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ABSTRACT
The inherent diversity of human behavior limits the capabilities of
general large-scale machine learning systems, that require ample data
to provide robust descriptors of the outcomes of interest. Population-
specificmodels comprise a promising line of work for representing hu-
man behavior, since they make decisions for clusters of people with
common characteristics, reducing the amount of data needed for train-
ing. We propose a multi-task learning (MTL) framework for devel-
oping population-specific models of interpersonal conflict between
couples using ambulatory sensor and mobile data from real-life inter-
actions. The criteria for population clustering include global indices
related to couples’ relationship quality and attachment style, person-
specific factors of partners’ positivity, negativity, and stress levels, as
well as fluctuating factors of daily emotional arousal obtained from
acoustic and physiological indices. Population-specific information is
incorporated through a MTL feed-forward neural network (FF-NN),
whose first layers capture the common information across all data
samples, while its last layers are specific to the unique characteristics
of each population. Our results indicate that the proposedMTL FF-NN
trained solely on the sensor-based modalities provides unweighted
and weighted F1-scores of 0.51 and 0.75, respectively, outperforming
a single general FF-NN trained on the entire dataset and separate FF-
NNs trained on each population cluster individually, highlighting the
importance of taking into account the inherent diversity of different
populations for the development of human-centered machine learn-
ing models.
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1 INTRODUCTION
Emerging machine learning systems can leverage the large amount of
information obtained on a constant basis and generate automatic de-
cisions for outcomes of interest. Such systems have been very success-
ful in traditional computer vision and speech processing applications,
where the labels of the corresponding outcomes are well-defined and
human annotations are easy to obtain. However, this is not always
the case in emerging human-centered applications, since the high di-
versity of human behavior and interaction imposes additional con-
straints to the considered problem [27]. The tedious data collection
protocols [22], the inherent noise [13], and the limited availability of
psychological-science experts [22] are some of the challenges in ac-
quiring large amounts of data, limiting conventional machine learn-
ing systems and creating the need for alternative models to more ef-
fectively address the data sparsity issues in such applications.

Psychological science has long recognized that human behavior
is affected by a variety of person- and context- specific indices [34].
Incorporating such indices in computational models can potentially
yield more accurate descriptors of the underlying diversity of human
behavior. The above observations have motivated a new line of re-
search that aims to leverage personalized and population-specific in-
formation and develop machine learning models specific to a certain
individual or population. This paper focuses on population-specific
models for detecting behaviors of interest in real-life, where popu-
lation refers to a group of subjects from the original pool of partici-
pants that share common characteristics. Our application focuses on
detecting interpersonal conflict between romantic couples in real-life
through ambulatory data. Conflict is known for its deleterious effects
in every-day and beyond [5, 12]. Especially in romantic relationships,
conflict is experienced and expressed differently between distressed
and non-distressed couples as well as between people with different
relationship attachment characteristics [15]. We propose a multi-task
learning (MTL) framework that is able to leverage useful information
common across all couples and use population-specific information
to further refine the system output. The MTL approach is operational-
ized as a multi-task feedforward neural network (FF-NN), where the
first layers represent common feature embeddings, while the last lay-
ers are separately trained based on pre-defined populations from the
data of interest. We have further experimented with different clus-
tering criteria to define populations. Our results indicate that the pro-
posed approach outperforms a single FF-NN trained on the entire data
sample, as well as separate FF-NNs trained on each population indi-
vidually, highlighting the importance of incorporating prior informa-
tion from various global and fluctuating factors for reliably modeling
human behavior.
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2 PREVIOUS WORK
Early work on personalized and population-specific machine learn-
ing has examined the learning of separate models for groups of par-
ticipants or for each participant separately. Despite its simplicity and
intuitive nature, this approach might not be generalizable, as it does
not incorporate general knowledge from the entire data sample, while
each population might not have enough data related to all outcomes
of interest [18, 21]. Adaptive models, such as modified support vec-
tor machine, have been proposed as an alternative approach, accord-
ing to which corpus-wide information provides initial estimates of
the model parameters, while the personalized or population-specific
information refines these initial estimates [9, 17]. Ensemble methods,
such asweighted regression and community similarity networks, have
been further used to provide outcome estimates based on the subset of
data that are most relevant to the sample of interest [4, 19, 24]. Finally,
hierarchical models, such as multitask neural networks, have recently
gained attention, by modeling corpus-wide feature representations
through the initial network layers and individual-specific represen-
tations through the subsequent layers [25, 26]. Despite their promis-
ing results, the majority of work has focused on personalized mod-
els for detecting and predicting human behavior, while the problem
of population-specific representations has not been extensively ad-
dressed. Previous studies have proposed the use of a K-nearest neigh-
bor regression [4] and ensemble methods [21], while FF-NNs have not
been examined for population-specific approaches. Given the fact that
fully personalized models might fail to adequately generalize even
within the same person, since each individual might not have enough
training samples for each outcome, especially those related to extreme
conditions that are highly relevant to health, the current paper focuses
on population-specific models for quantifying human behavior.

