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Abstract

Equational reasoning is one of the key features of pure func-
tional languages such as Haskell. To date, however, such rea-
soning always took place externally to Haskell, either manu-
ally on paper, or mechanised in a theorem prover. This article
shows how equational reasoning can be performed directly
and seamlessly within Haskell itself, and be checked using
Liquid Haskell. In particular, language learners — to whom
external theorem provers are out of reach — can benefit from
having their proofs mechanically checked. Concretely, we
show how the equational proofs and derivations from Hut-
ton’s textbook can be recast as proofs in Haskell (spoiler:
they look essentially the same).
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1 Introduction

Advocates for pure functional languages such as Haskell
have long argued that a key benefit of these languages is
the ability to reason equationally, using basic mathematics
to reason about, verify, and derive programs. Consequently,
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introductory textbooks often place considerable emphasis
on the use of equational reasoning to prove properties of
programs. Hutton [2016], for example, concludes the chapter
on equational reasoning in Programming in Haskell with the
remark, “Mathematics is an excellent tool for guiding the
development of efficient programs with simple proofs!”

In this pear], we mechanize equational reasoning in Haskell
using an expressive type system. In particular, we demon-
strate how Liquid Haskell [Vazou 2016], which brings refine-
ment types to Haskell, can effectively check pen-and-paper
proofs. Doing so remains faithful to the traditional tech-
niques for verifying and deriving programs, while enjoying
the added benefit of being mechanically checked for correct-
ness. Moreover, this approach is well-suited to beginners
because the language of proofs is simply Haskell itself.

To demonstrate the applicability of our approach, we
present a series of examples' that replay equational rea-
soning, program optimizations, and program calculations
from the literature. The paper is structured as follows:

o Equational Reasoning (§ 2): We prove properties about
familiar functions on lists, and compare them with stan-
dard textbook proofs. In each case, the proofs are strik-
ingly similar! This approach opens up machine-checked
equational reasoning to ordinary Haskell users, without
requiring expertise in theorem provers.

e Optimized Function Derivations (§ 4): Another com-
mon theme in Haskell textbooks is to derive efficient im-
plementations from high-level specifications, as described
by Bird [1987, 2010] and Hutton [2016]. We demonstrate
how Liquid Haskell supports the derivation of correct-by-
construction programs by using equational proofs that
themselves serve as efficient implementations.

e Calculating Correct Compilers (§ 5): As an extended
case study we use equational reasoning to derive a correct-
by-construction compiler for a simple language of numeric
expressions, following Hutton [2016].

1Al examples can be found in the interactive, browser-based demo at http:
//goto.ucsd.edu/~nvazou/theorem-proving-for-all/; source code at https:
//github.com/nikivazou/EquationalReasoningInLiquidHaskell.
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e Related Work (§ 6): Finally, we compare how this style
of equational reasoning relates to proofs in other theorem
provers and programming languages.

We conclude that, even though these proofs can be performed
in external tools such as Agda, Coq, Dafny, Isabelle or Lean,
equational reasoning using Liquid Haskell is unique in that
the proofs are literally just Haskell functions. It can therefore
be used by any Haskell programmer or learner.

2 Reasoning about Programs

The goal of Liquid Haskell [Vazou 2016] is to move reasoning
about Haskell programs into the programs themselves and to
automate this reasoning as much as possible. It accomplishes
this goal by extending the Haskell language with refinement
types [Freeman and Pfenning 1991], which are checked by
an external SMT solver [Barrett et al. 2010].

2.1 Lightweight Reasoning

The power of SMT solving allows Liquid Haskell to prove
certain properties entirely automatically, with no user input;
we call these lightweight program properties.

Linear Arithmetic Many properties involving arithmetic
can be proved automatically in this manner. For example,
given the standard length function on lists

length :: [a] — Int
length [] =0
length (_:xs) = 1 + length xs

we might find it useful to specify that the length of a list is
never negative. Liquid Haskell extends the syntax of Haskell
by interpreting comments of the form {-@ ... @-} as dec-
larations, which we can use to express this property:

{-@ length :: [a] —» {v:Int | @ <= v } @-}

Liquid Haskell is able to verify this specification automati-
cally due to the standard refinement typing checking [Vazou
et al. 2014] automated by the SMT solver:

e In the first equation in the definition for length, the value
v is 0, so the SMT solver determines that 0 < v.

e In the second equation, the value v is 1 + v/, where v’
is the result of the recursive call to length xs. From the
refinement type of length, Liquid Haskell knows 0 < v’,
and the SMT solver can deduce that 0 < v.

Proving that the length of a list is non-negative is thus fully
automated by the SMT solver. This is because SMT solvers
can efficiently decide linear arithmetic queries, so verifying
this kind of property is tractable. Note that the refinement
type does not mention the recursive function length.

Measures In order to allow Haskell functions to appear
in refinement types, we need to lift them to the refinement
type level. Liquid Haskell provides a simple mechanism for
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performing this lifting on a particular restricted set of func-
tions, called measures. Measures are functions which: take
one parameter, which must be an algebraic data type; are
defined by a single equation for each constructor; and in
their body call only primitive (e.g., arithmetic) functions and
measures. For this restricted class of functions, refinement
types can still be checked fully automatically.

For instance, length is a measure: it has one argument, is
defined by one equation for each constructor, and calls only
itself and the arithmetic operator (+). To allow length to
appear in refinements, we declare it to be a measure:

{-@ measure length @-}

For example, we can now state that the length of two lists
appended together is the sum of their lengths:

{-@ (++) :: xs:[a]l — ys:[a]l] — {zs:[a] |
length zs == length xs + length ys} @-}

(++) :: [a]l —» [a] — [al
[] ++ ys = ys

(x:xs8) ++ ys = x : (Xs ++ ys)

Liquid Haskell checks this refinement type in two steps:

o In the first equation in the definition of (++), the list xs
is empty, thus its length is 0, and the SMT solver can
discharge this case via linear arithmetic.

e In the second equation case, the input list is known to be
x:xs, thus its length is 1 + length xs. The recursive call
additionally indicates that length (xs ++ ys) = length
xs + length ys and the SMT solver can also discharge
this case using linear arithmetic.

