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ABSTRACT

We present CrossSense, a novel system for scaling up WiFi
sensing to new environments and larger problems. To reduce
the cost of sensingmodel training data collection,CrossSense
employs machine learning to train, off-line, a roaming model
that generates from one set of measurements synthetic train-
ing samples for each target environment. To scale up to a
larger problem size, CrossSense adopts a mixture-of-experts
approach where multiple specialized sensing models, or ex-
perts, are used to capture the mapping from diverse WiFi
inputs to the desired outputs. The experts are trained offline
and at runtime the appropriate expert for a given input is
automatically chosen. We evaluate CrossSense by applying
it to two representative WiFi sensing applications, gait iden-
tification and gesture recognition, in controlled single-link
environments. We show that CrossSense boosts the accu-
racy of state-of-the-art WiFi sensing techniques from 20% to
over 80% and 90% for gait identification and gesture recogni-
tion respectively, delivering consistently good performance
– particularly when the problem size is significantly greater
than that current approaches can effectively handle.
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1 INTRODUCTION

WiFi has emerged as a powerful medium for sensing informa-
tion. By measuring how the wireless channel is affected by
humans and their activities, tasks like gait identification [76],
gesture recognition [2, 26], activity recognition [59, 75] and
even vital sign monitoring [1, 68] could be possible. WiFi
sensing is particularly attractive for smart spaces as it can
be easily deployed using as few as two wireless routers, not
requiring instrumenting the users, and being less privacy
intrusive than other infrastructure-based solutions such as
video monitoring [28, 33].

While existing research has demonstrated the vast poten-
tial of WiFi as a sensing technique, currently there are two
significant drawbacks that limit the uptake of WiFi sensing
and the scale at which it can operate. Firstly, the dominant
approach for WiFi sensing requires a labour-intensive and
time-consuming process of collecting trainingmeasurements
or fingerprints to characterize how wireless channel metrics,
such as channel state information (CSI) or received signal
strength indicator (RSSI), are affected by the target (e.g., a
gait or a gesture). These training measurements must be care-
fully collected for each target subject or activity from each
deployment site. While it may be feasible to collect such
data from each occupant of a home, asking each employee or
visitor to provide training measurements from each meeting
room in a smart office setting is infeasible. Secondly, many
WiFi sensing solutions currently can handle only small sets
of subjects. As shown in the paper, performance of prior
WiFi sensing techniques decreases quickly as the number of
targets goes beyond a handful. This makes deployments into
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large-scale settings, such as enterprises or campuses, infeasi-
ble as these scenarios would require supporting hundreds of
users and numerous activities.

In this paper, we present CrossSense, a system for scaling
up WiFi sensing to new environments and larger sensing
problems. By addressing both challenges simultaneously,
CrossSense not only increases the scale and uptake of WiFi
sensing, but opens up new possibilities for innovative applica-
tions and services. As an example, one can offer personalized
services in every room within a company building, hotel or
conference center by collecting a training sample from the
visitor once at the reception; and the system can now support
many more users at a time. WiFi sensing could also be part
of a multi-factor authentication protocol [29, 35, 53, 65] to
verify a user’s claimed identity across sites. These exciting
applications can only be realized if theWiFi trainingmeasure-
ments can be effectively translated and utilized across sites,
and if sensing can target a larger problem size. CrossSense
has been designed to offer these capabilities1.

To enableWiFi trainingmeasurements to be collected once
and used across sites,CrossSense integrates an artificial neu-
ral network based approach for roaming previously collected
measurements from another site to automatically generate
synthetic sensing model training samples (also known as
virtual samples [66]) for the new environment. The roaming
model is first trained off-line and then used for any unseen
subjects. To reduce the number of samples required for learn-
ing a roamingmodel for a new site or sensing task, we employ
transfer learning [87] to leverage an existing roaming model.
We exploit the fact that the WiFi signal properties that are
abstracted by the beginning layers of the neural network are
mostly independent of the optimization problem. We reuse
these parts of the network across sites and domains, and,
in the process, we speed up learning new roaming models
considerably.

To enable WiFi sensing to target a larger problem size, we
employ amixture-of-experts based approach [30]. The central
idea is that, instead of using a single monolithic model for a
sensing task (e.g., gait recognition or gesture recognition),
we use multiple models (experts) where each expert is spe-
cialized for a subset of application scenarios and input data.
In this way, each model is used only when its predictions are
effective. One major advantage of our approach is that new

1Note that our work specifically targetsWiFi sensing techniques that rely on
a classifier-based approach to distinguish between target activities. While
there have been some efforts at WiFi sensing techniques that model target
activities directly through signal characteristics, most notably in gesture
recognition where gestures can be modelled as a sequence of primitives
(such as moving the hand left or right) that are captured from Doppler shift
information [2, 32, 50], the majority of past techniques in WiFi sensing are
based on classifier-based techniques.

models can easily be added and are selected only when ap-
propriate. The result is a new way of using machine learning
for WiFi sensing, with a generalized framework for diverse
inputs, application domains and environments.

We demonstrate the benefits of CrossSense by applying it
toWiFi-based gait identification and gesture recognition, and
considering CSI and RSSI based metrics. We compare to five
state-of-the-art WiFi sensing methods [26, 60, 66, 76, 90] and
a wireless signal translation approach [13]. We perform an
extensive evaluation across three controlled sites, involving
100 users, 40 gestures, and over 1.2 million wireless activity
samples. We show that CrossSense delivers the best and
the most reliable performance across evaluation scenarios
and sensing tasks. It boosts the accuracy of state-of-the-art
solutions by 4 folds, and enables WiFi sensing to work across
sites and for significantly larger problem sizes.

The main contributions of this paper are:

• Wepresent an automatic scheme to effectively leverage
existing WiFi training measurements to build sensing
models for new environments (Section 4);

• We apply, for the first time, transfer learning to effec-
tively reuse the learned knowledge across different
sites and tasks for WiFi sensing (Section 4.3);

• Our work is the first to employ mixture-of-experts
for WiFi sensing to scale up the size of the problems
that can be supported, delivering significant perfor-
mance improvement over state-of-the-art techniques.
Our generic framework allows newmodels to be easily
added to target a wider range of application contexts
(Section 5);

2 MOTIVATION

CrossSense addresses two significant drawbacks in current
wireless sensing solutions, cross-site generalization and scale
of the problems that can be supported. To further illustrate
these limitations, in the following we consider gait identi-
fication as a representative example of WiFi sensing tasks
and demonstrate how the performance of a state-of-the-art
method, WiWho [90], suffers when (a) the sensing model is
built from training samples collected from another environ-
ment, and (b) targeting more than a dozen of users.
Setup. Our evaluation environments include a hall and a
corridor. The two environments are of different sizes and thus
have different multipath effects on the wireless signal. More
details of our evaluation settings are given in Section 6.1.
To collect training measurements, each user walked on a
straight line and passed two WiFi devices 20 times. During
testing, each user walked pass the evaluation scene on a
straight line 10 times. The task of WiWho is to map a testing
measurement to one of the known users.
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Figure 1: The accuracy of WiWho drops significantly

if it is not tuned for the target environment (a), and if

the number of target users is more than a dozen (b).
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Figure 2: The CSI patterns for the same person from

two different environments are different.

