1812.06743v1 [cs.NI] 17 Dec 2018

arxXiv

Demo: Linux Goes Apple Picking: Cross-Platform Ad
hoc Communication with Apple Wireless Direct Link

Milan Stute
Secure Mobile Networking Lab
TU Darmstadt, Germany
mstute@seemoo.de

ABSTRACT

Apple Wireless Direct Link (AWDL) is a proprietary and
undocumented wireless ad hoc protocol that Apple intro-
duced around 2014 and which is the base for applications
such as AirDrop and AirPlay. We have reverse engineered
the protocol and explain its frame format and operation in
our MobiCom ’18 paper “One Billion Apples’ Secret Sauce:
Recipe of the Apple Wireless Direct Link Ad hoc Protocol”
AWDL builds on the IEEE 802.11 standard and implements
election, synchronization, and channel hopping mechanisms
on top of it. Furthermore, AWDL features an IPv6-based data
path which enables direct communication.

To validate our own work, we implement a working proto-
type of AWDL on Linux-based systems. Our implementation
is written in C, runs in userspace, and makes use of Linux’s
Netlink API for interactions with the system’s networking
stack and the pcap library for frame injection and recep-
tion. In our demonstrator, we show how our Linux system
synchronizes to an existing AWDL cluster or takes over the
master role itself. Furthermore, it can receive data frames
from and send them to a MacBook or iPhone via AWDL. We
demonstrate the data exchange via ICMPv6 echo request
and replies as well as sending and receiving data over a TCP
connection.

CCS CONCEPTS

« Networks — Ad hoc networks; Link-layer protocols;

KEYWORDS
AWDL, IEEE 802.11, Apple, macOS, iOS, Linux, Netlink

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in The 24th Annual International Conference on Mobile Computing and Net-
working (MobiCom ’18), October 29-November 2, 2018, New Delhi, India,
https://doi.org/10.1145/3241539.3267716.

David Kreitschmann
Secure Mobile Networking Lab
TU Darmstadt, Germany
dkreitschmann@seemoo.de

Matthias Hollick
Secure Mobile Networking Lab
TU Darmstadt, Germany
mbhollick@seemoo.de

ACM Reference Format:

Milan Stute, David Kreitschmann, and Matthias Hollick. 2018. Demo:
Linux Goes Apple Picking: Cross-Platform Ad hoc Communication
with Apple Wireless Direct Link. In The 24th Annual International
Conference on Mobile Computing and Networking (MobiCom ’18),
October 29—November 2, 2018, New Delhi, India. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3241539.3267716

1 INTRODUCTION AND BACKGROUND

New types of proximity-based services such as contactless
payment (e. g., NFC), location-aware advertisements (e. g.,
Bluetooth LE), user-aware security measures (e. g., Apple
Auto Unlock), peer-to-peer file transfers (e.g. Apple Air-
Drop), and media streaming (e. g., Apple AirPlay) have re-
ignited the interest in wireless ad hoc communications. One
key enabling technologies for such services is AWDL which
provides Wi-Fi speed data transfers between neighboring
devices but is—unfortunately—only available in Apple de-
vices. In our MobiCom’18 paper [7], we investigated the
workings of this protocol, released an open source Wire-
shark dissector [3], and conducted a performance evaluation
with Apple’s implementations. In this paper, we draw on
these findings and present a working prototype of AWDL as
a Linux userspace daemon which can take part in the AWDL
election and synchronization process, can be discovered by
others, and receives and transmits data frames from and to
other AWDL devices. Our implementation integrates itself in
the Linux networking stack by providing a virtual network
interface such that existing IPv6-capable programs can use
AWDL without modification. Our setup consists of a Linux-
based machine and macOS/iOS devices, and we can show
that arbitrary programs (e. g., ping and netcat) successfully
run over our AWDL implementation. Our work proves that
cross-platform ad hoc communication is feasible and we
provide a base for future cross-platform ad hoc applications.

2 IMPLEMENTATION

We implement our prototype in plain C for performance
reasons and to facilitate porting the code to other platforms.

https://doi.org/10.1145/3241539.3267716
https://doi.org/10.1145/3241539.3267716

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

- S Sfunction triggered
IPv6-capable program, Z by event loop R
e.g., ping or netcat & ==~ control flow 5
e data flow A
query A
(IPv6 stack)W e
ﬁ 4 IPv6 neighbor o,
- - 1= table 3
(virtual interface (awdl0)) | 8
| ®
|
13
- 1®
receive convert to 13 parse o
Ethernet Ethernet 1= |_TLVs J 1 V
S |
B R (o)

update

neighbors synchronize

action period. create

AWDL action

(9dedsiasn)) uowraep TAMV

$ set monitor mode, channel
(socket) (nl8o211, cfgso211)

v 4 v 4 4
(mac80211)8
¥ 3
(Wi-Fi driver (e.g., ath9k)] 8
v 4
(Wi-Fi device]

Figure 1: Architecture of our AWDL prototype and in-
tegration in the Linux networking stack.