2.2 Deep Reasoning

We saw that because length is a measure, it can be lifted to
the refinement type level while retaining completely auto-
matic reasoning. We cannot expect this for recursive func-
tions in general, as quantifier instantiation leads to unpre-
dictable performance [Leino and Pit-Claudel 2016].

The append function, for example, takes two arguments,
and therefore is not a measure. If we lift it to the refinement
type level, the SMT solver will not be able to automatically
check refinements involving it. Liquid Haskell still allows
reasoning about such functions, but this limitation means
the user may have to supply the proofs themselves. We call
properties that the SMT solver cannot solve entirely auto-
matically deep program properties.

For example, consider the following definition for the
reverse function on lists in terms of the append function:

{-@ reverse :: is:[a] —

{os:[a] | length is == length os} @-}
reverse :: [a] — [al
reverse [] = [
reverse (x:xs) = reverse xs ++ [x]
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Because the definition uses append, which is not a measure,
the reverse function itself is not a measure, so reasoning
about it will not be fully automatic.

In such cases, Liquid Haskell can lift arbitrary Haskell
functions into the refinement type level via the notion of
reflection [Vazou et al. 2018]. Rather than using the straight-
forward translation available for measures, which completely
describes the function to the SMT solver, reflection gives the
SMT solver only the value of the function for the arguments
on which it is actually called. Restricting the information
available to the SMT solver in this way ensures that checking
refinement types remains decidable.

To see this in action, we prove that reversing a singleton
list does not change it, i.e, reverse [x] == [x]. We first
declare reverse and the append function as reflected:

{-@ reflect reverse @-}
{-@ reflect ++ @-3}

We then introduce the function singletonP, whose refine-
ment type expresses the desired result, and whose body
provides the proof in equational reasoning style:

{-@ singletonP :: x:a —
{reverse [x] == [x]} e-}
singletonP :: a — Proof
singletonP x
= reverse [x]
-- applying reverse on [x]
==. reverse [] ++ [x]
-- applying reverse on []
==. [1 ++ [x]
-- applying ++ on [] and [x]
==, [x]
*x* QED

We can understand this function as mapping a value x to
a proof of reverse [x] == [x]. The type Proof is simply
Haskell’s unit type (), and { reverse [x] == [x]} is syntac-
tic sugar for {v:() | reverse [x] == [x]}, a refinement
of the unit type. This syntax hides the irrelevant value v.

Note that the body of the singletonP function looks very
much like a typical pen-and-paper proof, such as the one
in Hutton [2016]’s book. The correspondence is so close that
we claim proving a property in Liquid Haskell can be just as
easy as proving it on paper by equational reasoning — but
the proof in Liquid Haskell is machine-checked!

As always, Liquid Haskell uses an SMT solver to check
this proof. Because the body of singletonP syntactically
contains the three terms reverse [x], reverse [] and []
++ [x], Liquid Haskell passes the corresponding equations

reverse [x] = reverse [] ++ [x]
reverse [] [1

[1 ++ [x] [x]
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to the SMT solver, which then easily derives the desired prop-
erty reverse [x] = [x].Note that the following definition
would constitute an equally valid proof:

singletonP x =
const () (reverse [x], reverse [1, [] ++ [x])

But such a compressed “proof” is neither easy to come up
with directly, nor is it readable or very insightful. Therefore,
we use proof combinators to write readable equational-style
proofs, where each reasoning step is checked.

Proof Combinators As already noted in the previous sec-
tion, we use Haskell’s unit type to represent a proof:

type Proof = ()

The unit type is sufficient because a theorem is expressed as
a refinement on the arguments of a function. In other words,
the “value” of a theorem has no meaning.

Proof combinators themselves are simply Haskell func-
tions, defined in the Equational? module that comes with
Liquid Haskell. The most basic example is *x*, which takes
any expression and ignores its value, returning a proof:

data QED = QED

(xxx) :: a —> QED — Proof
_ xRk QED = ()
infixl 2 *xx

The QED argument serves a purely aesthetic purpose, allow-
ing us to conclude proofs with **x QED.

Equational Reasoning The key combinator for equational
reasoning is the operator (==.). Its refinement type ensures
its arguments are equal, and it returns its second argument,
so that multiple uses of (==.) can be chained together:

{-@ (==.) :: x:a »> y{a | x ==y} —
{0:a | 0o ==y & o0 == x} @-}

Explanations Sometimes we need to refer to other theo-
rems in our proofs. Because theorems are just Haskell func-
tions, all we need is an operator that accepts an argument of
type Proof, which is defined as follows:

(?) :: a > Proof — a

X ? _ =X
For example, we can invoke the theorem singletonP for the
value 1 simply by mentioning singletonP 1 in a proof:

{-@ singletoniP ::
singletoniP

{ reverse [1] == [1] } e-}

= reverse [1]
==. [1] ? singletonP 1

2See the Equational.hs module on github.


https://github.com/ucsd-progsys/liquidhaskell/blob/develop/include/Language/Haskell/Liquid/Equational.hs
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*x%* QED

Note that although the ? operator is suggestively placed
next to the equation that we want to justify, its placement
in the proof is actually immaterial — the body of a function
equation is checked all at once.

2.3 Induction on Lists

Structural induction is a fundamental technique for proving
properties of functional programs. For the list type in Haskell,
the principle of induction states that to prove that a property
holds for all (finite) lists, it suffices to show that:

e It holds for the empty list [] (the base case), and

o It holds for any non-empty list x: xs assuming it holds for
the tail xs of the list (the inductive case).

