
© Owner/Author 2018. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was published in Source
Publication, http://dx.doi.org/10.1145/3243734.3243761.

ret2spec: Speculative Execution Using Return Stack Buffers
Giorgi Maisuradze

CISPA, Saarland University
giorgi.maisuradze@cispa.saarland

Christian Rossow
CISPA, Saarland University

rossow@cispa.saarland

ABSTRACT
Speculative execution is an optimization technique that has
been part of CPUs for over a decade. It predicts the out-
come and target of branch instructions to avoid stalling the
execution pipeline. However, until recently, the security
implications of speculative code execution have not been
studied.

In this paper, we investigate a special type of branch pre-
dictor that is responsible for predicting return addresses. To
the best of our knowledge, we are the first to study return
address predictors and their consequences for the security
of modern software. In our work, we show how return stack
buffers (RSBs), the core unit of return address predictors,
can be used to trigger misspeculations. Based on this knowl-
edge, we propose two new attack variants using RSBs that
give attackers similar capabilities as the documented Spectre
attacks. We show how local attackers can gain arbitrary
speculative code execution across processes, e.g., to leak pass-
words another user enters on a shared system. Our evaluation
showed that the recent Spectre countermeasures deployed
in operating systems can also cover such RSB-based cross-
process attacks. Yet we then demonstrate that attackers can
trigger misspeculation in JIT environments in order to leak
arbitrary memory content of browser processes. Reading
outside the sandboxed memory region with JIT-compiled
code is still possible with 80% accuracy on average.

1 INTRODUCTION
For decades, software has been able to abstract from the inner
workings of operating systems and hardware, and significant
research resources have been spent on assuring software secu-
rity. Yet only recently, the security community has started
to investigate the security guarantees of the hardware under-
neath. The first investigations were not reassuring, revealing
multiple violations of security and privacy, e.g., demonstrat-
ing that cryptographic keys meant to be kept secret may leak
via caching-based side channels [5, 34, 35]. This recent dis-
covery has piqued interest in the general topic of microarchi-
tectural attacks. More and more researchers aim to identify
potential problems, assess their impact on security, and de-
velop countermeasures to uphold previously-assumed security
guarantees of the underlying hardware. As a consequence, a
variety of novel techniques have been proposed which abuse
microarchitectural features, thereby making seemingly-secure
programs vulnerable to different attacks [5, 17, 18, 23, 33, 35].

One of the core drivers for recent microarchitectural attacks
is the sheer complexity of modern CPUs. The advancement of

software puts a lot of pressure on hardware vendors to make
their product as fast as possible using a variety of optimiza-
tion strategies. However, even simple CPU optimizations can
severely threaten the security guarantees of software relying
on the CPU. Caching-based side channels are a notable exam-
ple of this problem: such side channels exist since caches that
improve the access time to main memory are shared across
processes. Thus, caching can result in leaking cryptographic
keys [5, 35], key-stroke snooping, or even eavesdropping on
messages from secure communications [18, 33].

Besides caching, modern CPUs deploy several other opti-
mization techniques to speed up executions, two of which we
will study in more detail. First, in out-of-order execution, in-
stead of enforcing a strict execution order of programs, CPUs
can reorder instructions, i.e., execute new instructions before
older ones if there are no dependencies between them. Second,
in speculative execution, CPUs predict the outcome/target
of branch instructions. Both these strategies increase the
utilization of execution units and greatly improve the perfor-
mance. However, they also execute instructions in advance,
meaning they can cause instructions to execute that would
have not been executed in a sequential execution sequence.
For example, it can happen that an older instruction raises
an exception, or that the branch predictor mispredicts. In
this case, the out-of-order executed instructions are rolled
back, restoring the architectural state at the moment of the
fault (or misspeculation). Ideally, the architectural state is
the same as in strict sequential execution. However, this is
not the case: instructions executed out of order can influence
the state in a manner that can be detected. Meltdown [29]
and Spectre [24] are great examples of this class of prob-
lems. Meltdown exploits a bug in Intel’s out-of-order engine,
allowing the privileged kernel-space data to be read from
unprivileged processes. Spectre poisons the branch target
buffer (BTB) and thus tricks the branch prediction unit into
bypassing bounds checks in sandboxed memory accesses, or
even triggering arbitrary speculative code execution in differ-
ent processes on the same core. To mitigate these threats,
operating systems had to make major changes in their design
(e.g., isolating the kernel address space from user space [15]),
and hardware vendors introduced microcode updates to add
new instructions to control the degree of the aforementioned
CPU optimization techniques [21].