Impact of training data. The first experiment involves six
users – the same number of users used to evaluate WiWho
in [90]. We expectWiWho to work effectively on this user
size. Figure 1a shows that a high accuracy (75% to 87%) can
be achieved if WiWho is built using examples obtained from
the testing environment. The performance is comparable to
the accuracy of 75% to 80% reported in [90]. However, the
accuracy drops to below 25% when the sensing model is built
using samples collected from another site.
Environmental impact. Figure 2a shows that the CSI am-
plitudes collected for the same person is visually different
across sites. To quantify the differences, we calculate the
dynamic time warping (DTW) distance between each pair of
the 10 measurements collected for this person. This met-
ric is often used to quantify the similarity between signal
measurements [69, 73] – the further the DTW distance is, the
less similar two measurements are. The cumulative distri-
bution function (CDF) diagram in Figure 2b suggests that a
larger number of samples have a closer DTW distance when
the measurements are taken from the same environment
over those taken from different environments. The average
DTW distance is increased by 40% when the wireless measure-
ments are taken from a different environment, indicating
that the testing environment has a great impact on wireless
channel metrics. We also found that using directional anten-
nas does not eliminate the problem, which is in line with
the finding in prior research [66]. Clearly, a sensing model
tuned for the hall will be ineffective for the corridor.
Impact of problem sizes. In the second experiment, we
collect the training samples from the target environment,
but we consider more target users. Figure 1b shows that the
accuracy drops quickly as the number of users increases. The
accuracy drops from around 80% to below 60% and 30% when

targeting more than 10 and 60 users, respectively. Later in
this paper, we demonstrate that the same issue is observed
for gesture recognition – as the number of gestures increases,
the accuracy of current sensing methods decreases greatly.
Lessons learned.This example shows that current classifier-
based approaches have to collect the training samples of each
target subject or activity from each deployment environment
and only work for a small problem size. We want to have a
technique that can utilize theWiFi training samples collected
in one site for each new environment. If we can achieve this,
we can then build sensing models for new environments
using the same set of training samples at a low cost. We
would also like the sensing method to work effectively on a
larger problem size to support more subjects and activities.
CrossSense has been designed to address both issues.

3 OVERVIEW OF CROSSSENSE

The focus of our work is on enabling WiFi sensing (1) to
work efficiently across sites by using a single set of training
measurements, and (2) to scale to large problem sizes.
To enable cross-site sensing, CrossSense employs ma-

chine learning to learn a function to roam the WiFi training
measurements collected from one environment to another.
The roaming model takes in WiFi measurements collected
from the data collection site and generates synthetic train-
ing instances as if the synthesize data were collected from
the target environment. The model is trained off-line on a
set of examples collected from the data collection site and
each deployment site. The learned model is used to translate
training measurements for any unseen subjects or activities.
Crucially, the roaming model needs to capture how the envi-
ronment affects the WiFi signal from a small set of examples,
so that we can apply the model to synthesize a larger set of
unseen measurements. This is detailed at Section 4.

To scale WiFi sensing to larger problem sizes, CrossSense
uses multiple models to map the on-site WiFi measurement
to the desired output. It then uses a classifier to select which
expert should be used for the input measurement. Depending
on the characteristics of the input signal, different models
can be dynamically selected. This is different from all prior
WiFi sensing studies that employ a one-size-fits-all model.
We argue that a single model is unlikely to precisely capture
the diverse inputs for a large problem size. This is described
in more details at Section 5.

4 ROAMINGWIFI MEASUREMENTS

CrossSense uses an artificial neural network (ANN) for trans-
lating WiFi sensing measurements across environments. The
motivation for using ANN is twofold. Firstly, ANN can cap-
ture both linear and non-linear relationships, making it well
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Figure 3: Training the roaming model.

suited for generalizing across diverse environments. For ex-
ample, open halls tend to have different multipath effects
than small corridors, requiring a flexible way to model di-
verse types of relationships. Secondly, ANNs are well-suited
for transfer learning and can be used to reduce training costs
for new environments (Section 4.3). In Section 7.7, we also
consider other techniques and conclude that ANNs have the
best overall performance.
The inputs to the roaming model are numerical feature

vectors extracted from previously collected WiFi training
measurements, and the outputs are the expected feature val-
ues of those measurements in the target environment. The
set of features used is described in Section 5.1. Building and
using such a model follows the 3-step process for supervised
machine learning: (i) generate training data (ii) learn a model
(iii) use the model. These steps are described as follows.

4.1 Building a Roaming Model

Figure 3 illustrates the process for building a roaming model.
We first collect some WiFi signal measurements from the
deployment and the data collection sites. We then extract
important quantifiable properties, or features, of the raw
signal data. Finally, we apply a learning algorithm over the
collected data to construct the roaming model.

Figure 4 depicts the structure of our roaming model, which
is a fully connected, feed-forward ANN with 7 hidden layers.
The number of nodes of the input and the output layers is
determined by the dimensionality of the feature set (see Ta-
ble 5.1). The trained, fully-connected network can be pruned
to remove some of the network pathways [31]. We stress
that keeping the network structure simple is essential for
learning an effective model from a relatively small training
dataset. We also evaluate various neural network structures.
This is discussed in Section 7.7.

4.1.1 Generate RoamingModel Training Data. In this work,
roaming model training data are collected from some users.
The subjects (e.g., gaits or gestures) involved in training do
not need to be the same as the ones to be targeted during
deployment. This is because the goal is to learn the wireless
representation translation for a particular task (e.g., gait iden-
tification or gesture recognition) rather than for a specific
subject. Specifically, the roaming model learns from training
samples how to map a WiFi measurement from one environ-
ment to another. Once the model has learned the mapping,

Input Layer Output Layer

f(0)
f(1)
f(2)

f(n)
f(n-1)

Hidden Layer

...
f’(0)
f’(1)
f’(2)

f’(n-1)
f’(n)

...