Previous work has also used audio signals to detect conflict in po-
litical debates [20], while other studies have attempted to detect inter-
personal conflict between couples in uncontrolled real-life environ-
ments through the use of general machine learning models [16, 36].

3 DATA DESCRIPTION
Data were collected through the University of Southern California
(USC) CoupleMobile Sensing Project (homedata.github.io) and include
87 couples aged between 18-25 years. Collection was performed from
9am to bedtime and resulted in 1126 (90.5%) non-conflict and 117 con-
flict samples. The Nexus 5 phone was used to administer hourly eco-
logical momentary assessments (EMA) with self-reports of mood and
quality of interactions (MQI) between participants. The same phone
also recorded GPS coordinates and 3 minutes of audio data every 12
minutes. Physiological sensors included the Actiwave [1] for the elec-
trocardiogram (ECG) signal and the Q sensor [31] for the electroder-
mal activity (EDA), temperature, and acceleration recordings.

Acoustic, linguistic, physiological, contextual, and MQI features
were extracted over an hourly basis. Automatic voice activity detec-
tion and speaker diarizationwas performed on the audio signals, based
onwhich themean, median, maximum,minimum, standard deviation,
and range of speech loudness and fundamental frequency measures
were computed, resulting in 12 acoustic features per partner. Manual
transcripts were generated from the audio recordings for 53 couples,
based on which linguistic features were extracted using the Linguistic
Inquiry and Word Count (LIWC) [29] software. These include 24 lin-
guistic indices (e.g., personal pronouns, verbs), 32 psychological con-
struct measures (e.g., positivity, negativity, swearing), 7 features of
personal concern (e.g., home-, work-, health-related words), and 3 par-
alinguistic factors (i.e., assent, fillers, disfluencies) per partner. The lin-
guistic features of the couples for which transcripts were not available

were treated as missing values. 54 physiological features were com-
puted per partner. Time- and frequency-based ECG features were ex-
tracted that include average, standard deviation, minimum, and max-
imum of the interbeat interval (IBI), average beats per minute, heart
rate variability, R-R interval, as well as the very-low (<0.04Hz), low
(0.04-0.15Hz), and high (0.15-0.4Hz) frequency component of the IBI.
EDA features included the mean skin conductance level, and the num-
ber, frequency, and amplitude of skin conductance responses detected
with thresholds at 0.01 and 0.02µS. Measures of EDA synchrony were
further computed using signal similarity approaches in order to cap-
ture inter-partner physiological co-regulation [7]. Body activity count
was measured as the l2-norm of the 3-axis acceleration signals, while
body temperature was averaged over the corresponding hour. Con-
textual features include the hourly consumption of caffeine, alcohol,
tobacco, and drugs, as well as whether the participants were exercis-
ing, interacting with others, or driving, resulting in 7 measures per
person. The stress, happiness, sadness, nervousness, and anger are
the 5 self-reported measures per partner.

