and other cache approaches (DeepCache and DeepMon) when
running DET and DRV models. As observed, the median MSE
of DeepCache is 0.00166 and 2.617 for DET and DRV respec-
tively, quite similar to the results of DeepMon with 0.00164
and 2.017. For the DRV case, the results can be interpreted
that DeepCache leads to 2.6 degrees offset from the decision
made by human driver. Considering that DeepCache will
periodically run the total image without cache reuse, as men-
tioned in Section 3, this offset will not be accumulated. To be
compared, our above latency experiment shows that Deep-
Cache can accelerate CNN models two times as DeepMon, e.g.,
18.2% vs. 8.9% on average across all models and benchmarks.
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Fig. 16. Effect of varied matching threshold 7~ on processing latency
and top-1 accuracy drop of REC_2 model.

7.4 Energy Saving

We now investigate the energy consumption of DeepCache
across all selected benchmarks, and illustrate results in Fig-
ure 15. It is observed that DeepCache can save 19.7% of en-
ergy consumption on average and up to 28.6% (REC_1), while
DeepMon only has 8.0% on average. This saving is mostly
from the reduced processing time. Considering that vision
tasks are very energy-intensive, this saving up is able to
substantially lengthen battery life. For example, applying
DeepCache on REC_3 to classify 10 images can help spare
66.8] energy, enough to support 40 seconds of video playing
on Nexus 6 phone according to our measurement.

7.5 Choices of Parameters

In our matching algorithm mentioned in Section 4, some
variables can be used to make trade-off between latency im-
provement and accuracy drop. Matching threshold 7 is the
key to decide whether two image blocks are similar enough
to be reused. Figure 16 illustrates how 7~ can affect the la-
tency and accuracy (REC_2 + T1). As expected, higher 7~
indicates fewer blocks can be matched, thus leading to less
top-1 accuracy drop, but also higher processing latency. In
our default setting (7~ = 20), DeepCache can achieve con-
siderable latency improvement, e.g., 18.3% (from 917ms to
748ms), with acceptable accuracy loss (2.1%). This setting
aligns with the fact that the acceptable values for wireless
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LATENCY (MS) MATcH RaTIO (%)

DeepMon 4.7 £ 0.7 46.1
ES 33.3 £13.16 71.5
TSS 24.7 £9.41 70.8
DS 19.5 £ 6.53 71.2
DS + optimization 9.7 + 2.55 69.5

Table 4. A comparison of image matching algorithms between
DeepMon [53] (row 1), which uses histogram-based matching, and
DeepCache (the remaining rows) that uses different block matching
algorithms in combination with optimization techniques mentioned
in Section 4. DeepCache achieves much higher match ratios with
minor increase in latency.

transmission quality loss are commonly considered to be
about 20 to 25 [13]. However, the threshold can also be set by
application developers to adapt to task-specific requirements.
For applications that are not very sensitive to the output accu-
racy, developers can aggressively use a smaller 7~ to achieve
higher latency improvement.

Another configurable parameter in our image matching
algorithm is the block size. As observed from Figure 17, a
larger block size results in more latency improvement but
also higher accuracy loss. This result is reasonable since split-
ting an image into large blocks indicates more coarse-grained
matching. As an extreme case, when block size equals to 1,
the accuracy loss is very small (0.2) but the latency improve-
ment is also very low (2.19%). This is actually the pixel-wise
approach discussed previously in Section 3, and the result is
consistent with our discussion. Our empirical suggestion is
setting block size around 10 for 227x227 images.

7.6 Image Matching Performance

Finally, we report the performance of our renderscript-
based implementation of image matching algorithm individu-
ally. Our current matching algorithm mentioned in Section 4
is based on the diamond search (DS), i.e., DS as an “algorithm
unit” (used in Step 2). In addition to the DS, there are several

other block matching algorithms that can be plugged into
our image matching algorithm to replace DS, such as the
Exhaustive Search (ES) and the Three Step Search (TSS). The
details and differences of these algorithms are summarized in
the survey effort [21]. In this part of evaluation, we also im-
plement the ES-based and the TSS-based image matching to
compare. We run preceding algorithms on 10,000 images that
are randomly picked from UCF101 and resized to 227x227,
and log the processing time (latency) and the proportion of
matched regions (match ratio).

As shown in Table 4, our image matching algorithm can
achieve around 70% match ratio. The use of different block
matching algorithms has minor impacts on the match ra-
tio, but the DS-based implementation is much faster than
the ES-based and TSS-based implementation, i.e., 19.5ms vs.
33.3ms & 24.7ms. Another important observation is that the
acceleration techniques mentioned in Section 4, i.e., k-skip
and reusing, can significantly improve the processing latency
from 19.5ms to 9.7ms on average, with only 2.4% loss in
the match ratio. These results indicate that our image match-
ing algorithm works well for our CNN cache mechanism,
as it occurs quite negligible overhead (< 10ms) compared
to the benefit gained from cache reusing. To be compared,
the histogram-based matching algorithm used in DeepMon
matches only 46.1% of image areas, while only runs 5ms
faster.

In our above experiments, we treat the image matching
and CNN inference as two sequential stages so that the time
consumed on the image matching diminishes the benefits
gained from cache-reuse. Though the matching algorithm is
accelerated, it still has non-trivial impacts on the performance
of DeepCache especially when the model is relatively small
such as DRV. But in practice, these two stages can often be
carried out asynchronously when the images can be captured
at a higher rate than our CNN inference. More specifically,
DeepCache can run the image matching algorithm on i-th
image and CNN inference on (i + 1)-th image at the same
time. In our case, since we implement these two stages on
different mobile processors (GPU and CPU), their processing
should not interfere each other, therefore DeepCache can
further improve the overall performance.

