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ABSTRACT
In this paper we focus on detection of deception and suspicion from
electrodermal activity (EDA) measured on left and right wrists dur-
ing a dyadic game interaction. We aim to answer three research
questions: (i) Is it possible to reliably distinguish deception from
truth based on EDA measurements during a dyadic game inter-
action? (ii) Is it possible to reliably distinguish the state of suspi-
cion from trust based on EDA measurements during a card game?
(iii) What is the relative importance of EDA measured on left and
right wrists? To answer our research questions we conducted a
study in which 20 participants were playing the game Cheat in
pairs with one EDA sensor placed on each of their wrists. Our
experimental results show that EDA measures from left and right
wrists provide more information for suspicion detection than for
deception detection and that the person-dependent detection is
more reliable than the person-independent detection. In particular,
classifying the EDA signal with Support Vector Machine (SVM)
yields accuracies of 52% and 57% for person-independent predic-
tion of deception and suspicion respectively, and 63% and 76% for
person-dependent prediction of deception and suspicion respec-
tively. Also, we found that: (i) the optimal interval of informative
EDA signal for deception detection is about 1 s while it is around
3.5 s for suspicion detection; (ii) the EDA signal relevant for decep-
tion/suspicion detection can be captured after around 3.0 seconds
after a stimulus occurrence regardless of the stimulus type (decep-
tion/truthfulness/suspicion/trust); and that (iii) features extracted
from EDA from both wrists are important for classification of both
deception and suspicion. To the best of our knowledge, this is the
first work that uses EDA data to automatically detect both deception
and suspicion in a dyadic game interaction setting.
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1 INTRODUCTION
Electrodermal activity (EDA) is a widely used indicator of sympa-
thetic nervous system (SNS) activity and is often used to describe the
degree of a person’s excitement, stress, anxiety, as well as changes
in arousal related to pain and anticipation [11]. EDA is also known
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as skin conductance or galvanic skin response and these terms will
be further used interchangeably. Traditionally, EDA measurements
involved attaching wired and gelled electrodes to the skin [15]. Re-
cently, unobtrusive wearable devices such as the wireless Affectiva
Q Sensor [2] used in our study have attained popularity among
researchers in various fields.

EDA can be also used as an indicator of deceit since lying costs
more mental effort than telling the truth [58] and the cognitive
load activates SNS [13, 38]. Previous research [36, 54] found in-
creased EDA for lying as compared to truth-telling. Moreover,
EDA is an autonomic-based physiological response which makes it
hard to control and therefore less susceptible to strategic manipula-
tions [18], and is a good indicator of deceit.

Suspicion (or trust) detection is a more recent and less researched
field and to the best of our knowledge there was no attempt at de-
tecting suspicion or trust from EDA. However, the state of suspicion
is often associated with an increased cognitive load and stress as
compared to the state of trust [10, 50] which along with the afore-
mentioned findings about EDA suggests that it should be possible
to detect suspicion based on skin conductance measurements.

Many studies have measured the presence of EDA asymmetry on
the left and right palms [25, 27, 34] and attempted to relate bilateral
EDA measures to verbal/spatial, positive/negative, emotional/non-
emotional specialisation, with conflicting findings. The classical
understanding assumed that EDA represents one homogeneous
change in arousal across the whole body, but recent works [5, 41]
show that multiple brain structures contribute to elicitation of EDA,
namely, two regions were identified: a limbic-hypothalamic source
(EDA1) and a premotor-basal ganglia source (EDA2). The EDA1 sys-
tem includes structures (such as amygdala, cingulate gyrus, anterior
thalamus, fornix, hippocampus, and hypothalamus) that play an
important role in emotions and it is believed to be ipsilateral1 [51]
which means that activating key emotion regions on the right side
of the brain (e.g., right amygdala) produces right palmar EDA ac-
tivation and analogously for the left side. In contrast, the EDA2
system (including the basal ganglia and premotor cortex) is con-
tralateral2. Together with findings that amygdala is the emotional
centre of the brain and that the left hemisphere primarily processes
positive emotions while the right hemisphere processes primar-
ily negative emotions [48], it might be tempting to conclude that
higher skin conductance found on right hand reflects negative emo-
tional state and analogously higher skin conductance on left hand
reflects positive emotional state. Such conclusions may be flawed
since the measured EDA might be also influenced by other sources
of arousal (EDA2), for example, by hand movements. Based on
current research findings, the plausible conclusion is that under-
lying negative emotions (such as fear or anxiety) only contribute

1Occurring on the same side of the body.
2Occurring on the opposite side of the body.
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to greater right amygdala activation and thus to the EDA on right
hand. Since EDA measures on only one side may lead to misjudg-
ment of arousal [41], in this study we investigate EDA signals from
both hands.