Due to the unbalanced nature of the dataset, we report weighted
and unweighted evaluation metrics, the latter taking the number of
samples per class into account. Conflict labels were based on momen-
tary self-reports, where individuals reported "whether they have ex-
pressed annoyance or irritation toward their partner". Missing values
were replaced with feature mean.

Prior to the daily data collection, each participant had completed
various self-assessment questionnaires, including the Quality of Mar-
riage Index (QMI) [28], the Experiences in Close Relationships-Revised
(ECR-R) [33], the Positive and Negative Affect Schedule (PANAS) [37]
and the Perceived Stress Scale (PSS) [10]. QMI is a 6-item question-
naire that contains items related to the degree of satisfaction in var-
ious areas of the relationship. ECR-R captures relationship anxiety
and avoidance through an 18-item questionnaire related to how se-
cure people are about their romantic partners and how comfortable
they are depending on others. PANAS is a 10-item scale that measures
an individual’s positive and negative mood, while PSS captures the de-
gree towhich situations in ones’ life are appraised as stressful through
10 items. These comprise the prior information that will be used for
creating population clusters (Section 4.1).

4 METHODOLOGY
4.1 Population clustering
Population clustering is motivated by findings in psychological sci-
ences, suggesting that the way couples experience and express con-
flict depends on their relationship quality and attachment styles, as
well as to the individual person-dependent characteristics. For exam-
ple, research findings indicate that various relationship attachment
styles (e.g., anxious, avoidant) are related to different types conflict
resolution (e.g., compromising, obliging, integrating), each depicted
differently on individuals’ bio-behavioral signals [30, 32]. Moreover
couples that are not satisfied with their relationship are found to en-
gage in a negative conflict style (e.g., feeling irritated towards partner,
avoiding discussion) [11, 23]. Clustering was performed using global
couple and person-dependent descriptors obtained through the QMI,
ECR-R, PANAS, and PSS, as explained in detail in Section 3, as well as
fluctuating factors obtained from the ambulatory data collection. The
fluctuating factors that were used include signal-derived measures of
emotional arousal (i.e., the mean skin conductance level and the mean
acoustic fundamental frequency) computed over the entire day. These
have been successfully used in relevant studies to capture the daily
“microprocesses” in couples’ lives [35] and are tightly connected to re-
lationship outcomes and various facets of communication [3, 38]. The
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Figure 2: Multi-task, single and separate models.

items of these questionnaires comprise the input to principal compo-
nent analysis (PCA) to minimize correlations and reduce the dimen-
sionality of the input space. Population clusteringwas performedwith
K-means having as input the first three PCA components.

4.2 Population-specific models
Our goal is to classify between conflict and non-conflict from sensory-
based and self-reported features using the proposed population- spe-
cific machine learning models. While previous work has mostly ex-
amined the training of separate models per population [4, 18, 21], we
propose the use of MTL for the same task. MTL is inspired by human
learning to leverage useful information present in related tasks and
apply this for the learning of another proximal task [40, 41]. Instead
of learning patterns over similar tasks, MTL can be applied to learn
patterns over similar populations. By operationalizing MTL as a fea-
ture learning approach, we can assume that the entire group of partic-
ipants shares generalized feature representations, while specific rep-
resentations can be subsequently learned for each population. Multi-
layer FF-NNs provide an ideal structure for implementing this, since
they enable common information among all samples to be captured
in the initial layers of the network, while the final layers are specific
to each population, capturing its unique characteristics (Fig. 1). We
compared the proposed feedforward MTL (denoted as MTL) to a sin-
gle general model trained for entire population (Single) and separate
unique models trained and tested using data from each population
cluster separately (Separate), as depicted in Fig. 2.