Induction does not require a new proof combinator. Instead,
proofs by induction can be expressed as recursive functions
in Liquid Haskell. For example, let us prove that reverse
is its own inverse, i.e., reverse (reverse xs) == xs. We
express this property as the type of a function involutionP,
whose body constitutes the proof:

{-@ involutionP :: xs:[a] —
{reverse (reverse xs) == xs} @-}
involutionP :: [al — Proof
involutionP []
= reverse (reverse [])
-- applying inner reverse
==. reverse []
-- applying reverse
==. []
*kk QED
involutionP (x:xs)
= reverse (reverse (x:Xxs))
-- applying inner reverse
==. reverse (reverse xs ++ [x])
? distributivityP (reverse xs) [x]
==, reverse [x] ++ reverse (reverse Xxs)
? involutionP xs
==. reverse [x] ++ xs
? singletonP x
==, [x] ++ xs
-- applying ++
==, x:([] ++ xs)
-- applying ++
==, (X:Xx8)
*kk QED

Because involutionP is a recursive function, this constitutes
a proof by induction. The two equations for involutionP
correspond to the two cases of the induction principle:

e In the base case, because the body of the function con-
tains the terms reverse (reverse []1) and reverse [],
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the corresponding equations are passed to the SMT solver,
which then proves that reverse (reverse [1) = [].

e In the inductive case, we need to show that reverse
(reverse (x:xs)) = (x:xs), which proceeds in several
steps. The validity of each step is checked by Liquid Haskell
when verifying that the refinement type of (==.) is sat-
isfied. Some of the steps follow directly from definitions,
and we just add a comment for clarity. Other steps require
external lemmas or the inductive hypothesis, which we
invoke via the explanation operator (?).

We use the lemma distributivityP, which states that list
reversal distributes (contravariantly) over list append:

{-@ distributivityP :: xs:[a] — ys:[a] —
{reverse (xs ++ ys)
== reverse ys ++ reverse xs} @-}

Again, we define distributivityP as a recursive function,
as the property can be proven by induction:

distributivityP [] ys
= reverse ([] ++ ys)
==. reverse ys
? rightIdP (reverse ys)
==. reverse ys ++ []
==. reverse ys ++ reverse []
*x%* QED

distributivityP (x:xs) ys
= reverse ((x:xs) ++ ys)
==. reverse (x:(xs ++ ys))
==. reverse (xs ++ ys) ++ [x]
? distributivityP xs ys
==. (reverse ys ++ reverse xs) ++ [x]
? assocP (reverse ys) (reverse xs) [x]
==. reverse ys ++ (reverse xs ++ [x])
==. reverse ys ++ reverse (X:Xs)
*x%* QED

This proof itself requires additional lemmas about append,
namely right identity (rightIdP) and associativity (assocP),
which we tackle with further automation below.

2.4 Proof Automation

In the proofs presented so far, we explicitly wrote every
step of a function’s evaluation. For example, in the base
case of involutionP we twice applied the function reverse
to the empty list. Writing proofs explicitly in this way is
often helpful (for instance, it makes clear that to prove that
reverse is an involution we need to prove that it distributes
over append) but it can quickly become tedious.

To simplify proofs, Liquid Haskell employs the complete
and terminating proof technique of Proof By (Logical) Evalu-
ation (PLE) [Vazou et al. 2018]. Conceptually, PLE executes
functions for as many steps as needed and automatically
provides all the resulting equations to the SMT solver.
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Without using this technique, we could prove that the
empty list is append’s right identity as follows:

{-@ rightIdP :: xs:[a]l] — { xs ++ [] == xs } @-}

rightIdP :: [al — Proof
rightIdP []
= (1 ++ [1
==. []
*%% QED
rightIdP (x:xs)
= (x:xs) ++ []
==, x : (xs ++ [1) ? rightIdP xs
==. X : XS
*%% QED

However, we can activate PLE in the definition of rightIdP
using the ple rightIdP annotation. This automates all the
rewriting steps, and the proof can be simplified to:

{-@ rightIdP :: xs:[a]l — { xs ++ [] == xs } @-}
{-@ ple rightIdP @-}

rightIdP :: [al — Proof

rightIdP [] =0

rightIdP (_:xs) = rightIdP xs

That is, the base case is fully automated by PLE, while in
the inductive case we must make a recursive call to get the
induction hypothesis, but the rest is taken care of by PLE.

Using this technique we can also prove the remaining
lemma, namely the associativity of append:

{-@ assocP :: xs:[a] — ys:[a] — zs:[a] —
{xs ++ (ys ++ zs) == (xs ++ ys) ++ zs} @-}

{-@ ple assocP @-}

assocP :: [al] — [al — [al — Proof
assocP [] - - =0

assocP (_:xs) ys zs = assocP xs ys zs

Again, we only have to give the structure of the induction and
the arguments to the recursive call, and the PLE machinery
adds all the necessary equations to complete the proof.

PLE is a powerful tool that makes proofs shorter and easier
to write. However, proofs using this technique are usually
more difficult to read, as they hide the details of function
expansion. For this reason, while we could apply PLE to
simplify many of the proofs in this paper, we prefer to spell
out each step. Doing so keeps our proofs easier to understand
and in close correspondence with the pen-and-paper proofs
we reference in Hutton [2016]’s book.

3 Totality and Termination

At this point some readers might be concerned that using
a recursive function to model a proof by induction is not

sound if the recursive function is partial or non-terminating.

However, Liquid Haskell also provides a powerful totality
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and termination checker and rejects any definition that it
cannot prove to be total and terminating.

3.1 Totality Checking

Liquid Haskell uses GHC’s pattern completion mechanism
to ensure that all functions are total. For example, if the
involutionP was only defined for the empty list case,

involutionP :: [a]l — Proof
involutionP []1 = ()

then an error message would be displayed:

Your function isn't total:
some patterns aren't defined.

To achieve this result, GHC first completes the involutionP
definition by adding a call to the patError function:

involutionP [] O
involutionP _ = patError "function involutionP"

Liquid Haskell then enables totality checking by refining the
patError function with a false precondition:

{-@ patError :: { i:String | False } — a @-}

Because there is no argument that satisfies False, when calls
to the patError function cannot be proved to be dead code,
Liquid Haskell raises a totality error.