Figure 4: Our roaming model is a multi-layer neural

network. It takes aWiFi measurement and produces a

synthetic sample for the target environment.

it can then apply the learned knowledge to measurements
of unseen subjects. In our experiments, the training dataset
consists of gait and gesture data collected from the data col-
lection site and each deployment site. A training user needs
to perform the same activity (walking or performing a ges-
ture) in both the deployment and the training environments.
The initial training involves 50 and 10 users respectively
to learn a roaming model for gait identification and gesture
recognition for the first deployment site. Using transfer learn-
ing [87], the number of roaming model training samples can
be reduced by 4x when targeting additional sites without
sacrificing performance (see Section 7.5).
Noise control. Unlike past work that asks users to repeat an
activity a fixed number of times, we use statistical reasoning
to determine the times on a per user basis. Specifically, we
calculate the confidence range of the measurements based on
a 95% confidence interval for four metrics: the maximum, av-
erage, minimum, and standard deviation values of each user’s
measurements; we make sure that the confidence range of
each metric is within 10% of its mean. As a result, in our
experiments, a user on average needs to walk 10 times and
repeat a gesture 5 times to gather clean data. Walking pass
wireless receivers and performing a gesture take less than 5
and 2 seconds respectively.
Training instance pairing. Recall that we need to learn,
from the roamingmodel training data, how tomap a subject’s
WiFi measurement from one site to the other. The mapping
relation must be captured by the training examples. As such,
a roaming model training instance consists of measurements
gathered from the data collection site and the deployment
site for a training subject or activity. Because we have taken
multiple measurements from both sites, a sample from one
site can be mapped to any of the samples gathered from the
other site for the same subject (e.g., a user or gesture). To de-
termine the mapping, we use a linear regression model to fit
the training data. Specifically, we enumerate all possible map-
pings and then choose a mapping that leads to a regression
fitting with the smallest mean squared error. Furthermore,
instead of presenting the raw measurement values to the
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learning algorithm, we transform the WiFi signal data into a
fixed length feature vector. As detailed in Section 5, we use
a range of features to capture diverse behaviors. Therefore,
we generate, from the raw signal measurements of each site,
a training dataset for each feature set.

4.1.2 Learning a Roaming Model. After gathering suffi-
cient training data, we build the roaming model by employ-
ing a supervised learning algorithm. The algorithm takes
in feature values of the data gathered from (1) the data col-
lection site (input) and (2) the deployment site (output). It
produces a roaming model for each feature set. Training is a
one-off cost performed off-line, and the learned model can
be used for any new, unseen subjects without incurring extra
training. Therefore, the training cost can be amortized when
the number of activities to be targeted is greater than that
involved in training the roaming model, which is likely to
be the case for large-scale deployments.
Our roaming model is trained using Back-propagation

with Stochastic Gradient Descent (SGD). For a set of train-
ing examples X1 . . .Xn , SGD attempts to find the network
parameters Θ that minimize the output of a loss function:

Θ = argmin
Θ

1
n

n∑
i=1
ℓ (Xi ,Θ)

where loss function ℓ (x ,Θ) computes the logarithmic dif-
ference between the model output and expected values. In-
tuitively, the goal of the loss function is to make sure that
samples for the same subject are as similar as possible while
samples from different activities are sufficiently discrimina-
tive. It is to note that we use grid-based search to automati-
cally find the optimal hyper-parameters to minimize the loss
on our training data.
Training cost. The total training time is comprised of three
parts: gathering the rawwireless channel metrics, processing
the raw data, and then building a model. Gathering the raw
data consumes most of the total training time, in this work it
took about 14 hours to collect gait and gesture data from 50
users from one environment. In comparison processing the
raw data and learning the model took a negligible amount
of time, less than 20 minutes on a multi-core server.

4.2 Deployment

Once we have built and trained the roaming models – one
model per site, per feature set, we can use them to quickly
translate the sensing model training measurements for each
target subject from one site to another. An alternative is to
map measurements from the deployment environment to the
training environment, and then use the same classifier for
activity sensing. There is no difference in terms of runtime
overhead for this alternative and our approach. Exploiting
this alternative is part of our future work.

Feature 
Extraction

Selected 
Expert

Expert 
SelectorRaw data Prediction

Figure 5: Overview of our mixture-of-experts approach.

4.3 Transfer Learning

Prior work in machine learning has shown that ANN models
trained on similar inputs for different tasks often share useful
commonalities. The idea is that the information learned at
the early layers of a neural network (i.e., those closer to the
input layer) are used to capture the input and are mostly
independent of the optimization goal. The later the network
layers are, the more specialized the layers become.

Transfer learning has been demonstrated to be effective in
processing mobile sensor data [72, 95], and we believe it can
be applied to wireless signals too. That is, we can utilize e.g.,
a trained roaming model between sites A and B to speed up
the process for learning a model between sites A and C. This
is because the first few layers of our ANN model are likely
to focus on abstracting the input WiFi channel metrics and
are largely independent to the model output. Since we use
the same network structure, transfer learning is as simple as
copying the learned weights of the learned model to initialize
the new network. Then we train the model as normal but
with fewer training instances. In Section 7.5, we show that
transfer learning greatly reduces the training cost across
deployment sites and tasks (e.g., using a gait translation
model to speed up training of gesture translation).

5 SCALING TO LARGE PROBLEM SIZES

CrossSense uses multiple distinct expert models to scale
WiFi sensing to larger problem sizes. The expert models
are built from the WiFi training measurements of the target
subjects such as users or gestures. When targeting a new
environment, we use the synthetic training samples produced
by our roaming model to tune the expert models for the new
environment. During deployment, an expert selector decides
which model to use, based on the on-site signal measurement.
This process is illustrated at Figure 5.

5.1 Wireless Signal Features

Table 1 gives the set of features considered in this work. We
use a range of features that were found to be useful in prior
work of WiFi sensing, but new features can be added. These
features are grouped into four categories: (1) statistics of the
wireless channel [2, 60, 90]; (2) compression features [9, 34]
for which we apply the Discrete Wavelet Transform [67]
to the wireless channel metrics to sample the time and fre-
quency information; (3) spectrogram features such as the
normalized energy at the main frequency [76]; and (4) trans-
formed features for which we covert the raw wireless chan-
nel measurements to a different form where discriminative
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Table 1: Wireless signal features used in this work

Statistical Features

Time domain: min/max, min/max 10th/90th, mean, std. devia-
tion, etc. over a time window;
Frequency domain: energy, domain-frequency ratio, FFT peaks;
Compression Features

3-level discrete wavelet transform on the signal data;
Spectrogram Features

normalized energy at the main frequency, the maximum, mini-
mum, average, and variance for the movement speed, etc.
Transformed Features
The signal shape; the autocorrelation and the partial autocorrela-
tion functions, etc.