In this workwe hypothesise that EDA data obtained from left and
right wrists can be effectively used to detect deception and suspicion
during a dyadic game interaction. Specifically, we aim to answer the
following research questions: (i) Is it possible to reliably distinguish
deception from truth based on EDA measurements during a dyadic
game interaction? (ii) Is it possible to reliably distinguish the state of
suspicion from trust based on EDA measurements during a dyadic
game interaction? (iii) What is the relative importance of EDA
measured on left and right wrists? We investigate these questions
by undertaking a controlled study where 20 participants were asked
to play a two-player variant of the card game Cheat and answer a
post-study questionnaire. In this context, we define deception to
be the action when a player discards a card different from what
he/she claims and suspicion as a state when a player does not trust
the opponent that the card discarded by the opponent was the
same as he/she claimed. To summarise, our work has the following
contributions:

• First of its kind dataset3 for automatic deception and suspi-
cion detection based on measurements from wearable EDA
sensors, collected from 20 participants along with their per-
sonality traits.

• A prototype system for automatic detection of deception and
suspicion from EDA measurements on-the-fly.

The rest of the paper is structured as follows. Section 2 details
the related work in the field, Section 3 describes the details of
the conducted study, and Section 4 explains the feature extraction
process. Next, the classification experiments and obtained results
are presented in Section 5 while Section 6 shows the importance
of individual features and asymmetry in EDA. Section 7 discusses
the results and Section 8 concludes the paper and highlights future
research directions.

2 RELATEDWORK
EDA has been widely used for various tasks such as seizure detec-
tion [44], engagement recognition during social interactions [23],
analysis of EDA during sleep [56], or depression prediction based
on EDA asymmetry [14].

The detection of deception (or lie detection) is a long-standing
binary classification problem addressed by many studies using var-
ious sources of information. Neurophysiological signals such as
Functional Magnetic Resonance Imaging (fMRI) [28, 30] and Event
Related Potentials (ERP) [47] were investigated for this task. For
instance, the work of [1] used electroencephalography (EEG) fea-
tures extracted through wavelet transformation and they achieved
a correct detection rate of 86%. Another brain-imaging technique,
functional near-infrared spectroscopy (fNIRS), that measures brain
activity through hemodynamic responses associated with neuron
behaviour was also examined [24]. They achieved the average clas-
sification accuracy of 83.44% with subject-specific Support Vector
Machine classifiers.
3The collected DESDEDA dataset is available to the research community at:
https://www.cl.cam.ac.uk/research/rainbow/projects/desdeda/

Other approaches used cues from videos, for example, Meservy
et al. [33] built an automated system that can infer deception or
truthfulness from a set of features extracted from head and hands
movements captured in a video, yielding 71% classification accuracy
using both Support Vector Machines and a neural network.

In the majority of the lie detection settings several physiological
signals including respiration, skin conductance, blood pressure, and
pulse rate were employed [59]. The study of [4] reports 86.5% accu-
racy when fNIRS measurements were combined with physiological
measures.

Several works tried to detect deception during games. For exam-
ple, the study of [32] based the deceit detection on EEG measures
during a poker-like card game and showed that theWavelet analysis
revealed significant differences between deceptive and truthful re-
sponses. However, they did not develop a classification model. Sung
et al. [55] used a combination of physiological features (namely,
skin conductance peaks (from both hands), voice pitch variation
and heart rate variability) to detect stress and lying during the
Poker game. They developed simple linear classifiers and identified
high stress situations with the accuracy of 82% and detected decep-
tion with about 71% accuracy. They further reported that the skin
conductance peaks were the most correlated features in the cases
of All-In play and stressful situations in general. It is important to
note that the players in their study played real live-money games
of no-limit. Others [12, 61] investigated EDA in gaming but not for
deception detection. For instance, Drachen et al. [12] researched
correlations between heart rate, EDA and player experience in first-
person shooter games. However, to the best of our knowledge, there
was no previous work that attempted at detecting deception solely
from EDA in a dyadic game interaction setting.