3.2 Termination Checking

Liquid Haskell checks that all functions are terminating,
using either structural or semantic termination checking.

Structural Termination Structural termination checking
is fully automatic and detects the common recursion pattern
where the argument to the recursive call is a direct or indirect
subterm of the original function argument, as with length.
If the function has multiple arguments, then at least one
argument must get smaller, and all arguments before that
must be unchanged (lexicographic order).

In fact, all recursive functions in this paper are accepted
by the structural termination checker. This shows that lan-
guage learners can do a lot before they have to deal with
termination proof issues. Eventually, though, they will reach
the limits of structural recursion, which is when they can
turn to the other technique of semantic termination.

Semantic Termination When the structural termination
check fails, Liquid Haskell tries to prove termination using a
semantic argument, which requires an explicit termination
argument: an expression that calculates a natural number
from the function’s argument and which decreases in each
recursive call. We can use this termination check for the
proof involutionP, using the syntax / [length xsI:

{-@ involutionP :: xs:[a] —
{reverse (reverse xs) == xs}
/ [length xs] @-}
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A termination argument has the form / [el, ..., en],
where the expressions ei depend on the function arguments
and produce natural numbers. They should lexicographically
decrease at each recursive call. These proof obligations are
checked by the SMT solver, together with all the refinement
types of the function. If the user does not specify a termina-
tion metric, but the structural termination check fails, Liquid
Haskell tries to guess a termination metric where the first
non-function argument is decreasing.

Semantic termination has two main benefits over struc-
tural termination: Firstly, not every function is structurally
recursive, and making it such by adding additional parame-
ters can be cumbersome and cluttering. And secondly, since
termination is checked by the SMT solver, it can make use
of refinement properties of the inputs. However, semantic
termination also has two main drawbacks. Firstly, when the
termination argument is trivial, then the calls to the solver
can be expensive. And secondly, termination checking often
requires explicitly providing the termination metric, such as
the length of an input list.

3.3 Uncaught Termination

Because Haskell is pure, the only effects it allows are diver-
gence and incomplete patterns. If we rule out both these
effects, using termination and totality checking, the user can
rest assured that their functions are total, and thus correctly
encode mathematical proofs.

Unfortunately, creative use of certain features of Haskell,
in particular types with non-negative recursion and higher-
rank types, can be used to write non-terminating functions
that pass Liquid Haskell’s current checks. Until this is fixed®,
users need to be careful when using such features.

4 Function Optimization

Equational reasoning is not only useful to verify existing
code, it can also be used to derive new, more performant
function definitions from specifications.

4.1 Example: Reversing a List

The reverse function that we defined in § 2 was simple
and easy to reason about, but it is also rather inefficient. In
particular, for each element in the input list, reverse appends
it to the end of the reversed tail of the list:

reverse (x:xs) = reverse xs ++ [x]

Because the runtime of ++ is linear in the length of its first
argument, the runtime of reverse is quadratic. For example,
reversing a list of ten thousand elements would take around
fifty million reduction steps, which is excessive.

To improve the performance, we would like to define a
function that does the reversing and appending at the same
time; that is, to define a new function

3https://github.com/ucsd-progsys/liquidhaskell/issues/159
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[al — [a]l] — [al

that reverses its first argument and appends its second. We
can express this as a Liquid Haskell specification:

reverseApp ::

{-@ reverseApp :: xs:[al] — ys:[a] —
{zs:[a] | zs == reverse xs ++ ys} @-}

We now seek to derive an implementation for reverseApp
that satisfies this specification and is efficient.

Step 0: Specification We begin by writing a definition for
reverseApp that trivially satisfies the specification and is
hence accepted by Liquid Haskell, but is not yet efficient:

{-@ reverseApp :: xs:[a]l — ys:[a] —
{zs:[a] | zs == reverse xs ++ ys} @-}

reverseApp :: [al — [a]l — [a]

reverseApp Xs ys = reverse Xs ++ ys

We then seek to improve the definition for reverseApp in
step-by-step manner, using Liquid Haskell’s equational rea-
soning facilities to make sure that we don’t make any mis-
takes, i.e., that we do not violate the specification.

Step 1: Case Splitting Most likely, the function has to anal-
yse its argument, so let us pattern match on the first argu-
ment xs and update the right-hand side accordingly:

{-@ reverseApp :: xs:[a] — ys:[a] —

{zs:[a] | zs == reverse xs ++ ys} @-}
reverseApp :: [al — [a] — [al
reverseApp [] ys = reverse [] ++ ys

reverseApp (x:xs) ys = reverse (x:xs) ++ ys

Liquid Haskell ensures that our pattern match is total, and
that we updated the right-hand side correctly.

Step 2: Equational Rewriting Now we seek to rewrite
the right-hand sides of reverseApp to more efficient forms,
while ensuring that our function remains correct. To do so,
we can use the (==.) operator to show that each change we
make gives us the same function. Whenever we add a line,
Liquid Haskell will check that this step is valid. We begin by
simply expanding definitions:

{-@ reverseApp :: xs:[a]l — ys:[a] —
{zs:[a] | zs == reverse xs ++ ys} @-}
reverseApp :: [a]l — [a]l — [a]
reverseApp [] ys
= reverse [] ++ ys
==, [] ++ ys
==. ys
reverseApp (x:xs) ys
= reverse (x:xs) ++ ys
==, (reverse xs ++ [x]) ++ ys

At this point, we have expanded as much as we can, but
reverseApp still uses the original, inefficient reverse func-
tions, so we are not done. However, we proved at the end
of § 2 that append is associative, so we can use this fact to
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transform (reverse xs ++ [x]) ++ ys into reverse xs
++ ([x] ++ ys), and then continue expanding:

==. (reverse xs ++ [x]) ++ ys

? assocP (reverse xs) [x] ys
==. reverse xs ++ ([x] ++ ys)
==. reverse xs ++ (x:([] ++ ys))
==. reverse xs ++ (x:ys)

We're still using reverse, so we’re not quite done. To finish
the definition, we just need to observe that the last line has
the form reverse as ++ bs for some lists as and bs. This is
precisely the form of the specification for reverseApp as bs,
so we can rewrite the last line in terms of reverseApp:

==, reverse xs ++ (x:ys)
==. reverseApp xs (x:ys)

In summary, our definition for reverseApp no longer men-
tions the reverse function or the append operator. Instead,
it contains a recursive call to reverseApp, which means we
have derived the following, self-contained definition:

reverseApp :: [al] — [a]l — [al
reverseApp [] ys = ys
reverseApp (x:xs) ys = reverseApp xs (x:ys)

The runtime performance of this definition is linear in the
length of its first argument, a significant improvement.