Table 2: Classification techniques used in the work

Naive Bayes (NB) Random Forest (RF)
Support Vector Machine (SVM) w/ the RBF kernel SVM with a linear kernel
K-Nearest Neighbor (KNN) Adaboost

features can be easily found [12]. To extract the features, we
first remove noise from the raw signal measurement (see
Section 5.3). Next, we extract the feature values from multi-
ple subcarriers of the wireless signal and store the feature
values in a fixed vector of real values.

Supervised learning typically requires feature values to
lie in a certain range. Therefore, we normalize the value of
each features to the range between 0 and 1. We record the
maximum and minimum value of each feature found at the
training phase, and use these values to scale features ex-
tracted from a new signal measurement during deployment.

5.2 Expert Models

To construct the expert models, we consider six classification
techniques listed in Table 2. For this work, a classifier takes
in a feature vector of the input measurement to predict the
target’s label that the input corresponds to. Our classifiers
are a mixture of linear (e.g., KNN) and non-linear (e.g., SVM
with the RBF kernel) models which were proven to be useful
in prior wireless sensing tasks. It is worth mentioning that
other classifiers can be added and the process of expert model
training and selection can remain unchanged.
Each classifier can be used together with one of the fea-

ture sets given in Table 1. To decide which feature-model
combinations should be used as an expert, we perform cross-
validation on the translated trainingmeasurements.We break
the dataset into two parts. We train a feature-model combi-
nation on one dataset (expert model training set), and test the
trained model on another dataset (expert model testing set).
We keep a combination if it either gives the highest accuracy
or can correctly classify testing cases where others fail. As a
result, we keep the 10 combinations given in Table 3.

Table 3: Chosen expert models, sorted by capabilities.

ID Expert: (Feature, Model) ID Expert: (Feature, Model)

1 (Transformed, SVM-Linear) 2 (Spectrogram, SVM-RBF)
3 (Statistics, RF) 4 (Transformed, RF)
5 (Transformed, SVM-RBF) 6 (Statistics, SVM-RBF)
7 (Statistics, NB) 8 (Transformed, Adaboost)
9 (Compression, SVM-RBF) 10 (Compression, KNN)
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Figure 6: Percentages of samples that to be correctly

classified by an expert on a testing dataset.

Expert models are tuned for each environment using the
translated WiFi measurements produced by our roaming
model. Learning in this context is to find model parameters
that can closely correlate the feature values of the translated
measurements to the corresponding subject or activity.

Figure 6 shows the accuracy of each selected expert model
on the expert model testing set for gait identification. Here
we train each expert model on one set of data (i.e., users or
gestures) and test it on another set of data. The collective
scheme is considered to give the correct answer if any of the
expert model in the collection gives the correct prediction.
While no individual expert can correctly classify over 50% of
the test cases, collectively, they can successfully identify all.
Later in Section 7.1, we evaluate this approach on the full
dataset and show that the same observation also applies to
gesture recognition.
We note that expert models are automatically learned

from training data, treating the problem domain and data
patterns as black boxes; new applications and data patterns
would be learned similarly, potentially causing the addition
of new models. Like the roaming model, expert training and
selection are also performed off-line and are an one-off cost.

5.3 Expert Selector

After learning individual expert models, we need to have a
mechanism to determine which expert to use for a given on-
site WiFi measurement. Our expert selector is a KNN classifier
where k is set to 3 which is determined by performing cross-
validation on our training data. We use the translated WiFi
training measurements of the target subjects or activities as
fingerprints for choosing expert models. To determine which
expert models to use, we find which of the three fingerprints
are closest to the input collected during deployment. We
then use the experts that are found, during training, to be
effective for the closest neighboring fingerprints. Neighbor
evaluation is performed by applying the DTW algorithm [52]
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to the de-noised wireless channel metrics. We choose to use
DTW because it is a well-established method for measuring
the similarity between two temporal sequences [73]. We
also note that no training is required for KNN because the
algorithm works directly on the training samples.

We use a Principal Component Analysis (PCA) basedmethod
described in [75] to reduce noise and dimensionality of the
raw measurement. We then choose the first 30 principal com-
ponents given by PCA, which account for over 95% of the
data variance. We record the PCA coefficients and use them
to transform the input collected during deployment. The KNN
algorithm then works on the de-noised input.

Modern WiFi devices typically have multiple transmit and
receive antennas and a wireless channel is typically divided
into multiple subcarriers. Therefore, the wireless channel
metric can be measured independently from each subcarrier.
For this reason, we first use KNN to select three experts from
each subcarrier measurements, and then use majority voting
to choose the final expert model.

Intuitively, learning an expert selector is easier than learn-
ing a one-size-fits-all classifier. This is because there are less
classification labels to learn – as the number of expert mod-
els is typically smaller than the target problem size. It is also
because there are often multiple experts that can correctly
classify a given input and the expert selector only needs to
pick one of them. We also note that one advantage of using
KNN is that the distance used for expert selection can also be
used to measure the prediction confidence, which essentially
provides a degree of soundness guarantee. For example, if
an on-site measurement is too far from any fingerprint, this
might mean that either we do not have a fingerprint for the
target, or the environment has changed significantly where
a retraining of the roaming model is required.

5.4 Computational Cost

The computational overhead of mixture-of-experts mainly
comes from training the expert models. Expert model train-
ing is a one-off cost unless new subjects or activities are
targeted. It takes less than 15 minutes to train in parallel
our 10 expert models on a multi-core server. This can be
further accelerated using multiple servers to provide a near
real-time model update. The overhead of selecting and using
the expert is negligible, as only one model is used at a time.
In our case, the expert selector takes less than 1 second to
run, and classification takes less than 0.5 second by running
the most expensive expert model, Adaboost, on a PC.

6 EXPERIMENTAL SETUP

We thoroughly evaluate CrossSense using over one million
wireless measurements collected from 100 users across three
sites. All our experiments were approved by our IRB.