Suspicion or trust detection is a more recent and less researched
field. Previous work focused mostly on videos and analysed non-
verbal behaviours achieving above human detection accuracy [29].
Several studies have investigated the relationship between EDA
and other dyadic/group related outcomes such as group satisfaction
or engagement. For example, it has been found that team members’
synchrony in EDA is associated with group satisfaction [9], periods
of stress, excitement, or high levels of engagement [3, 37, 40] and it
is also related to tension and negative affect [35]. Such dyadic/group
related outcomes may have an effect on trust which also suggests
that it might be possible to use EDA to predict suspicion in a dyadic
interaction setting. The ability to accurately detect suspicion from
EDA would allow longer-term analysis of trust-related behaviours
in multiple contexts (e.g., human-robot interaction). However, to
the best of our knowledge, to date there has been no attempt to
detect suspicion or trust from EDA.

3 THE STUDY
3.1 Motivation
Our motivation to choose a card game for detection of deception
and suspicion was two-fold. Firstly, games present a very common
and realistic scenario where people lie and are suspicious without
negative consequences. Secondly, a game with real participants and
their direct interactions allows more natural reactions of players as
compared to computer-based games and thus is expected to provide
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more realistic results. With this motivation we designed a study to
answer the three research questions described in Sec. 1.

3.2 Card game Cheat
We chose the card game Cheat (also called Bluff or I Doubt It) as it
has very simple rules which allows players to better focus on their
actions of deception and suspicion. To simplify the experiment we
focused on a two-player variant of this game with the following
rules.

All cards4 are evenly dealt out (by the experimenter) to the two
players and they can see their own cards. The goal of the game
is to get rid of all cards at hand. First player calls out the suit
(diamonds/clubs/spades/hearts) and discards one card face down
on the discard pile. The suit called out by the first player is the true
suit for the current discard pile. Players then take alternate turns
discarding one card each time and calling out the same suit as the
player in the first turn. Since the cards are discarded face down,
players can cheat to finish the game faster by discarding a card of
different suit than required. If one player suspects the other player,
he/she can challenge the play by calling "Cheat!". Then the card
played by the challenged player is exposed and one of two things
happens: (i) if the exposed card is of the suit that was called, the
challenger must pick up the whole discard pile; or (ii) if the card is
different from the called suit, the person who played the card must
pick up the whole discard pile. The player who did not pick up the
pile begins the new round by discarding one card and calling out a
suit that becomes the true suit for the new discard pile. The game
ends when one of the players gets rid of all his/her cards at hand.

Figure 1: Experimental setup: participants playing the card
gameCheat. Each player iswearing twoAffectivaQEDA sen-
sors (one on the left and one on the right wrist). The discard
pile is recorded by a web-camera.

3.3 Sensors
As can be seen in Figure 1, each player was wearing two Affectiva Q
EDA sensors [2] (one on the left and one on the right wrist) during
the game. The Q sensor measures electrical conductance (in units
of µS) across the skin by passing a minuscule amount of current
between two electrodes that are in contact with the skin. Each Q
sensor provides the following data: EDA, skin temperature, and
3-axis of acceleration of the wrist over time. All these measures
4A stripped deck (US) or shortened pack (UK) of 32 cards.

were sampled at 32 Hz (the maximum possible rate of the Affectiva
Q sensors). We decided to use only EDA measurements for decep-
tion and suspicion detection, as we did not want to constrain the
developed detection system to the specific use case of a card game
which would be the case if acceleration measurements were also
used.

The discard pile of cards was recorded by a web-camera (along
with the audio) and the back side of every card was labelled with
a QR code corresponding to the suit on the other side of the card.
This allowed later reconstruction of events (whether a player lied
or told truth while discarding a card) and their localisation in time
which was necessary for correct annotation of the EDA data.

Prior to the experiment, all four Q sensorswere time-synchronised
with the system time used by the web-camera, ensuring that identi-
cal global time was used by all Q sensors and camera timestamps.

3.4 Data collection
We built an in-house dataset named Deception and Suspicion Detec-
tion from EDA (DESDEDA) by recruiting 20 participants (5 female
and 15 male) to play the game Cheat and to answer a post-study
questionnaire.