Step 3: Elimination of Equational Steps We can obtain
the small, self-contained definition for reverseApp by delet-
ing all lines but the last from each case of the derivation. But
we do not have to! Recall that the (==.) operator is defined
to simply return its second argument. So semantically, both
definitions of reverseApp are equivalent.

One might worry that all the calls to reverse, reverseApp,
(++) and assocP in the derivation will spoil the performance
of the function, but because Haskell is a lazy language, in
practice none of these calls are actually executed. And in
fact (with optimizations turned on), the compiler completely
removes them from the code and — as we confirmed us-
ing inspection testing [Breitner 2018] — both definitions of
reverseApp optimize to identical intermediate code.

In conclusion, we can happily leave the full derivation in
the source file and obtain precisely the same performance as
if we had used the self-contained definition for reverseApp
given at the end of the previous step.

Step 4: Optimizing reverse The goal of this exercise was
not to have an efficient reverse-and-append function, but to
have an efficient reverse function. However, we can define
this using reverseApp, again starting from its specification
and deriving the code that we want to run. Here we need
to turn reverse xs into reverse xs ++ ys for some list ys.
This requires us to use the theorem rightIdP:
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{-@ reverse' :: xs:[a] —
{v:[a]l | v == reverse xs } @-}
reverse' [a]l] — [a]

reverse' xs
= reverse xs ? rightIdP (reverse xs)
==. reverse xs ++ []
==. reverseApp xs []

The above derivation follows the same steps as the pen-
and-paper version in [Hutton 2016], with one key difference:
the correctness of each step, and the derived program, is now
automatically checked by Liquid Haskell.

4.2 Example: Flattening a Tree

We can use the same technique to derive an optimized func-
tion for flattening trees. Our trees are binary trees with inte-
gers in the leaves, as in [Hutton 2016]:

data Tree = Leaf Int | Node Tree Tree

We wish to define an efficient function that flattens such a
tree to a list. As with reverse, we begin with a simple but
inefficient version that uses the append operator:

{-@ reflect flatten @-}
flatten :: Tree — [Int]
flatten (Leaf n) = [n]
flatten (Node 1 r) = flatten 1 ++ flatten r

Because we want to refer to this function in our specifica-
tions and reasoning, we instruct Liquid Haskell to lift it to
the refinement type level using reflect keyword. Liquid
Haskell’s structural termination checker (§ 3.2) accepts this
definition and all following functions on trees, and there is
no need to define a measure on trees.

We can use flatten as the basis of a specification for a
more efficient version. As before, the trick is to combine
flatten with list appending and define a function

flattenApp :: Tree — [Int] — [Int]

with the specification flattenApp t ns == flatten t ++
ns, which we can state as a Liquid Haskell type signature:

{-@ flattenApp :: t:Tree — ns:[Int] —
{v:[Int] | v == flatten t ++ ns } @-}

As in the previous example, we begin by using the specifica-
tion as a correct but inefficient implementation

flattenApp t ns = flatten t ++ ns

and use equational reasoning in Liquid Haskell to work our
way towards an implementation that avoids the use of the
inefficient flatten and append functions:

flattenApp :: Tree — [Int] — [Int]

flattenApp (Leaf n) ns
= flatten (Leaf n) ++ ns

==. [n] ++ ns
==. n:([] ++ ns)
==. n:ns
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flattenApp (Node 1 r) ns
= flatten (Node 1 r) ++ ns
==, (flatten 1 ++ flatten r) ++ ns
? assocP (flatten 1) (flatten r) ns
==, flatten 1 ++ (flatten r ++ ns)
==, flatten 1 ++ (flattenApp r ns)
==. flattenApp 1 (flattenApp r ns)

Again, this derivation serves both as an implementation and
a verification, and is operationally equivalent to:

flattenApp :: Tree — [Int] — [Int]

flattenApp (Leaf n) ns = n:ns

flattenApp (Node 1 r) ns =
flattenApp 1 (flattenApp r ns)

Finally, we can then derive the optimized flatten function by
means of the following simple reasoning:

{-@ flatten' t:Tree —
{v:[Int] | v == flatten t} @-}
flatten' :: Tree — [Int]
flatten' 1
= flatten 1 ? rightIdP (flatten 1)
==, flatten 1 ++ []
==, flattenApp 1 []

In conclusion, the derivation once again follows the same
steps as the original pen-and-paper version, but is now me-
chanically checked for correctness.

5 Case Study: Correct Compilers

So far, all the proofs that we have seen have been very simple.
To show that Liquid Haskell scales to more involved argu-
ments, we show how it can be used to calculate a correct and
efficient compiler for arithmetic expressions with addition,
as in [Bahr and Hutton 2015; Hutton 2016].