In this paper, we further investigate speculative execu-
tion and show that attacks are possible beyond the already-
documented abuse of BTBs. More specifically, we look into
the part of branch prediction units that are responsible for
predicting return addresses. Since they are the core of the

ar
X

iv
:1

80
7.

10
36

4v
2

 [
cs

.C
R

]
 2

0
A

ug
 2

01
8

http://dx.doi.org/10.1145/3243734.3243761

ret2spec authors’ version; not for redistribution 2

return address predictor, we will in particular investigate the
properties of return stack buffers (RSBs). RSBs are small
microarchitectural buffers that remember return addresses of
the most recent calls and speed up function returns. Given
that return addresses are stored on the stack, without such
RSBs, a memory access is required to fetch a return desti-
nation, possibly taking hundreds of cycles if retrieved from
main memory. In contrast, with RSBs, the top RSB entry
can be read instantaneously. RSBs thus eliminate the waiting
time in the case of a correct prediction, or in the worst case
(i.e., in case of a misprediction) face almost1 no additional
penalty.

Despite being mentioned as potential threat in the initial
report from Google Project Zero [19] and Spectre [24], the
security implications of abusing RSBs have not yet been pub-
licly documented, and only very recent studies have started
to investigate timing implication of return address mispre-
dictions at all [40]. To the best of our knowledge, we are
the first to systematically study and demonstrate the actual
security implications of RSBs. We furthermore show the
degree to which attackers can provoke RSB-based speculative
execution by overflowing the RSB, by crafting malicious RSB
entries prior to context switches, or by asymmetric function
call/return pairs.

Based on these principles, we provide two RSB-based at-
tack techniques that both allow attackers to read user-level
memory that they should not be able to read. In the first
attack (Section 4), we assume a local attacker that can spawn
arbitrary new programs that aim to read another user’s pro-
cess memory. To this end, we show how one can poison RSBs
to force the colocated processes (on the same logical core) to
execute arbitrary code speculatively, and thus report back
potential secrets. Interestingly, operating systems (coinciden-
tally) mitigate this attack by flushing RSBs upon context
switches. Yet these mitigations were introduced to anticipate
potential RSB underflows that trigger the BTB2, possibly
leading to speculatively executing user-mode code with ker-
nel privileges. RSB flushing is thus only used when either
SMEP3 is disabled or when CPUs of generation Skylake+ are
used. This hints at the fact that RSB stuffing was introduced
in order to avoid speculative execution of user-land code from
kernel (non-SMEP case) or BTB injections (Skylake+ CPUs
fall back to BTB predictions on RSB underflow). However,
as this defense is not always active, several CPU generations
are still vulnerable to the attack demonstrated in this paper.
Our work shows that RSB-based speculated execution (i) can
indeed be provoked by local attackers with non-negligible
probability, and (ii) goes beyond the currently-assumed prob-
lem of falling back to the BTB (thus allowing for Spectre)
when underflowing RSBs, and thus, can be generalized to
the non-trustworthiness of attacker-controlled RSBs.

1Rolling back the pipeline on misspeculation adds an overhead of a
few cycles.
2https://patchwork.kernel.org/patch/10150765/
3SMEP (Supervisor Mode Execution Protection) is a recent x86 feature
implemented by Intel to protect against executing code from user-space
memory in kernel mode.

In our second attack (Section 5), we investigate how at-
tackers can abuse RSBs to trigger speculation of arbitrary
code inside the same process—notably without requiring a
context switch, and thus effectively evading the aforemen-
tioned defense. We assume an attacker that controls a web
site the target user visits, and by carefully crafting this web
site, aims to read memory of the victim’s browser process.
Technically, we leverage just-in-time (JIT) compilation of
WebAssembly to create code patterns that are not protected
by memory isolation techniques and thus can read arbitrary
memory of a browser process. By doing so, we show that
adversaries can bypass memory sandboxing and read data
from arbitrary memory addresses.

Both attack types demonstrate that speculative execution
is not limited to attackers penetrating the BTB. While our
attacks result in similar capabilities as Spectre, the underlying
attack principles to manipulate the RSB are orthogonal to
the known poisoning strategies. We thus also discuss how
existing and new countermeasures against RSB-based attacks
can mitigate this new risk (Section 6). We conclude the paper
with vendor and developer reactions that we received after
responsibly disclosing the internals of this new threat.

In this paper, we provide the following contributions:

• We study the return address predictor, an important
yet so far overlooked module in the prediction unit.
To the best of our knowledge, we are the first to
demonstrate the actual abuse potential of RSBs.

• We propose attack techniques to trigger misspecu-
lations via the RSB. This can be useful in future
studies that will target speculative code execution.
In contrast to using the branch predictor, which re-
quires a prior training phase, RSBs can be forced
to misspeculate to required addresses without prior
training.