6.1 Evaluation Scenarios and Setup

Application scenarios. CrossSense is evaluated on two
WiFi sensing applications: gait identification and gesture
recognition, and two wireless channel metrics: CSI and RSSI.
Evaluation environments. We test CrossSense in three
indoor environments of different sizes. Figure 7a shows the
layouts and wireless setups of the three scenes. The first is a
spacious hall entrance which mimics the reception area of a
building. The second is a smaller, narrow corridor, and the
third is a typical indoor environment with furniture include
desks, chairs, bookshelves and appliances (see Figure 7b). The
CDF diagram in Figure 8a suggests that the multipath effects
of our evaluation environments can have a great impact
on the wireless channel metrics. A larger number of gait
samples (for the same person) have a further distance if the
measurements are collected from two different environments.
Figure 8b projects 60 measurements (20 per site) for the user
seen in Figure 2a onto a 2-dimensional space using PCA. As
can be seen from the diagram, measurements from the same
environment are more similar to each other; and as a result,
we can group measurements into three clusters based on
where the data come from.
Wireless setup. As an example, Figure 7b depicts the wire-
less setup of scene-3. To collect CSI, we used a mini PC with
an Intel 5300 NIC as the receiver and a TP-Link WDR7500
wireless router as the transmitter (sender). The sender and
the receiver are equipped with three antennas to acquire
and record wireless channel measurements from 30 channels
for each antenna. We run an open source CSI measurement
tool [24] on the mini PC to obtain CSI measurements in a
5GHz WiFi environment. To measure the CSI, the sender
pings the receiver at a rate of 1,000 packets per second, which
is a standard sample rate used in past work [51, 85]. We use
a XiaoMI note2 smartphone as the receiver to collect RSSI
measurements. We varied the distance between the sender
and the receiver in different sites (ranging from 0.4 to 2
meters). LikeWiAG [66], we collect gesture data from five
positions. This is illustrated in Figure 7c where each data
collection point gives the user’s absolute position in centime-
ters (using the sender as the origin) as well as the orientation
with respect to the receiver. The work of WiAG shows that a
change in position of up to 31 cm or a change in orientation
of up to 45 degrees has little impact on gesture recognition.
Participants. We recruited 100 volunteers (52 females) to
participate in our experiments. As can be seen from Figure 9,
our subjects have different heights, weights and somatotype,
as indicated by various body mass index (BMI) values, and
thus represent wide user groups.
Gait data. To collect CSI data for gait identification, each
participant walked in one direction, from the entrance of
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Figure 7: Experiment setup of evaluation site layouts (a), wireless setup (b) and gesture collection positions (c).

Table 4: Gestures used in our evaluation. These include primitive gestures and combinations of primitive gestures.

ID Gesture ID Gesture ID Gesture ID Gesture ID Gesture ID Gesture ID Gesture

1 Flick 7 Pull 13 Hand moves down 19 Swipe right 25 Up-down 31 Cooking 37 Brushing teeth
2 Double flick 8 Throw 14 Hand moves up 20 Swipe left 26 Down-up 32 Studying 38 Put up the cigarette
3 Punch 9 Circle 15 Kick 21 Infinity 27 Sit down 33 Taking a bath 39 Put down the cigarette
4 Punch x 2 10 Dodge 16 Bowling 22 Left-right 28 Zoom In 34 Washing dishes 40 Inhale/exhale smoke
5 Level 11 Drag 17 Right 23 Right-left 29 Zoom Out 35 Turn on washing machines
6 Push 12 Strike 18 Left 24 Head left 30 Eating 36 Play video games
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Figure 8: DTW distances of gait measurements for the
same person increase if samples are collected fromdif-

ferent environments (a). The measurements of a user

can be grouped into three clusters on a 2-d PCA space,

each corresponds to where the data are gathered (b).
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Figure 9: Heights, weights and BMIs of our participants
who represent a wide range of user groups.

the room towards the other end of the room, to pass the
two wireless devices at their natural speeds. We collected 20
wireless channel measurements per user per site, which yield
in total 6,000 activity samples (100 users × 20 measurements
per user × 3 sites).
Gesture data. We consider 40 gestures presented in prior
work [2, 26, 32, 50, 60, 66, 77, 96]. The list of gestures is
given in Table 4. These include primitive gestures like hand
moves down, combinations of primitive gestures such as up-
down (the hand first moves up and then moves down), and

more complex patterns like putting up the cigarette [96]. Our
evaluation targets a significantly larger number of gestures
than any of the prior work seen to date, which typically was
evaluated using a handful of gestures. We also stress that
for gesture recognition, it is the number of target gestures
matters as there is little difference for a gesture performed by
different users. To collect gesture data, each user repeatedly
perform each gesture 10 times in each site. This results in
1,200,000 activity samples (100 users × 40 gestures × 10 times
per gesture × 2 channel metrics × 5 positions × 3 sites). Like
other gesture recognition systems [2, 50, 66], we require the
user to perform a preamble gesture – a punch in our case –
to determine the location and orientation of the user.
Naming conventions.We use collection_site - testing_site
to denote a cross-site scenario. For example, s1-s2 means
that we use the measurements collected in scene-1 to gen-
erate synthetic training examples for training and testing
a sensing model for scene-2. Moreover, cross-site transfer
learning is denoted as (si − sj , sk ), which is a pair of (i) an
existing roaming model from sites i to j, and (ii) the target
model for the new site k . For instance, (s1 − s2, s3) means
that we first learn a roaming model,m1, to translate WiFi
training samples from scene-1 to scene-2, and then transfer
the learned model,m1, to build a new roaming model,m2, to
translate measurements from scene-1 to scene-3.

6.2 Evaluation Methodologies

Model Evaluation. We use cross-validation to evaluate our
approach. The expert models are trained on the synthetic
WiFi trainingmeasurements of the targets in a cross-site sens-
ing scenario. We report the geometric mean accuracy across
evaluation scenarios using the top-1 score, i.e., we check if
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the model’s output of the highest probability matches the
expected answer. There is minor change in results when us-
ing top-2 and top-3 scores. Performance variances are shown
using min-max bars. Compared to the arithmetic mean, the
geometric mean is widely considered as a better performance
metric, as it can better minimize the impact of outliers [20].
Comparisons. We compare CrossSense against four state-
of-the-art CSI-based sensing methods. These include Wi-
Who [90] andWifiU [76] for gait identification, andWiAG [66]
andWiG [26] for gesture recognition.We use the hand-tuned
features of these competitive methods to construct sensing
models. In addition to CSI, we also apply CrossSense to
RSSI-based gesture recognition and compared it with Tele-
pathicPhone [60]. We compare our roaming method to Fit-
Loc [13], a WiFi signal translation approach for RSSI-based
localization.
Implementation. CrossSense2 is implemented in scikit-
learn [49] and Matlab. It was trained on a high-performance
server, but ran on a desktop PC with a dual-core 2.4GHz
Corei5 CPU and 16GB of RAM running Ubuntu 16.04.

7 EXPERIMENTAL RESULTS

Highlights of our evaluation are as follows:
• CrossSense improves the classification accuracy of
state-of-the arts from around 20% to over 80% under
our settings (Section 7.1).

• CrossSense delivers consistently good performance
regardless of the problem size (Section 7.2).

• Our roaming scheme allows existing WiFi sensing
methods to work effectively across sites using a single
set of WiFi training measurements (Section 7.3).