We begin by defining an expression as an integer value or
the addition of two expressions, and a function that returns
the integer value of such an expression:

data Expr = Val Int | Add Expr Expr

{-@ reflect eval @-}

eval :: Expr — Int

eval (Val n) =n

eval (Add x y) = eval x + eval y

A simple stack machine The target for our compiler will
be a simple stack-based machine. In this setting, a stack is
a list of integers, and code for the machine is a list of push
and add operations that manipulate the stack:

type Stack = [Int]

type Code = [Op]
data Op = PUSH Int | ADD

The meaning of such code is given by a function that executes
a piece of code on an initial stack to give a final stack:

N. Vazou, J. Breitner, R. Kunkel, D. Van Horn, and G. Hutton

{-@ reflect exec @-}

exec :: Code — Stack — Stack

exec [] s =s

exec (PUSH n:c) s exec ¢ (n:s)
exec (ADD:c) (m:n:s) = exec ¢ (n+m:s)

That is, PUSH places a new integer on the top of the stack,
while ADD replaces the top two integers by their sum.

A note on totality The function exec is not total — in
particular, the result of executing an ADD operation on a
stack with fewer than two elements is undefined. Like most
proof systems, Liquid Haskell requires all functions to be
total in order to preserve soundness. There are a number of
ways we can get around this problem, such as:

e Using Haskell’s Maybe type to express the possibility of
failure directly in the type of the exec function.

o Adding a refinement to exec to specify that it can only be
used with “valid” code and stack arguments.

o Arbitrarily defining how ADD operates on a small stack, for
example by making it a no-operation.

e Using dependent types to specify the stack demands of
each operation in our language [Mckinna and Wright
2006]. For example, we could specify that ADD transforms
a stack of length n + 2 to a stack of length n + 1.

For simplicity, we adopt the first approach here, and rewrite
exec as a total function that returns Nothing in the case of
failure, and Just s in the case of success:

exec :: Code — Stack — Maybe Stack
exec [] s = Just s

exec (PUSH n:c) s = exec ¢ (n:s)
exec (ADD:c) (m:n:s) = exec ¢ (ntm:s)

exec Nothing

Compilation We now want to define a compiler from ex-
pressions to code. The property that we want to ensure is
that executing the resulting code will leave the value of the
expression on top of the stack. Using this property, it is clear
that an integer value should be compiled to code that sim-
ply pushes the value onto the stack, while addition can be
compiled by first compiling the two argument expressions,
and then adding the resulting two values:

{-@ reflect comp @-}

comp :: Expr — Code

comp (Val n) = [PUSH n]

comp (Add x y) = comp x ++ comp y ++ [ADD]

Note that when an add operation is performed, the value of
the expression y will be on top of the stack and the value of
expression x will be below it, hence the swapping of these
two values in the definition of the exec function.
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Correctness The correctness of the compiler for expres-
sions is expressed by the following equation:

exec (comp e) [] == Just [eval e]

That is, compiling an expression and executing the resulting
code on an empty stack always succeeds, and leaves the
value of the expression as the single item on the stack. In
order to prove this result, however, we will find that it is
necessary to generalize to an arbitrary initial stack:

exec (comp e) s == Just (eval e : s)

We prove correctness of the compiler in Liquid Haskell
by defining a function generalizedCorrectnessP with a re-
finement type specification that encodes the above equation.
We define the body of this function by recursion on the type
Expr, which is similar to induction for the type Tree in § 4.2.
We begin as before by expanding definitions:

{-@ generalizedCorrectnessP
: e:Expr — s:Stack
— {exec (comp e) s == Just (eval e:s)} @-}
generalizedCorrectnessP
Expr — Stack — Proof
generalizedCorrectnessP (Val n) s
= exec (comp (Val n)) s
==, exec [PUSH n] s
==, exec [] (n:s)
==, Just (n:s)
==, Just (eval (Val n):s)
*x%* QED

generalizedCorrectnessP (Add x y) s
= exec (comp (Add x y)) s
==, exec (comp x ++ comp y ++ [ADD]) s

That is, we complete the proof for Val by simply expanding
definitions, while for Add we quickly reach a point where we
need to think further. Intuitively, we require a lemma which
states that executing code of the form ¢ ++ d would give the
same result as executing ¢ and then executing d:

exec (c ++ d) s == exec d (exec c s)

Unfortunately, this doesn’t typecheck, because exec takes
a Stack but returns a Maybe Stack. What we need is some
way to run exec d only if exec c succeeds. Fortunately, this
already exists in Haskell — it’s just monadic bind for the
Maybe type, which we reflect in Liquid Haskell as follows:

{-@ reflect >>= @-}

(>>=) :: Maybe a —» (a — Maybe b) — Maybe b
(Just x) >>=f = f x

Nothing >>= _ = Nothing

We can now express our desired lemma using bind

exec (c ++ d) s == exec ¢ s >>= exec d
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and its proof proceeds by straightforward structural induc-
tion on the first code argument, with separate cases for suc-
cess and failure of an addition operator:

{-@ sequenceP :: c:Code — d:Code — s:Stack —
{exec (c ++ d) s == exec ¢ s >>= exec d} @-}

sequenceP :: Code — Code — Stack — Proof
sequenceP [] d s

= exec ([]1 ++ d) s

==. exec d s

==. Just s >>= exec d

==, exec [] s >>= exec d

*x* QED

sequenceP (PUSH n:c) d s
exec ((PUSH n:c) ++ d) s
==, exec (PUSH n:(c ++ d)) s
==, exec (c ++ d) (n:s)
? sequenceP c d (n:s)
==, exec ¢ (n:s) >>= exec d
==. exec (PUSH n:c) s >>= exec d
*x%* QED

sequenceP (ADD:c) d (m:n:s)
= exec ((ADD:c) ++ d) (m:n:s)
==. exec (ADD:(c ++ d)) (m:n:s)
==, exec (c ++ d) (n + m:s)
? sequenceP ¢ d (n + m:s)
==, exec ¢ (n + m:s) >>= exec d
==. exec (ADD:c) (m:n:s) >>= exec d
*%x QED

sequenceP (ADD:c) d s
= exec ((ADD:c) ++ d) s
==, exec (ADD:(c ++ d)) s
==. Nothing
==. Nothing >>= exec d
==. exec (ADD:c) s >>= exec d
*kk QED