The participants were aged 19–32 and came from various cul-
tural and educational backgrounds. All but three participants said
they were right-handed (participants with IDs 09, 11, 20 were left-
handed). The participants were arranged into 10 pairs so that each
participant played the game only once. Before the experiment
started they were informed about its procedure, game rules, and
their rights by verbal introduction and through a signed consent
form. However, the true goal of this study was not disclosed to them
until after the experiment in order to avoid artificial behaviour
(e.g., reluctance to bluff and blame the other player) and to allow
more natural reactions during the game. Prior to the data collection
phase the participants were given time to freely play the game to
familiarise themselves with its rules. In order to settle down the
measured EDA values, before the game started, participants rested
for a 2-minute baseline period while listening to relaxing music.
Then, one or multiple games up to a maximum duration of 30 min-
utes were recorded (4 streams of EDA and video recording of the
discard pile).

In the post-study questionnaire the participants were asked to
provide information about their gender, age, handedness5, and
take a short personality test6. Also, they answered 3 self-report
questions:Howmany times did you play this game before? On average
out of 10 opportunities to lie, how many times do you think you really
lied? On average out of 10 opportunities to say "Cheat", how many
times do you think you really said "Cheat"? These questions were
used to collect data for future research investigations - e.g., how
the player’s game experience affects the detection accuracy, how
well the counts of actual deception/suspicion actions match the
self-reported counts for different personality types, etc.

5Tendency to use either right or left hand more naturally than the other.
620-item measure of BIG5 personality (in terms of Openness, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism), available at: https://discovermyprofile.
com/miniIPIP/introduction.html
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3.5 Data segmentation and annotation
Firstly, we defined three event types: deception event (player dis-
carded the card lying), truth event (player discarded the card telling
truth), and suspicion event (player called "Cheat"). Using the au-
diovisual recordings of the discard pile we determined the times
of these three events for all players and manually annotated EDA
measurements as shown in Figure 2.

Figure 2: Annotated EDA signals from left and right hands
of participants with IDs 17 and 18. EDA is annotated with
three event types (Suspicion, Truth, and Deception event).
The suspicion event is followed by a strong response in EDA
from both hands of the corresponding player while the de-
ception event is followed by a much weaker response.

Next, the time intervals (epochs) from which the EDA signal
was used to extract features for associated events were determined.
This process was motivated by the work of [54] that demonstrates
that the cues in EDA are present before the event of interest. The
segmentation procedure for various types of epochs follows.

3.5.1 Deception and truth epochs. The deception epoch De associ-
ated with the deception event k (or the truth epoch in case of the
truth event) was defined as the time interval

De = [max(tk−1, tk − τMDEL); tk ] (1)

where tk is the time of the associated deception/truth event and
tk−1 is the time of the previous event. If the previous event was not
deception/truth event, then this epoch along with the event k was
ignored since it was the first one in the game or the first one after
the pile was picked up and it contained noise as the players were
not focused yet. τMDEL is the maximum deception epoch length
and it prevents epochs from being too long. This thresholding was
necessary because in most cases the long duration between two
consecutive events k − 1 and k meant a player’s distraction in the
earlier stage of the time interval between these two events. Since
it was not clear how to set the parameter τMDEL , we used cross-
validation to find its optimal value in the discrete range τMDEL ∈
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5}s . This range was estimated
by looking at the distribution of lengths of time intervals between
two consecutive deception/truth events over all players.

3.5.2 Suspicion and trust epochs. The suspicion epoch Se associated
to the suspicion event k was defined as the time interval

Se = [max(tk−1, tk − τMSEL); tk ] (2)

where tk is the time of the associated suspicion event and tk−1 is the
time of the previous deception/truth event. τMSEL is the maximum
suspicion epoch length and it serves the same purpose as the thresh-
old τMDEL and its value was also chosen by cross-validation over
the discrete range τMSEL ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5}s .
Analogously, this range was estimated by looking at the distribu-
tion of lengths of time intervals between the deception/truth event
and the consecutive suspicion event over all players.

We further defined an imaginary trust epoch Te that starts at a
deception/truth event k − 1. However, there is no observable event
that would mark the end of such a trust epoch (when the player
did not call "Cheat" and trusted the other player). To tackle this
issue we made an assumption that the length of the trust epoch
is approximately τMSEL if the next deception/truth event k is far
enough (namely, further than 2 × τMSEL from the start of the trust
epoch) and it is the half of the distance between the start of the
trust epoch and the next deception/truth event otherwise. In other
words, the trust epoch Te following the deception/truth event k − 1
at time tk−1 was defined as the time interval

Te =
[
tk−1; min

(
tk−1 + τMSEL ,

tk + tk−1
2

)]
(3)

where tk is the time of the next deception/truth event. The end of
the trust epoch can be thought of as an imaginary trust event.