• Transfer learning reduces the number of samples needed
for learning the roaming model by 4x (Section 7.5).

• We thoroughly evaluate CrossSense and provide de-
tailed analysis on its working mechanisms.

7.1 Overall Performance

Figure 10 comparesCrossSense against alternative approaches
across training-testing-site pairs (i.e., using the WiFi train-
ing measurements collected from one site to build sensing
models for another site). In all experiments, we make sure
that the training and the testing datasets are different. As
can be seen from the figure, existing approaches give disap-
pointing results – less than 20% for most of the cases. This
is because they cannot translate and re-use training mea-
surements to build sensing models for a new environment.
Further, the precision of existing approaches drops quickly as
the number of target users or gestures increases. By contrast,
CrossSense achieves the best accuracy for all evaluation
2Code and data are available at: https://goo.gl/4z4iXv.

scenarios, delivering an average accuracy of above 80% (and
over 90% for CSI-based gesture recognition). CrossSense
also gives less than 5% reduction in accuracy as the prob-
lem size increases from the smallest setting to the largest
one. Compared to the over 2x drop in accuracy given by
other schemes, CrossSense thus delivers the most reliable
performance.

Figure 11 shows that CrossSense delivers consistent per-
formance across site pairs. While CrossSense only uses one
set of WiFi training measurements, its performance is com-
parable to or even better than other approaches when their
sensing models are trained using samples collected from
the target environment. As such, CrossSense allows scaling
WiFi sensing to new environments and larger problem sizes
with higher precision but at a lower cost.

Figure 12 summarizes how often an expert gives a cor-
rect classification across evaluation sites when targeting 100
users and 40 gestures. No single model correctly classifies
more than 60% of the test cases, and the model capability
varies from one environment to the other. The results em-
phasize that an universal model is unlikely to deliver good
performance for large-scale and cross-site sensing problems.

Finally, we note that a theoretically perfect expert selector
for our collection of expert models would give an average
accuracy of 94.5% and 98.5% respectively for CSI-based gait
identification and gesture recognition. The results suggest
that our chosen expert models are highly effective, which
collectively lead to better sensing performance. If we can
improve the accuracy of our expert selector, we can then
further improve the accuracy of CrossSense.

7.2 Changing Problem Sizes

Figure 13 shows how the accuracy of CSI-based sensing
changes as the problem size increases. To isolate the issue,
we use the target’s WiFi training measurements collected
from the deployment site to build sensing models. We pick
a given number of randomly chosen users and gestures as
sensing targets, and repeat this process until all users and
gestures are tested for at least once.

Using training measurements collected from the target en-
vironment does help existing approaches on a small problem
size to deliver an accuracy of around 80%. However, perfor-
mance of the competitive schemes degrades as the problem
size increases. Their accuracy can drop by over 20% when
targeting more than 50 users or 10 gestures. When moving
from the smallest setting to the largest one, their accuracy
can drop by over 50%. By contrast, CrossSense delivers not
only the best accuracy for all testing scenarios but also con-
sistent performance across test cases. The drop in accuracy
for CrossSense is much smaller (less than 2% on average)
when the problem size increases from the smallest to the
largest one.
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Figure 10: Overall performance per problem size across site pairs and cross-validation. CrossSense significantly

outperforms all competitive approaches by delivering the best and the most robust performance.
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Figure 11: Accuracy distributions for CrossSense per training_data_collection-testing-site pair. The thick black

line shows where 50% of the data lie. CrossSense delivers consistently good performance.
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Figure 12: How often (as percentages) an expert model

in Table 3 correctly classifies an input across sites.

2 0 4 0 6 0 8 0 1 0 00
2 0
4 0
6 0
8 0

1 0 0

 

 

Ac
cu

rac
y (

%)

#  T a r g e t  u s e r s

 C r o s s S e n s e
 W i f i U  
 W i W h o

(a) CSI-based gait identification

5 1 0 1 5 2 0 2 5 3 0 3 5 4 00
2 0
4 0
6 0
8 0

1 0 0

 

 

Ac
cu

rac
y (

%)

#  T a r g e t  g e s t u r e s

 C r o s s S e n s e
 W i A G  
 W i G

(b) CSI-based gesture recognition

Figure 13: CSI-based sensing performance with differ-

ent numbers of target subjects. CrossSense provides

consistently good performance.

7.3 RoamingWiFi Training Measurements

We now examine if the generated synthetic training sam-
ples are useful. To isolate the issue, we test all models on
a small-scale problem of six target users and gestures at a
time. Our roaming model is trained on data collected from
users and gestures that are not used in testing. The roaming
model is trained on 2,000 randomly chosen samples (1,000
measurements per site), and we repeat this process to ensure
that each user and gesture is tested at least once.

Figure 14 compares the accuracy of each method with and
without using our roaming scheme. Directly using training
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Figure 14: Cross-site sensing with and without using

our roaming mechanism. Roaming training measure-

ments helps existing methods to achieve comparable

precision as if the training samples were collected

from each deployment site.

samples of the target subjects collected from another site is
a poor choice, giving only around 20% accuracy, which is
only slightly better than making a random guess from the
six possible options. Our roaming model gives a clear boost
to cross-site WiFi sensing, improving the sensing accuracy
by over 3.5x with an accuracy of above 75% (and over 80% for
most of the cases). This level of performance is comparable to
the accuracy when the model is built using training samples
collected from the target environment. Here, we want to
highlight that our roaming scheme is particularly useful
when the sensing targets (e.g., visitors) constantly change,
because the roaming model only needs to be trained once
but can apply to unseen sensing targets.

7.4 CrossSense versus FitLoc

Wireless signal transfer has been exploited in prior work
in indoor localization to translate wireless fingerprints be-
tween different areas within an environment. The transfer-
ring method employed by FitLoc [13] is the current state-
of-the art. This experiment compares our roaming model
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Figure 15:Comparison of theCrossSense’s roamingmodel

with the one used by FitLoc. The existing signal transfer-

ring method is ill-suited for cross-site WiFi sensing.

against FitLoc’s transferring method. We use the translated
(or synthetic) WiFi training examples collected from one site
to build our expert models for another site. We then test
the trained expert models on unseen WiFi measurements
collected from the testing environment. Note that we use the
same set of features to train the expert models, albeit that the
translated samples given by FitLoc and CrossSense from
the same raw WiFi training measurements are different. The
experiment targets 100 users and 40 gestures.
Figure 15 shows that the method used by FitLoc is ill-

suited for our problems, leading to a low classification accu-
racy – less than 10%. This is because the translated measure-
ments produced by FitLoc have lost discriminative informa-
tion and do not provide distinguishing features to separate
sensing targets. By contrast, our roaming model can capture
the essential characteristics of the wireless representations,
and thus leads to better classification performance.