2.1 Overview

We depict the architecture and integration of our AWDL
daemon in Fig. 1. At its core, the daemon uses an event
loop (libuv?) that (1) listens on the Wi-Fi interface for new
IEEE 802.11 frames using libpcap,? (2) listens on a virtual
Ethernet interface for new traffic from the host system, and
(3) periodically schedules the transmission of AWDL action
frames that carry information used for peer discovery, syn-
chronization, and election procedures.

When a new Wi-Fi frame is available on the monitor-
ing interface, we check whether the frame is an AWDL ac-
tion or data frame. Other frames such as regular IEEE 802.11
frames are dropped by a BPF filter that only forwards frames
with the AWDL-specific BSSID 00:25:00: ff:94:73. If we

http://libuv.org
2https://github.com/the-tcpdump-group/libpcap

Milan Stute, David Kreitschmann, and Matthias Hollick

receive an action frame, we derive [2] a link-local IPv6 ad-
dress from the source Ethernet address and add both to the
system’s neighbor table. Based on the included Type-Length-
Value (TLV) fields, we run the election and synchronization
mechanisms as described in [7]. If we receive a data frame,
we strip the AWDL data header, replace it with a regular
Ethernet header, and forward the frame to the virtual awd1@
interface. We do the inverse for Ethernet frames that we re-
ceive from awd1@ and add the AWDL sequence number from
an internal counter. In addition, the daemon periodically
emits AWDL action frames that it builds from its internal
synchronization and election state. We document the com-
plete frame format in our Wireshark dissector [3].

2.2 Portability and Future Work

Since our prototype is written in C, it should be possible to
port the code to different operating systems. However, we
have the following dependencies that each target platform
needs to provide: (1) a Wi-Fi card supporting active monitor
mode with frame injection to be able to receive and send
IEEE 802.11 frames, (2) a means to change the Wi-Fi channel
such as nl80211, (3) access to the system’s IPv6 neighbor table,
and (4) a facility to create virtual network interfaces such as
TUN/TAP. In principle, this should allow implementations
on Android smartphones where monitor mode and frame
injection can be enabled using the Nexmon framework [5].
Our prototype currently lacks a channel switching mecha-
nism that would be required to follow nodes to a different
channel. However, since AWDL devices usually meet on one
social channel (6, 44, or 149), our prototype still works by
continually listening on a fixed channel.

2.3 Enabling AWDL in macOS and iOS
Third-party Applications

On Linux, every program using sockets can use our awd10
interface. On macOS, programs must set an XNU-specific
SO_RECV_ANYIF? socket option.? Using this option, any soft-
ware on macOS using sockets can support AWDL, thus, en-
abling cross-platform applications with minor modifications
to the code. As an alternative, programs on macOS and i0S
can use the higher-level NetService API [1] which acti-
vates mDNS/DNS-SD and establishes TCP connections via
the awd10 interface. We provide an example application im-
plementing a TCP-AWDL proxy [6]. For cross-platform com-
munication, the Linux system must support mDNS/DNS-SD,
e.g., via avahi.’

3https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/sys/socket.
h

“The socket option is the “default packet filter” that we discuss in [7].
Shttps://www.avahi.org

http://libuv.org
https://github.com/the-tcpdump-group/libpcap
https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/sys/socket.h
https://opensource.apple.com/source/xnu/xnu-4570.41.2/bsd/sys/socket.h
https://www.avahi.org

Demo: Cross-Platform Ad hoc Communication with AWDL MobiCom ’18, October 29-November 2, 2018, New Delhi, India

Netcat (TCP)

ICMPv6

Figure 2: Demonstrator setup consisting of a Linux-
based APU board, an iPhone 8, and a MacBook Pro.
The terminal on the MacBook’s screen shows a work-
ing TCP-over-AWDL connection between the APU
board and the MacBook.

3 DEMONSTRATOR

We briefly summarize our demonstrator devices, the activi-
ties that the attendee can see, and list our requirements for
our on-location setup. We show our setup in Fig. 2.

3.1 Devices

Our AWDL implementation runs on an APU board [4] with
a Qualcomm Atheros AR928X Wi-Fi card which implements
the IEEE 802.11n standard and uses the ath9k driver which
provides frame injection in monitor mode. We use various
Apple devices such as iPhone and MacBook to demonstrate
cross-platform communication.