7.7  Memory Overhead

Figure 18 shows the memory overhead of DeepCache. Be-
sides the 5 models used above, we also test on other three
popular CNN models: MobileNet [37], SqueezeNet [40], and
DeepFace [64]. Here we assume that all model parameters
are read into memory once initialized without I/O transmis-
sion during the inference. We report the memory peak usage
during the inference here. As observed, the memory over-
head occurred by DeepCache ranges from 2.5MB to 43.8MB
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depending on the internal structure of models. This overhead
is quite trivial since nowadays mobile devices are usually
equipped with large size of memory, e.g., 3GB in Nexus 6.
Note that we only cache and reuse the computation results
of convolutional layers so that no extra memory usage will
be wasted on other computation-light layers.

8 DISCUSSION

Applicability to other CNN models This paper reports
only the results of DeepCache on five typical CNN models.
Yet, we expect that DeepCache applies to emerging CNN mod-
els, such as the SqueezeNet [40], the MobileNet [37], and the
DenseNet [38]. Intuitively, the new models, with their inno-
vated inter-layer organizations and intra-layer optimizations,
still preserve the temporal locality that DeepCache hinges
on. Furthermore, our observation on the domaninating cost
of early convolutional layers (Section 2) is true for these new
models.

Implementation on accelerators While we prototype the
inference stage of DeepCache on CPU, we expect that it can
be ported to and benefit from hardware accelerators. Taking
GPU as an example, DeepCache is capable of reducing the re-
dundant processing by avoiding GPU kernels for computing
output feature maps. For FPGA, we expect that our caching
mechanism can be implemented as the hardware logic for
further speedup.

Applicability to other video types The idea and high-level
design of DeepCache can be applied on other non-mobile
videos as long as there’s redundancy between adjacent frames.
Currently DeepCache is optimized for the mobile vision, be-
cause (1) mobile videos contain much richer temporal locality
than other video types such as edited movies, and (2) mobile
devices are much more sensitive to the latency and the energy
consumption in deep vision as compared to other platforms
such as desktops or servers.

9 RELATED WORK

Convolutional Layer Caching As most related efforts,
DeepMon [53] and CBinfer [24] incorporate CNN caches
that we deem ad-hoc. First, they match the image blocks (or
pixels) in only the same positions, therefore are unable to
tolerate the scene variation as we highlighted in Section 1. By
contrast, DeepCache retrofits proven video techniques to sys-
tematically search for nearby similar image blocks. Second,
they execute cache lookup over feature maps at all layers.
Such each-layer matching strategy not only incurs too much
runtime overhead, but also requires extra efforts from appli-
cation/model developers to manually set a “proper” match-
ing threshold for each layer. By contrast, DeepCache runs
lookup only once at the input raw images, and propagates
the reusable region boundaries across all the layers. In a con-
current project, EVA? [23] proposes hardware optimization
for exploiting temporal redundancy in live computer vision.
By contrast, DeepCache is designed and implemented to run
on general-purpose processors that are widely available on
commodity mobile devices. Besides, EV A? requires a model
to be manually separated into two parts, and the output of
the prefix part will be saved and reused while the suffix part
will be fully executed. In DeepCache, such manual efforts are
naturally avoided by our propagation mechanism mentioned
in Section 5. Potluck [32] enables the cross-application cache
reuse of computations on a similar video input. However, un-
like DeepCache that identifies which parts of image regions
shall be reused, the cache mechanism of Potluck is rather
coarse-grained since it can reuse only the whole output.

Continuous Mobile Vision Emerging mobile vision sys-
tems span from commercial products [1, 4] to research pro-
totypes [30, 36, 39, 41, 55, 68, 71]. To optimize mobile vision
tasks, [49, 50] made the early energy characterization and op-
timization towards continuous mobile vision. Starfish [51] al-
lows concurrent vision applications to share computation and
memory objects. RedEye [48] reduces image sensor energy
by offloading CNN layers to analog domain. DeepEye [54]
enables rich analysis of images in near real-time via novel,
small form factor wearable camera. Such high interest in
mobile vision motivates DeepCache.

Optimizing Deep Learning Execution for Mobile Ex-
tensive work is done on making deep learning affordable on
mobile devices. The approaches include making models much
smaller to fit mobile devices [25, 37, 46, 62], specializing hard-
ware to deep learning algorithms [26, 28, 33, 69], compressing
existing models [31, 34, 43, 45, 65, 67], etc. Complementary to
these techniques, DeepCache speeds up mobile deep vision
through systematically exploiting temporal locality in input
data, across multiple inference tasks. DeepCache can coexist
with these techniques in one engine.



10 CONCLUSIONS

To conclude our paper, we have proposed DeepCache, a
principled cache design, to accelerate the execution of CNN
models via leveraging video temporal locality for continuous
vision tasks. At the beginning of model input, DeepCache
discovers temporal locality by exploiting the video’s inter-
nal structure, for which it borrows proven heuristics from
video compression; into the model, DeepCache propagates
reusable result regions by exploiting the model’s internal
structure. We have implemented a prototype of DeepCache
to run unmodified CNN models on commodity Android de-
vice, and comprehensively evaluate its effectiveness via a set
of experiments on typical CNN models.
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