7.5 Transfer Learning

This experiment applies transferring learning (TL) to learn a
roaming model for both a new site and a different sensing
task. The accuracy is calculated by applyingWiWho to six
target users andWiAG to six gestures using cross-validation.
TL for a new site. Sub-figures a and b of Figure 16 show
the results for using TL to learn a roaming model for an
additional site. Figure 16a gives the mean accuracy across
site permutations when the model is trained using 500 sam-
ples. Using TL, we achieve a comparable accuracy of over
80% and 90% respectively for gait identification and gesture
recognition, but using only one quarter of the samples that
would be required without TL. Figure 16b shows the average
performance when the new roaming model is trained with
different numbers of examples for site permutation (s1−s2, s3).
TL reduces the number of samples needed to reach a certain
level of accuracy by approximately 4.5x, which in real terms
means a saving of tens of hours for training data collection.
TL across tasks. Figures 16 c and d show the resulting ac-
curacy when the roaming model is built from a model that
was previously designed for another sensing task. Figure 16c
gives the accuracy for different cross-site configurations.

Figure 16d shows the accuracy achieved when different num-
bers of training samples are used to build a roaming model
to transfer sensing model training samples from scene-1 to
scene-2. The use of TL across problem domains can match
the performance given by direct training, but requires nearly
4x fewer training examples.
Visualize network states. In an attempt to explain TL, Fig-
ure 17 depicts the internal state of the two roaming models –
each translates a CSI measurement from scene-1 to scene-
2 and scene-3, respectively. We use a heatmap to visualize
the intensity of each neuron activation of a network layer.
From the top to bottom, we begin with a specific input fea-
ture vector. As information flows through the network, the
layers become progressively more specialized to the target
deployment environment. The activations from the top to
the bottom layers become increasingly diverge. The mean
variance of activations across the two models increases by
three folds from 0.70 at the first hidden layer to 2.25 at the
output layer. TL allows us to reuse the early layers of the
network to speed up learning when targeting a new site or
task. We also see that the output feature vectors are signif-
icantly different from the input. This reinforces our claim
that a WiFi training measurement collected from one site
must be translated before it can be used in another site.

7.6 Adapt to Environmental Changes

Changes in the environment could have an impact on fine-
grained sensing like gesture recognition. Prior work requires
to recollect training data to update the sensing model if this
happens.WiAG tackles the problem by using training sam-
ples collected from one location to create virtual samples for
other target locations. Here we compare our roaming model
against the virtual sample generation scheme of WiAG.

In the experiment, we added and removed a few stationary
objects such as chairs and tables near the wireless devices.
We repeated this process 10 times for each environment. This
experiment was conducted over a period of three months.
To adapt to the change, CrossSense first needs to collect
10 new samples from each target location from the changed
environment (50 new samples for the five gesture locations
in Figure 7c); it then uses the new samples to update the
roaming model to generate new synthetic samples to refresh
the sensing model. Collecting a gesture sample takes around
5 seconds, yielding a total of four minutes for 50 samples.
Our initial roaming model is trained using 2,000 samples,
which is a one-off cost. For WiAG, we use 500 new training
samples to update its gesture translation model whenever
the environment has changed. To isolate the impact of prob-
lem sizes, we use WiAG’s classifier to recognize six target
gestures. Our roaming model is trained on gestures that are
not used in testing.
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Figure 16: Cross-site (a & b) and cross-task (c & d) transfer learning (TL). The accuracy is calculated by applying WiWho to

six users and WiAG to six gestures. TL significantly reduces the number of samples required to learn a new roaming model.
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Figure 18: SNR variances due to environmental changes

(a) the resulting accuracy using synthetic samples pro-

duced byWiAG and CrossSense (b).

The violin diagram in Figure 18a shows the distribution
of the signal-to-noise ratio (SNR) variance after the environ-
ment has changed. This is calculated from the participants’
positions. Figure 18b shows that our roaming model uses 10x
fewer new samples to refresh the sensing model, but leads
to a better accuracy. This is because our ANN-based model
together with TL can better capture the environmental im-
pact to the wireless signal; and consequently, it generates
synthetic training samples with a higher quality. To match
the level of accuracy given by our roaming model, WiAG
would require to collect at least 1,200 new samples every
time in each of our testing environments. While CrossSense
incurs slightly higher setup overhead, it can adapt to the
change faster in a constantly evolving environment.

7.7 Roaming Model Analysis

We also compare our chosen roaming model against alterna-
tive modeling techniques and neural network structures.
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(b) Compression features.
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(c) Spectrogram features.
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(d) Transformed features.

Figure 19: Comparisons of our ANN-based roaming model

with other modeling techniques across feature sets for gait

identification. Our model has the lowest mean square error.

Alternative modeling techniques. Figure 19 compares
our ANN-based roaming model against four alternative re-
gression model: support vector machines (SVM), naïve Bayes
(NB), random forests (RF) and linear regression (LR), for each
of the four feature sets listed in Table 1. We consider CSI-
based gait identification and use the same process and data
to train all models. The results are given in Figure 19. Since
a measurement from one site can be mapped to multiple
samples of the same subject collected from the other site,
we calculate the mean square error for each possible map-
ping and show the range of errors on the min-max bars. The
results suggest that the ANN model gives the lowest error
across feature sets. Using an ANN also allows us to employ
TL to reduce the cost for learning the roaming model.
Impact of neural layers and training samples. Figure 20a
shows the classification accuracy when the roaming model
is constructed with different numbers of hidden layers. The
accuracy is calculated by applyingWiWho andWiAG to six
users and six gestures respectively using cross-validation;
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Figure 20: Impact of the number of hidden neural lay-

ers (a) and training samples of the roaming model (b).
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Figure 21: CSI-based gait identificationwhen using dif-

ferent numbers of expert models to target 100 users.

and the roaming model is trained using 2,000 examples with-
out TL. We observe that using 7 and 10 hidden layers give the
best performance for gait identification and gesture recog-
nition respectively. In this work, we choose to use a unified
model structure with 7 hidden layers as it would require
less training examples compared with the 10-hidden-layer
alternative. Figure 20b reports a steady improvement in sens-
ing model accuracy when using more examples to train the
roaming model. Here we need more training data to build the
gesture roaming model because gesture recognition needs
to capture the subtle change of wireless signals at a finer-
grained level. The figure also suggests that one can continu-
ously improve the sensing model by providing more training
samples over time (see also Section 7.9).