3.2 Activities by Attendee

We can offer to show different aspects of our cross-platform
communication depending on the attendees’ demands.

e We can show the neighbor tables in both Apple and
Linux implementations which contains the AWDL peers
if they emit action frames.

e We can conduct a Wireshark live capture of AWDL
frames and dissect their content. We can then also
analyze these capture files w.r.t. election behavior and
synchronization accuracy similar to [7].

e We can send and receive ICMPv6 echo requests and
replies by using ping.

o We can establish a TCP connection between two AWDL
nodes and send messages by using netcat.

e We invite attendees to do all of the above with their
own macOS or i0S devices as well.

We depict some of the above in Fig. 3 and might offer more
activities subject to the results of our ongoing research.

milan@awdl-apu:~$ ip address show dev awdl@
81: awdl@: <BROADCAST,MULTICAST,UP,LONER_UP> mtu 150@ gdisc pf
ifo_fast state UNKNOWN group default glen 1000

link/ether 04:f0:21:0c:2f:4b brd ff:ff:ff:ff:ff:ff

inet6 fe80::6f0:21ff:fe@c:2f4b/64 scope link

valid_lft forever preferred_lft forever

milan@awdl-apu:~$ ip neigh show dev awdl@
fe80::3837:1cff:fe8a:c301 1laddr 3a:37:1c:8a:c3:01 PERMANENT
milan@awdl-apu:~$ ping -6 fe80::3837:1cff:fe8a:c301%awd1l0 -c 1
PING fe80@::3837:1cff:fe8a:c301%awdl@(fe8@: :3837:1cff:fe8a:c301
%awdl@) 56 data bytes
64 bytes from fe8@::3837:1cff:fe8a:c301%awdl0: icmp_seg=1 ttl=
64 time=4.33 ms

2. milan@awdl-apu: ~ (ssh)

--- fe80::3837:1cff:fe8a:c301%awdl® ping statistics ---

1 packets transmitted, 1 received, @% packet loss, time Oms
rtt min/avg/max/mdev = 4.338/4.338/4.338/0.000 ms
milan@awdl-apu:~$ I

Figure 3: Terminal showing our AWDL implementa-
tion running on a Linux host.

3.3 Requirements at Location

For our demonstrator, we require (1) a table, (2) three power
outlets with Europlugs next to the table, and (3) about one
hour for the setup.

ACKNOWLEDGMENTS

This work is funded by the LOEWE initiative (Hesse, Ger-
many) within the NICER project and by the German Federal
Ministry of Education and Research (BMBF) and the State of
Hesse within CRISP-DA.

REFERENCES

[1] Apple Inc. 2018. NSNetService Class Documentation. Retrieved June
28, 2018 from https://developer.apple.com/documentation/foundation/
nsnetservice

[2] Robert M. Hinden and Stephen E. Deering. 2006. IP Version 6 Addressing
Architecture. RFC 4291 (Feb. 2006). https://doi.org/10.17487/RFC4291

[3] David Kreitschmann and Milan Stute. 2018. AWDL and CoreCapture
Wireshark dissector. https://seemoo.de/wireshark-awdl

[4] PC Engines. 2018. APU Platform. Retrieved June 28, 2018 from
https://www.pcengines.ch/apu.htm

[5] Matthias Schulz, Daniel Wegemer, and Matthias Hollick. 2017. Nexmon:
The C-based Firmware Patching Framework. https://nexmon.org

[6] Milan Stute. 2018. proxAWDL: simple AWDL-TCP proxy. https:
//seemoo.de/proxawdl

[7] Milan Stute, David Kreitschmann, and Matthias Hollick. 2018. One
Billion Apples’ Secret Sauce: Recipe for the Apple Wireless Direct Link
Ad hoc Protocol. In The 24th Annual International Conference on Mobile
Computing and Networking (MobiCom ’18). https://doi.org/10.1145/
3241539.3241566

https://developer.apple.com/documentation/foundation/nsnetservice
https://developer.apple.com/documentation/foundation/nsnetservice
https://doi.org/10.17487/RFC4291
https://seemoo.de/wireshark-awdl
https://www.pcengines.ch/apu.htm
https://nexmon.org
https://seemoo.de/proxawdl
https://seemoo.de/proxawdl
https://doi.org/10.1145/3241539.3241566
https://doi.org/10.1145/3241539.3241566

	Abstract
	1 Introduction and Background
	2 Implementation
	2.1 Overview
	2.2 Portability and Future Work
	2.3 Enabling AWDL in macOS and iOS Third-party Applications

	3 Demonstrator
	3.1 Devices
	3.2 Activities by Attendee
	3.3 Requirements at Location

	Acknowledgments
	References