3.5.3 Epoch delay. Both endpoints of each epoch (of all four types)
were further delayed by δ because there is a delay between a stim-
ulus and skin conductance response [46]. This is also confirmed by
Figure 2 where we can observe that the response in EDA is delayed
after event occurrence. The value of the delay δ was observed to
be 1–4 s, and so we determined its value by cross-validation over
the discrete range δ ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}s .

Lastly, each epoch was labelled according to its type resulting
in the distribution shown in Table 1. The labelled dataset excludes
the deception and truth epochs from one participant (ID 05) who
confused card suits during the game which made the experimenter
unable to correctly label his/her epochs (this was not a problem for
suspicion detection task and so the suspicion and trust epochs of this
participant were kept). As we can see from Table 1, the collected
data are unbalanced with a strong bias towards trust labels for
suspicion detection task. To mitigate this issue, the random over-
sampling technique was applied to the data (as further described in
Sec. 5).

Table 1: Distribution of four types of labelled epochs before
balancing.

Deception Truth Suspicion Trust

#labelled epochs 496 635 300 1180

4 FEATURE EXTRACTION
Similarly to [7], as a preprocessing step, we performed epoch nor-
malisation to allow for comparison between different epochs and
between different study participants. EDAmeasurements from each
epoch were scaled into the range [0, 1] independently. In order to



remove high-frequency noise, we applied a 5th order low-pass But-
terworth filter with the cut-off frequency of 3 Hz using the Python
library SciPy [26].

Inspired by [43], we chose a set of six features including: 1) Mean;
2) Standard deviation; 3) Mean of the absolute values of the first
differences of the raw signal; 4) Mean of the absolute values of the
first differences of the normalised signal; 5) Mean of the absolute
values of the second differences of the raw signal; and 6) Mean
of the absolute values of the second differences of the normalised
signal. For each epoch, these six features were extracted from EDA
signal from each hand and consequently, right-hand features were
appended to left-hand features resulting in a 12-dimensional feature
vector per epoch. This procedure was identical for all epoch types.

5 CLASSIFICATION
We approached the detection of deception and suspicion as two
separate binary classification tasks. For each task we report person-
independent and person-dependent testing accuracies as well as
the optimal hyperparameters for detection on-the-fly. For train-
ing, hyperparameter tuning, and testing we used Support Vector
Machine (SVM) classifier with linear kernel implemented in the
Python framework scikit-learn [39]. All results from this section
are summarised in Table 2.

5.1 Deception detection
Firstly, the previously discussed biased nature of the data was ad-
dressed by random over-sampling of the minority class using the
toolbox imbalanced-learn [31]. This resulted in 635 samples for
deception epoch, 635 samples for truth epoch, 1180 samples for sus-
picion epoch, and 1180 samples for trust epoch. Next, a nested cross-
validation7 was used to evaluate the performance of the developed
method in person-independent and person-dependent manner.

5.1.1 Person-independent detection. The data from all participants
were used to develop and test a general model capable of decep-
tion detection independent of a person being investigated. In this
case the outer loop of the nested cross-validation was leave-one-
subject-out (LOSO) cross-validation and was used for testing while
the inner loop was 5-fold cross-validation and served to tune 3
hyperparameters: δD , τMDEL , and CD . The parameters δD (decep-
tion/truth epoch delay) and τMDEL (maximum deception epoch
lenght) were optimised in ranges defined in Sec. 3.5. The SVM’s
regularisation parameter CD was tuned in the discrete range CD ∈
{2−30, 2−29, . . . , 215}. The mean testing accuracy (and the standard
deviation) over all LOSO folds for person-independent deception
detection was 52 ± 7 %.

5.1.2 Person-dependent detection. In this case a person-specific
model was trained, tuned, and tested on each participant separately
and so the outer loop of the nested cross-validation was changed to
5-fold cross-validation. Otherwise, the procedure was the same as
in the person-independent detection (same set of hyperparameters
was optimised but this time for each participant separately). The
testing accuracies for each participant are shown in Figure 3 (left).
The mean testing accuracy (and the mean standard deviation) over

7Nested cross-validation consists of an inner and outer loop where each training fold
of the outer loop is split into training and validation folds of the inner loop.

all participants for person-dependent deception detection was 63 ±
10 %.