With this lemma in hand, we can complete the Add case
of our generalizedCorrectnessP proof:

generalizedCorrectnessP (Add x y) s
= exec (comp (Add x y)) s
==, exec (comp x ++ comp y ++ [ADD]) s
? sequenceP (comp x) (comp y ++ [ADD]) s
==, exec (comp x) s >>= exec (comp y ++ [ADD])
? generalizedCorrectnessP x s
==. Just (eval x:s) >>= exec (comp y ++ [ADD])
==, exec (comp y ++ [ADD]) (eval x:s)
? sequenceP (comp y) [ADD] (eval x:s)
==, exec (comp y) (eval x:s) >>= exec [ADD]
? generalizedCorrectnessP y (eval x:s)
==. Just (eval y:eval x:s) >>= exec [ADD]
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==, exec [ADD] (eval y:eval x:s)
==, exec [] (eval x + eval y:s)
==, Just (eval x + eval y:s)

==, Just (eval (Add x y):s)

x%x% QED

Now that we have proven a generalized version of our
correctness theorem, we can recover the original theorem
by replacing the arbitrary state s by the empty state [1:

{-@ correctnessP :: e:Expr —

{exec (comp e) [] == Just [eval e]} @-}
correctnessP :: Expr — Proof
correctnessP e = generalizedCorrectnessP e []

A faster compiler Notice that like reverse and flatten,
our compiler uses the append operator (++) in the recursive
case. This means that our compiler can be optimized. We can
use the same strategy as we used for reverse and flatten
to derive an optimized version of comp.

We begin by defining a function compApp with the property
compApp e ¢ == comp e ++ c. As previously, we proceed
from this property by expanding definitions and applying
lemmata to obtain an optimized version:

{-@ reflect compApp @-}
{-@ compApp :: e:Expr — c:Code —
{d:Code | d == comp e ++ c} @-}

compApp (Val n) ¢

= comp (Val n) ++ ¢

==, [PUSH n] ++ ¢

==. PUSH n:([] ++ ¢)

==. PUSH n:c

compApp (Add x y) c

= comp (Add x y) ++ ¢

==. (comp x ++ comp y ++ [ADD]) ++ ¢
? appAssocP (comp x) (comp y ++ [ADD]) c

==, comp x ++ (comp y ++ [ADD]) ++ c
? appAssocP (comp y) [ADD] c

==, comp x ++ comp y ++ [ADD] ++ ¢

==, comp x ++ comp y ++ ADD:([] ++ c)

==. comp X ++ comp y ++ ADD:c

==, comp x ++ compApp y (ADD:c)

==, compApp x (compApp y (ADD:c))

The Haskell compiler automatically optimizes away all the
equational reasoning steps to derive the following definition
for compApp, which no longer makes use of append:

compApp ::
compApp (Val n) ¢ = PUSH n:c
compApp (Add x y) c =

compApp x (compApp y (ADD:c))

Expr — Code — Code

From this definition, we can construct the optimized compiler
by supplying the empty list as the second argument:
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{-@ reflect comp' @-}
comp' Expr — Code
comp' e = compApp e []

In turn, we can then prove that new compiler comp' is equiv-
alent to the original version comp, and is hence correct:
{-@ equivP ::
equivP e
= comp' e
==. compApp e []
==, comp e ++ [] ? appRightIdP (comp e)
==. comp e
*x%* QED

e:Expr — {comp' e == comp e} @-}

{-@ equivCorrectnessP :: e:Expr —
{exec (comp' e) [] == Just [eval el} @-}
equivCorrectnessP e =
exec (comp' e) [] ? equivP e
==. exec (comp e) [] ? correctnessP e
==, Just [eval e]
*kk QED

However, we can also prove the correctness of comp' with-
out using comp at all — and it turns out that this proof is much
simpler. Again, we generalize our statement of correctness,
this time to any initial stack and any additional code:

exec (compApp e c) s == exec ¢ (cons (eval e) s)

We can then prove this new correctness theorem by induc-
tion on the structure of the expression argument:

{-@ generalizedCorrectnessP'
:: e:Expr — s:Stack — c:Code —
{ exec (compApp e c) s ==
exec ¢ (cons (eval e) s)} @-}
generalizedCorrectnessP'
Expr — Stack — Code — Proof
generalizedCorrectnessP' (Val n) s ¢
= exec (compApp (Val n) c) s
==, exec (PUSH n:c) s
==, exec ¢ (n:s)
==, exec ¢ (eval (Val n):s)
*x%* QED

generalizedCorrectnessP' (Add x y) s ¢
= exec (compApp (Add x y) c) s
==. exec (compApp x (compApp y (ADD:c))) s
? generalizedCorrectnessP' x s
(compApp y (ADD:c))
==. exec (compApp y (ADD:c)) (eval x:s)
? generalizedCorrectnessP' y (eval x:s)
(ADD:¢)
==. exec (ADD:c) (eval y:eval x:s)
==, exec ¢ (eval x + eval y:s)
==, exec ¢ (eval (Add x y):s)
Kk )k QED
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Finally, we recover our original correctness theorem by spe-
cializing both the stack s and code c to empty lists:

{-@ correctnessP' :: e:Expr —

{exec (comp' e) [] == Just [eval e]} @-}
correctnessP' :: Expr — Proof
correctnessP' e

= exec (comp' e) []
==. exec (compApp e [1) []
? generalizedCorrectnessP' e [] []
==. exec [] [eval el
==. Just [eval e]
*kk QED

In summary, there are two key benefits to our new com-
piler. First of all, it no longer uses append, and is hence
more efficient. And secondly, its correctness proof no longer
requires the sequenceP lemma, and is hence simpler and
more concise. Counterintuitively, code optimized using Liq-
uid Haskell can be easier to prove correct, not harder!

6 Related Work

The equational reasoning in this article takes the form of
inductive proofs about terminating Haskell functions, so it is
possible to reproduce the proofs in most general-purpose the-
orem provers. Below we compare a number of such theorem
provers with the use of Liquid Haskell.