5 RESULTS
Results are reported using a 5-layer FF-NN with 1 input, 1 output, and
3 hidden layers. The Single model consisted of a 5-layer FF-NN, the
Separatemodels consisted of separate 5-layer FF-NNs, while theMTL
had the input and first 2 hidden layers shared among all data samples
and the subsequent 2 layers separately trained for each population.
During the MTL training, weights of the first 3 layers were updated
based on all data, while each group of weights in the last two layers
was updated using the samples of the corresponding population. Ex-
periments were performed with a nested cross-validation [6], accord-
ing to which the outer fold was used to assess the performance of
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Figure 3: Number of (non-)conflict samples per couple for pop-
ulations 1, 2, and 3 (P1, P2, P3).

Figure 4: The first two dimensions resulting from Principal
Component Analysis with the Quality of Marriage Index and
Experiences in Close Relationships-Revised scores as an input.

Table 1: Set of values in hyper-parameter tuning.
Hyper-parameter Values
# neurons in first two hidden layers 60, 80, 120
# neurons in last hidden layer 60, 80, 120
dropout 0, 0.2, 0.3
optimization algorithm adam, sgd, rmsprop
class weights {non-conflict:1, conflict:15},

{non-conflict:1, conflict:25}

the model, while the inner-fold was used as validation set to tune the
model hyper-parameters. Leave- 15 th-couples-out cross validation was
used to avoid any couple-dependent bias. The tested hyper- parame-
ters include the number of neurons in the hidden layers, the dropout
rate applied over all hidden layers, the optimization algorithm for
training, and the weight values of the cross-entropy loss function for
each class (Table 1), resulting in 162 hyper-parameter combinations.
All systems were implemented with the Keras toolbox [2].

Various global and fluctuating factors served as an input for popu-
lation clustering (Section 4.1). We empirically chose K=3 clusters for
the K-means, since this resulted in separable population groups. An
indicative 2-dimensional plot of the first and second PCA dimensions
resulting from the QMI, anxiety and avoidance scores for the 87 cou-
ples is shown in Figure 4. In this figure, we observe highly separable
clusters indicating the presence of diversity in the original couples.
The distribution of conflict and non-conflict samples per couple and
population (Figure 3) indicates that all populations include samples
from both classes, i.e., 11.9%, 8.5%, and 7.9% of the samples belong
to the conflict class for populations 1, 2, and 3, respectively. Classifi-
cation results further suggest that the most effective clustering crite-
rion included the QMI and ECR-R scores (Table 2), which were used
in the remaining experiments. The same results further highlight the
importance of population clustering criteria, and specifically the sig-
nificance of couple-specific information for detecting conflict.
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Table 2: Conflict detection with the proposed multi-task feed-
forward neural network using various clustering criteria.

Clustering Features Weighted F1 Unweighted F1
QMI, ECR-R 0.75 0.51
QMI, ECR-R,
PSS, PANAS 0.51 0.36
QMI, ECR-R,
skin conductance, pitch 0.68 0.46
QMI: Quality of Marriage Index, ECR-R: Experiences in Close Relationships-Revised

PANAS: Positive and Negative Affect Schedule, PSS: Perceived Stress Scale

Table 3: Conflict classification with multi-task learning (MTL),
separate models per population cluster (Separate) and single
general model for entire population (Single) trained using the
sensor-based data (acoustic, linguistic, physiological).

Model Class Precision Recall F1
MTL Non-Conflict 0.93 0.71 0.8

Conflict 0.15 0.48 0.22
Weighted Average 0.86 0.69 0.75
Unweighted Average 0.54 0.60 0.51

Separate Non-Conflict 0.93 0.61 0.74
Conflict 0.13 0.57 0.22
Weighted Average 0.86 0.61 0.69
Unweighted Average 0.53 .59 0.48

Single Non-Conflict 0.94 0.54 0.68
Conflict 0.13 0.67 0.22
Weighted Average 0.86 0.55 0.64
Unweighted Average 0.54 .61 0.45