5.1.3 Optimal parameters for detection on-the-fly. Lastly, optimal
parameters for detection of deception on-the-fly were determined
using LOSO cross-validation on the whole dataset, and conse-
quently, a model ready for classification on-the-fly was trained on
the whole dataset. The best hyperparameters that maximise the vali-
dation accuracywere found to be (δD ,τMDEL ,CD ) = (3.0s, 1.0s, 23).
Figure 4 (left) illustrates the search space used to determine these
optimal hyperparameters, namely, it shows the mean (over all folds)
validation accuracy for various parameter settings with hyperpa-
rameter CD already optimised for each pair (δD ,τMDEL).

5.2 Suspicion detection
For classification of suspicion/trust epochs we followed the same
procedure as for deception detection with the only difference that
the hyperparameter τMDEL was replaced by τMSEL and parameters
δD ,CD were relabelled to δS ,CS . The testing accuracy was 57±12 %
and 76± 8 % for person-independent and person-dependent classifi-
cation respectively. Figure 3 (right) shows testing accuracies for all
participants in the person-dependent case. The optimal parameters
that maximise the validation accuracy for suspicion detection on-
the-fly were found to be (δS ,τMSEL ,CS ) = (3.0s, 3.5s, 2−5) and the
mean validation accuracy for various parameter settings (with CS
already optimised for each pair (δS ,τMSEL)) is shown in Figure 4
(right).

Table 2: Summary of results from deception/truth and sus-
picion/trust classification tasks for person-independent (PI)
and person-dependent (PD) methods. In each case, the base-
line accuracy is 50%.

Deception Suspicion

Testing accuracy [%] PI 52 ± 7 57 ± 12
PD 63 ± 10 76 ± 8

Best parameters
δ {D,S } [s] 3.0 3.0
τM {D,S }EL [s] 1.0 3.5
C {D,S } 23 2−5

6 THE IMPORTANCE OF FEATURES
& ASYMMETRY IN EDA

6.1 Feature importance
To answer our third research question (Sec. 1), we assessed the
relative importance of the chosen features. Most importantly, we
compared the informativeness of the extracted features between
left and right hands. In particular, we examined SVM weights when
the person-independent model was trained on the whole dataset
using the optimal parameters determined according to Sec. 5.1.3.

Since we used linear-kernel SVM, there was no kernel transfor-
mation to a higher dimensional feature space and so the trained
weights could be used for feature ranking, as suggested in [52] and
studied in detail by [6]. The reasoning is that the larger the magni-
tude |wi | of weightwi is, the larger influence the ith feature has on



Figure 3: Testing accuracies with standard deviations for person-dependent deception (left) and suspicion (right) detection for
all study participants (excluding ID 05 for deception detection, see Sec. 3.5).

Figure 4: Mean validation accuracy from person-
independent (LOSO) cross-validation on the whole
dataset for deception (top) and suspicion (bottom)
detection task with SVM hyperparameters CD and
CS already optimised. The best hyperparameters
were found to be (δD ,τMDEL ,CD ) = (3.0s, 1.0s, 23) and
(δS ,τMSEL ,CS ) = (3.0s, 3.5s, 2−5).

the predictions of the classifier. The work [19] further suggests to
use squares of weights as a ranking criterion to magnify relative
differences between weights. Figure 5 shows squares of trained
SVMweights corresponding to features extracted from EDA signals
from both hands, for deception and suspicion detection tasks.

Figure 5: Feature ranking in terms of normalised squares
of SVM weights trained on the whole dataset, for both de-
ception (dark colours) and suspicion (bright colours) detec-
tion tasks. L1–L6 (blue) and R1–R6 (red) denote features ex-
tracted from EDA signals from left and right hand respec-
tively. For definition of types of features 1–6 see Sec. 4.

6.2 Asymmetry in EDA
For 10 study participants the difference between individual EDA
measurements from left and right hand never changed sign during
the whole game and for the other 10 participants the difference
was consistent in sign for almost the whole game (regardless of
periods of deception, truth, suspicion, or trust). Therefore, there
was no point in evaluating the left-right difference in an epoch-wise
manner and so similarly to [45], we calculated average EDA level
from each wrist for every participant (omitting the baseline period)
and subtracted the left hand from the right hand mean value to
obtain the mean difference ∆L−R . Figure 6 shows the distribution
of ∆L−R comprising all participants of the study.