Coq The Coq system [Bertot and Castéran 2004] is the pro-
totypical example of a theorem prover based on dependent
types. For example, we can use Coq to prove that the list
append operator is associative [Pierce et al. 2018]:

Theorem app_assoc : forall 11 12 13 : natlist,
(11 ++ 12) ++ 13 = 11 ++ (12 ++ 13).
Proof.
intros 11 12 13.
induction 11 as [| n 11' IHI1'].
- reflexivity.
- simpl. rewrite -> IHI1'.

Qed.

reflexivity.

This proof resembles the PLE-enabled version of the Liquid
Haskell proof presented in § 2. However, while the proof in
Liquid Haskell can be easily expanded to show all steps in
an equational-reasoning style, there is no straightforward
way to do the same in the Coq system.

Moreover, to reason about Haskell code in Coq, we must
first translate our Haskell code into Coq’s programming lan-
guage, Gallina. While the recently developed tool hs-to-coq
[Spector-Zabusky et al. 2018] can automate this translation,
Haskell programmers still have to learn Coq to actually
prove results about the translated code. In contrast, equa-
tional reasoning in Liquid Haskell allows the users to reason
about their Haskell code while expressing their proofs using
Haskell’s familiar syntax and semantics.
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Coq is not without its benefits [Vazou et al. 2017], however.
It provides an extensive library of theorems, interactive proof
assistance, and a small trusted code base, all of which are
currently lacking in Liquid Haskell. Of course, these benefits
are not limited to Coq, and we could also port our code,
theorems and proofs to other dependently-typed languages,
such as Idris [Brady 2013] and F* [Swamy et al. 2016].

Isabelle We could also use theorem provers based on higher-
order logic, such as Isabelle [Nipkow et al. 2002]. Isabelle’s
powerful automation based on term rewriting requires us to
merely indicate the right induction principle:

lemma app_assoc:
"(xs ++ ys) ++ zs = xs ++ (ys ++ zs)"
by (induction xs) auto

This proofs resembles the concise PLE version of the Lig-
uid Haskell proof. Isabelle’s language for declarative proofs,
Isar [Nipkow 2002], supports equational reasoning, and also
permits spelling out the proof in full detail:

lemma app_assoc:

"(xs ++ ys) ++ zs = xs ++ (ys ++ zs)"
proof(induction xs)

case Nil

have "([] ++ ys) ++ zs = ys ++ zs" by simp

also have "... = [] ++ (ys ++ zs)" by simp
finally show ?case.
next

case (Cons x xs)

have "(x:xs ++ ys) ++ zs = x:(xs ++ ys) ++ zs"
by simp

also have "... = x:xs ++ (ys ++ zs)"
by (simp add: Cons.IH)

"... = (x:xs) ++ (ys ++ zs)" by simp
finally show ?case.

ged

also have

Each equational step is verified by the Isabelle system using
its term rewriting engine simp, and the use of the inductive
hypothesis (Cons . IH) is clearly marked.

The tool Haskabelle can translate Haskell function defini-
tions into Isabelle [Haftmann 2010].

Other theorem provers Support for equational reasoning
in this style is also built into Lean [de Moura et al. 2015], a
general semi-automated theorem prover, and Dafny [Leino
2010], an imperative programming language with built-in
support for specification and verification using SMT solvers
[Leino and Polikarpova 2013].

6.1 Operator-Based Equational Reasoning

The support for equational reasoning in Isabelle, Lean and
Dafny is built into their syntax, while in Liquid Haskell, the
operators for equational reasoning are provided by a library.
This approach is highly inspired by Agda.
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Agda [Norell 2007] is a general theorem prover based on
dependent type theory. Its type system and syntax is flexible
enough to allow the library-defined operator

== YV (x {y 23
which expresses an equality together with its proof, and is
similar to Liquid Haskell’s (==.) operator:

-- Agda
-- Liquid Haskell

tA) o X=y >y=z-o>Xx=1z

a =( explanation ) b
==. b ? explanation

One disadvantage of the operator-based equational rea-
soning in Liquid Haskell over built-in support as provided
in, say, Dafny is that there each equation is checked inde-
pendently, whereas in Liquid Haskell all equalities in one
function are checked at once, which can be slower.

While the above tools support proofs using equational
reasoning, Liquid Haskell is unique in extending an existing,
general-purpose programming language to support theorem
proving. This makes Liquid Haskell a more natural choice for
verifying Haskell code, both because it is familiar to Haskell
programmers, and because it does not require porting code
to a separate verification language.

6.2 Verification in Haskell

Liquid Haskell is not the first attempt to bring theorem prov-
ing to Haskell. Zeno [Sonnex et al. 2012] generates proofs by
term rewriting and Halo [Vytiniotis et al. 2013] uses an ax-
iomatic encoding to verify contracts. Both these tools are au-
tomatic, but unpredictable and not programmer-extensible,
which has limited them to verifying much simpler properties
than the ones checked here. Another tool, HERMIT [Farmer
et al. 2015], proves equalities by rewriting the GHC core lan-
guage, guided by user specified scripts. Compared to these
tools, in Liquid Haskell the proofs are Haskell programs
while SMT solvers are used to automate reasoning.

Haskell itself now supports dependent types [Eisenberg
2016], where inductive proofs can be encoded as type class
constraints. However, proofs in Dependent Haskell do not
have the straightforward equational-reasoning style that
Liquid Haskell allows and are not SMT-aided.

7 Conclusion

We demonstrated how Hutton [2016]’s equational reasoning
proofs can be encoded as Haskell programs and be checked
using Liquid Haskell. The proofs include equational reason-
ing for functional correctness, program optimization and pro-
gram calculation. The encoding from pen-and-paper proofs
into machine checked proofs is direct, thus we claim that
Liquid Haskell is a theorem prover that can be naturally used
by any Haskell programmer or learner.
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