We further compared the three different models using the sensor-
based input features only, i.e., acoustic, linguistic, physiological. Our
results indicate that the MTL outperforms the baseline models, sug-
gesting that incorporating population-specific information can ben-
efit performance (Table 3). Acoustic and linguistic features outper-
formed the physiological ones (Table 4), with acoustic features achiev-
ing accuracy close to that of the MQI. System performance improved
using all three sensory-based modalities (Table 3), indicating the im-
portance of integrating overt and covert information. We finally ex-
perimented by including the best two sensor-based modalities (i.e.,
acoustic, linguistic) per system, and the best two sensor-based modal-
ities with contextual indices and self-reports. Contextual information
did not seem to help, while the combination of all modalities per-
formed best (Table 5).

6 DISCUSSION
This paper indicates the usefulness of incorporating indices of rela-
tionship quality and measures related to an individual’s anxious or
avoidant attachment style for modeling couples’ conflict. Such prior
information is collected from self-reports, that typically do not require
a lot of time from individuals to fill in (e.g., QMI is a 6-item question-
naire [28]). These questionnaires are commonly administered by psy-
chological science researchers with the corresponding questions and
scoring methods being publicly available. Although further examina-
tion is called for, these findings can further stratify the various ways
in which couples experience and express conflict, significantly help-
ing the detection of this phenomenon in real-life. One limitation of
our approach lies in the fact that the system used manual transcrip-
tion of the audio data. In our future work, we plan to use transcripts
generated as the output of automated speech recognition systems. Pre-
vious work indicates the feasibility of automated transcripts for per-
forming linguistic content analysis in similar tasks and for detecting

Table 4: Conflict classification using data from each modality.
Modality of Model Weighted Unweighted
features average F1 average F1
Linguistic MTL 0.58 0.41

Separate 0.61 0.43
Single 0.59 0.41

Acoustic MTL 0.61 0.43
Separate 0.56 0.39
Single 0.47 0.35

Physiological MTL 0.52 0.35
Separate 0.48 0.35
Single 0.42 0.32

Conextual MTL 0.42 0.31
Separate 0.43 0.32
Single 0.3 0.24

Self-Report MTL 0.66 0.46
Separate 0.46 0.43
Single 0.61 0.43

Table 5: Conflict classification with combination of modalities.
Modalities of Model Weighted Unweighted
features average F1 average F1
Best 2 MTL 0.78 0.52

Separate 0.67 0.47
Single 0.61 0.41

Best 2 + contexutual MTL 0.79 0.52
Separate 0.7 0.49
Single 0.71 0.49

All MTL 0.79 0.56
(including Separate 0.8 0.57
self-report) Single 0.72 0.51

human behaviors in real-life [14, 39]. Finally, another limitation lies in
the low precision for detecting the conflict class, that stems from the
highly unbalanced class distribution. Given the nature of the applica-
tion, low precision measures are preferred over low recall, since the
risk of missing a conflict sample is higher than the risk of misclassify-
ing a non-conflict sample, i.e., it is safer to warn couples regarding a
conflict episode, even if this is not occurring, rather than the opposite.
As part of our future work, we will explore oversampling techniques,
that might have be able to alleviate this problem [8].

7 CONCLUSION
We proposed population-specific machine learning models for detect-
ing couples’ conflict in real life. We experimented with a MTL FF-NN,
whose first layers correspond to feature representations of the general
sample, while the subsequent layers were trained separately on each
population. Population clusteringwas performed through couple- and
partner-specific descriptors and fluctuating factors of emotional arousal.
Our results suggest that the proposed MTL FF-NN outperforms the
baseline models, achieving weighted and unweighted F1 scores of
0.75 and 0.51, respectively. This highlights the importance of incorpo-
rating population diversity when modeling human behavior. As part
of our future work, we plan to compare the proposed MTL FF-NN
with ensemble methods and employ transfer learning techniques us-
ing data from similar domains.
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