7 ANALYSIS AND DISCUSSION
7.1 Detection of deception and suspicion
The results in Table 2 clearly show that the detection of suspicion
from EDA is more reliable than detection of deception. Detecting
lie from skin conductance as a single source of information is chal-
lenging and as mentioned in Sec. 2 other methods that achieved
higher detection accuracies often combined multiple sources of
input. We also noticed that the differences between deception and
truth events were much less visible than those between suspicion



Figure 6: Distribution of mean skin conductance difference
∆L−R between EDA measured on left and right hand during
the whole game, omitting the baseline period. All 20 partic-
ipants of the study are included.

and trust events. For example, as illustrated by Figure 2, the skin con-
ductance response to the suspicion event has about 3-times larger
magnitude than the response to the deception event. This probably
also contributed to the lower deception detection performance.

Comparing the person-independent (PI) and person-dependent
(PD) detections, we can conclude that the PI classification is a
more challenging task than PD which is reflected in lower testing
accuracies for both deception and suspicion detection tasks. Next,
as shown by Figure 3, in the PD case the testing accuracies vary
a lot between participants (47%–92% and 48%–98% for deception
and suspicion respectively) which suggests that it is much more
difficult to develop a reliable model for some people than for others.
In other words, the nature of EDA signals is highly person-specific.
We can also see that for some participants the testing accuracy
was even below the baseline – in this case the chance level8 of
50% for both detection tasks. This might be caused by the fact that
internal factors such as hydration and medications can affect EDA
measurements. Moreover, there are people who have essentially no
measurable EDA [42].

As can be seen from Table 2, all 4 mean testing accuracies are
above the baseline. However, the accuracy in the PI case, and es-
pecially, for deception detection is very close to the baseline. Also,
the standard deviations are relatively large. One possible reason
might be the fact that the game environment is very challenging
for automatic detection of deception and suspicion as it is very dy-
namic with a wide range of response times. Moreover, players were
not constrained not to talk which often caused considerable distrac-
tions. Thus, for future studies it may be appropriate to reconsider
the study design.

The obtained optimal values of parameters τMDEL and τMSEL
for detection on-the-fly suggest that the most informative EDA
signal for deception detection is captured within 1 second before
the deception/truth event and the most informative EDA signal
for suspicion detection is captured within 3.5 seconds before the
suspicion or imaginary trust event occurs. This is also supported
by Figure 2 that illustrates that the response to the suspicion event
is longer than the response to the deception event. The optimi-
sation of epoch delays δD and δS resulted in the same value of
3.0 seconds. This indicates that the skin conductance response rel-
evant for deception detection is delayed by the same amount of

8Expected accuracy if classes are assigned by random guessing.

time as the skin conductance response relevant for suspicion de-
tection. This further suggests that, in this particular dyadic game
context, the informative EDA response can be captured after the
same amount of time for any type of triggering stimulus (decep-
tion/truthfulness/suspicion/trust).

7.2 Feature importance
As can be seen from Figure 5, features extracted from EDA signals
from both hands are important and this is the case for both decep-
tion and suspicion detection tasks. Also, it can be observed that for
some feature types9 there is a symmetry between the importance
of left-hand and right-hand features. For example, features of types
4 and 5 from both hands seem to be most informative for deception
detection and the feature of type 6 for suspicion detection. In other
words, the mean time-changes in the normalised EDA signal over
the epoch and the mean acceleration of the raw EDA signal over
the epoch are most important for deception detection while the
mean acceleration of the normalised EDA signal over the epoch is
most informative for suspicion detection. However, such a left-right
symmetry in feature importance does not hold for all feature types
as illustrated by feature type 2 (variance in EDA over epoch) for
deception detection and feature type 1 (mean EDA over epoch) for
suspicion detection whose importances significantly differ between
left and right hand. All these results confirm the conclusions of [41]
that measurements from multiple points of EDA arousal are more
informative than the traditional measurements taken only from the
single non-dominant hand.

7.3 Asymmetry in EDA
Our results confirm the existence of asymmetry in EDA measured
on the left and the right wrists. As can be seen from Figure 6 the
magnitude of the left-hand EDA dominates over the right-hand
EDA for the majority of participants. Specifically, 16 out of 20
study participants had positive mean skin conductance difference
∆L−R between left and right hand. According to [41], this could
be interpreted as follows: participants with dominant right-hand
EDA perceived the whole game more anxiously and stressfully
than participants with dominance in left-hand EDA. However, as
described in Sec. 1, making such general conclusions is difficult and
may be flawed.