7.8 Impact of the Expert Model Size

Figure 21 shows how the number of expert models affects
the gait identification accuracy on each feature set. In addi-
tion to the six models listed in Table 2, we also consider four
additional techniques: ANNs, logical regression, stochastic
gradient descent (SGD) and linear discriminant analysis (LDA).
The accuracy is calculated on a per feature set basis by apply-
ing 10-fold cross-validation to the wireless measurements.
We target 100 users, test all possible model mixtures, and
collect the WiFi measurements from the target environment.
As we increase the number of expert models, there is an

improvement in accuracy, confirming that a single model is
insufficient. At the same time, we observe that the accuracy
reaches a plateau when using six classifiers. We choose to
use six classification techniques in the work because there is
little gain in accuracy after that point to justify the increased
cost in expert model training.
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Figure 22: Using samples collected in the deployment

environment to improve accuracy.

7.9 Continuous Learning

Figure 22 shows that the sensing performance can be contin-
uously improved using samples collected from the deploy-
ment environment. The results are obtained by applying
our mixture-of-experts method to 100 users and 40 gestures.
The accuracy of the initial sensing model (learned using syn-
thetic samples) can be improved by 4% for gait identification
and 2% for gesture identification as we adding more samples
obtained from the deployment site to the training dataset.

8 DISCUSSIONS AND LIMITATIONS

Naturally there is room for further work and improvements.
We discuss a few points here.
Training cost.While our approach significantly reduces the
cost of training data collection, it does not eliminate it. To
further reduce the cost of learning the roaming model, one
can employ a continual learning strategy, i.e., starting with
a modest accurate model and then using the data collected
in target environment to continuously improve the model
over time (see Section 7.9). Active learning [15, 43, 44] can
also be employed to direct the attention to collect samples
that are most likely to improve the accuracy of the model.
Regression-oriented problems. CrossSense is evaluated
on classification-based sensing problems. For regression-
based problems, e.g., tracking and localization [84], we would
need to replace our current classifier-based expert models
with regression models. This may also require employing
new features, but our methods for training measurement
roaming, feature engineering and expert model tuning re-
main applicable.
Deep learning based feature representation. Recently,
deep neural networks [17, 86] are shown to be powerful in
extracting feature representations. However, they require
many more training examples than that we use, which would
incur prohibitive overhead because of user involvement. On
the other hand, deep learning can be used within a continual-
and transfer-learning framework to replace some of our ex-
pert models or obtain signal embeddings [21] as features.
Other sensing platforms.We believe CrossSense can be
applied to radio frequency (RF) based sensing [6, 70, 83] and
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the extension is our future work. It would also be interest-
ing to see if CrossSense can be combined with specialized
sensing hardware [5, 7, 37] to provide higher precision.
Limitations. CrossSense is evaluated in a controlled en-
vironment (see Section 6.1). Limitations of our evaluation
include using a single-link wireless setup and a single testbed
across environments, a relatively short distance (within two
meters) between the wireless transmitter and the receiver,
only a single person is presented (i.e., no interference from
other people around), and the changes in one environment
over time are minor (e.g., furniture movements) rather than
drastic (e.g., opening or closing doors). In future work, we
plan to further assess the performance of CrossSense in
more complex settings.

9 RELATEDWORK

Recent years have witnessed a growing interest in exploiting
wireless signals for tasks like gait identification [27, 76, 90,
92], gesture recognition [8, 26, 32, 40, 42, 53–57, 62, 66, 71, 93],
localization [11, 63, 64, 69, 84, 88], health and risk assess-
ment [4, 7, 25, 36, 38, 45, 47, 48, 68], activity detection [10, 14,
58, 59, 74, 75, 77, 80, 81, 89], human detection [18, 82, 97, 98]
and emotion recognition [94]. Indeed, wireless sensing has
moved from an a research niche [78] to a mainstream activity.

Wireless sensing maps a wireless measurement to an out-
put. The dominant approach in most sensing applications
employs a classifier that requires collecting the targets’ train-
ing data from each deployment environment. WiAG [66]
tackles the problem through generating virtual training sam-
ples for different locations in a single environment. However,
WiAG is designed for gesture recognition but not cross-site
sensing. Our work builds upon WiAG, utilizing its direction
and location identification method to offer a generic frame-
work for cross-site sensing. Other approaches use a so-called
parametric approach whereby certain characteristics of the
signal are linked with target activities. Parametric techniques
are mostly limited to specific application areas, with gesture
recognition being a prominent example [2, 32, 50], and a
small set of target activities. It is worth mentioning that an
alternative approach for cross-site sensing is to leverage the
frequency modulated carrier wave (FMCW) to track activi-
ties [3, 6, 41]. Such an approach can generalize to different
environments and handle multipath. However, it is not com-
patible with the commercial-off-the-self wireless devices.

As we have shown in the paper, another significant draw-
back of prior sensing methods is that they typically only
work on a small problem size. We address this problem by
combing and selecting multiple sensing models.

Transfer learning is shown to be useful in activities recog-
nition [16], localization [46], crowdsourced mobile activity
learning [95], and human activity recognition using sensor
data [72]. Previous studies use transfer learning to translate

training data, features or fine-tuning models for mobile sen-
sor data. CrossSense builds on these past foundations to
enable cross-site and cross-domain WiFi sensing.
Our mixture-of-experts approach is a form of ensemble

learning [91]. Ensemble learning has been used in video-
based gesture recognition [79] and gait identification [22],
face recognition [23], information filtering [61], and other
optimization tasks [19, 39]. However, no work so far has
employed ensemble learning for WiFi sensing and this work
is the first to do so. We would like to stress that the goal of
CrossSense is not to advance ensemble learning; instead, it
uses the technique together with signal transferring methods
to design a general learning framework for wireless sensing.

10 CONCLUSIONS

This paper has presentedCrossSense, a framework to enable
WiFi sensing to work effectively across deployment sites and
to target a large number of sensing targets. To reduce the cost
and human involvement for cross-site sensing, CrossSense
employs a machine learning model to generate, from a sin-
gle set of WiFi training measurements, synthetic training
samples for each deployment environment. To enable WiFi
sensing to scale up to a larger problem size, CrossSense
integrates a mixture-of-experts based sensing approach. It
determines at runtime, the best sensing model out of a collec-
tion of models (experts), as there is no “one-size-fits-all" uni-
versal best model. Such an approach provides a mechanism
to gracefully add additional new sensing models to target a
wider range of sensing scenarios and tasks. We demonstrate
the effectiveness of CrossSense by applying it to gait iden-
tification and gesture recognition and thoroughly evaluate
it using over 1.2 million WiFi activity samples. Compared
to prior work, CrossSense delivers the best and the most
reliable performance across evaluation scenarios, and can
work efficiently on problem sizes that are significantly bigger
than that the current approaches can effectively handle.
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