Looking at the obtained results it seems that the dominance in
skin conductance did not depend on the participant’s handedness
as there was 1 left-handed participant with negative ∆L−R and 2
left-handed participants with positive ∆L−R and also there were
3 right-handed participants with negative ∆L−R . However, data
from more participants would need to be collected to make more
informative conclusions.

It is important to note that the above-described findings were
observed irrespective of participant’s position (left/right side of
the table) which means that it is unlikely that they were caused by
some systematic differences between Q sensors.

9As defined in Sec. 4.



8 CONCLUSION AND FUTUREWORK
8.1 Conclusion
This work presented a novel dataset for automatic detection of
deception and suspicion from EDA measurements. Using SVM clas-
sifiers we developed models to automatically detect deception and
suspicion on-the-fly. Our experimental results show that the detec-
tion of suspicion is more reliable than the detection of deception
and that person-dependent models perform better than person-
independent ones. Next, we found that the optimal interval of infor-
mative EDA signal is about 3.5-times shorter for deception detection
than for the suspicion detection task and that the EDA signal rele-
vant for deception/suspicion detection can be captured after approx-
imately 3.0 seconds once a stimulus event has occurred, and regard-
less of the stimulus type (deception/truthfulness/suspicion/trust).
Results from feature ranking show that features extracted from
EDA from both hands are important for deception and suspicion
classification tasks and that the importance of some feature types
is symmetric between left-hand and right-hand features while it is
asymmetric for other types of features. We also verified that there
is an asymmetry in EDA measured on left and right wrist.

8.2 Limitations
Despite the promising results and interesting findings, there are
some limitations to the methodologies we employed. Firstly, EDA is
a very non-specific measure that has been related to stress, anxiety,
or any kind of arousal. Therefore, the developed models might not
be suitable for detection in the wild where a person may experience
many different kinds of emotions and physiological responses. This
work is thus bound to the specific task at hand, namely, a dyadic
game interaction involving deception and suspicion.

The aim of this work was to investigate the reliability of de-
ception/suspicion detection based purely on EDA. As described in
Section 2, studies that used multiple modalities achieved higher
deception detection accuracies. We therefore recommend the us-
age of a combination of sensors aggregating multiple modalities
in order to develop more reliable deception/suspicion detectors.
Another consequence of relying solely on the EDA measurements
when detecting deception/suspicion is that the hand movements
can confound the EDAmeasurements. Future work should therefore
investigate to what extent the hand movements affect the detection
accuracies.

It is also important to note that, in this initial study, we decided
not to decompose the measured EDA signal into phasic (rapidly
changing) and tonic (slowly changing) components, since the pre-
vious works [9, 21–23, 49, 57] were not conclusive on this. Future
works should also investigate these aspects in more detail.

8.3 Future work
This work opens up several directions for further research. Firstly,
using the method described in [17], the measured EDA could be de-
composed into phasic and tonic components in order to investigate
which of them is more informative for detection of deception and
suspicion. Consequently, this could improve our understanding of
the variability of EDA over time and over subjects.

Also, it would be interesting to compare the results obtained
when RBF kernel SVMs are used and when other over-sampling
techniques such as Synthetic Minority Oversampling Technique
(SMOTE) [8] or Adaptive Synthetic (ADASYN) samplingmethod [20]
are employed.

Next, the developed models could be tested on-the-fly by con-
ducting another dyadic game interaction study.

Another research avenue could use the metadata from post-study
questionnaires and explore relationships between participants’ per-
sonality traits and their deceitful/truthful and suspicious/trustful
behaviours as well as the deception/suspicion detection accuracies.
As a starting point, one can look at the relationship between certain
personality traits and the frequency of deception and suspicion
events. As shown in Figure 7, the deception rate of participants
is negatively correlated with the conscientiousness trait (Pearson
correlation coefficient ρ = −0.44) while it is positively correlated
with the agreeableness trait (ρ = 0.36). This is in accordance with
other research findings reporting that conscientious individuals are
less likely to lie [60] as the conscientiousness trait was found to be
associated with higher levels of honesty in general [16]. However,
the positive correlation between deception and the agreeableness
trait contradicst previous research findings [16, 53, 60] reporting
that highly agreeable individuals are less likely to lie. The prototype
system and the data obtained during the dyadic game interactions
presented in this paper can therefore be used to further investigate
such research hypotheses and questions.

Figure 7: Frequency of deception (red) and suspicion (blue)
events against personality traits: Conscientiousness (left)
and Agreeableness (right). Each datapoint corresponds to
one study participant.
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