• We then propose cross-process speculative execution
of arbitrary code (similar to Spectre/Variant 1). We
evaluate the results by leaking keystrokes from a
specially-crafted bash-like program. Using our syn-
thetic program example, we demonstrate that such
attacks are in principle conceivable, showing the im-
portance of applying the existing OS-based defenses
to every microarchitecture in order to fully mitigate
our attack.

• Finally, we show how to trigger misspeculations via
RSBs in JIT-compiled code. We leverage this to
execute arbitrary code speculatively and, by doing
so, bypass memory sandboxing techniques, allowing
arbitrary memory reads. We evaluate our technique
in Firefox 59 (with a modified timer for higher preci-
sion).

2 BACKGROUND
In the following, we will present the key features of x86
that are important to understand for the remainder of this
paper. While similar concepts are also common in other

ret2spec authors’ version; not for redistribution 3

architectures, for brevity and due to its popularity, we focus
on x86.

2.1 Out-of-Order Execution
Being a CISC (Complex Instruction Set Computing) ar-
chitecture, x86 has to support a multitude of instructions.
Implementing all such instructions in circuits would require
an enormous amount of transistors, thus also drastically in-
creasing the power consumption. Therefore, under the hood,
both main manufacturers of x86 CPUs (Intel and AMD) use
micro-OPs, which can be seen as a simplified RISC (Reduced
Instruction Set Computing) machine that runs inside the
CPU. All instructions from the x86 ISA are then dynamically
decoded into their corresponding micro-OPs, and are then
executed on much simpler execution units. This allows man-
ufacturers to reduce the number of required execution paths,
decreasing both production cost and power consumption.

Having a variety of different instructions, sequential exe-
cution becomes another bottleneck. The concept of splitting
up complex instructions into smaller operations also makes
it possible to reorder the execution of micro-OPs to gain per-
formance. In a strict sequential execution, an instruction N
cannot be started unless all preceding instructions, 1..N − 1,
are finished executing. This is especially problematic for
instructions with completely different timing properties, e.g.,
zeroing a register and reading a value from main memory.
Out-of-order execution deals with this issue by executing
instructions out of order, provided they do not depend on
one another.

To implement out-of-order execution, x86 maintains a so-
called reorder buffer (ROB), which keeps a FIFO buffer of
micro-OPs in their original order, while executing them out
of order. If a micro-OP is in the ROB it (i) is waiting for its
dependencies to be resolved, (ii) is ready to be executed, (iii)
is already being executed, or (iv) is done executing but was
not yet committed. Committing (also called retiring) a micro-
OP reflects its changes back to the architectural state, e.g.,
modifying the architectural (ISA-visible) registers or writing
data back to memory. Given that the programs assume a
strict sequential order, the ROB commits instructions in order
such that the architectural state is updated sequentially.

2.2 Speculative Execution
Modern CPUs augment out-of-order execution with an or-
thogonal feature called speculative execution. The key obser-
vation here is that while executing instructions, CPUs can
encounter a branch instruction that depends on the result of
a preceding instruction. This would never happen in a strict
sequential (non-parallel) execution, as all previous instruc-
tions before the branch would have been resolved. To cope
with this problem in modern out-of-order CPUs that execute
multiple instructions in parallel, the simplest solution is to
wait until the branch condition/target is resolved, and only
then continue the execution. However, this would serialize
execution at branch instructions, which would degrade the

performance, especially given the high number of branch
instructions in x86.

Speculative execution represents an efficient alternative
solution and is consequently used in all modern CPUs. Spec-
ulative execution uses a branch prediction unit (BPU), which
predicts the outcome of conditional branch instructions (i.e.,
taken/not taken). The out-of-order engine then continues
execution on the predicted path. This general concept is
not limited to direct branches that always have a fixed jump
target. For example, consider indirect branches (such as
indirect calls and jumps) that need to be resolved before
being executed, i.e., the branch target can be stored either in
a register or in memory. In this case, the branch destination
is the value that needs to be predicted. To support indirect
branches, the branch target buffer (BTB) stores a mapping
between the branch source and its likely destination.

The two recently disclosed microarchitectural attacks, Spec-
tre and Meltdown, abuse the aforementioned out-of-order
and speculative execution engines. Meltdown uses the fact
that out-of-order engines do not handle exceptions until the
retirement stage, and leverages it to access memory regions
that would otherwise trigger a fault (e.g., kernel memory). In
Meltdown, authors exploit the bug in Intel’s out-of-order exe-
cution engine, which reveals the data from the faulty memory
access for a few cycles. This time, however, is enough to
do a dependent memory access on the data. Although the
dependent memory access will be flushed from the pipeline
after handling the fault, the cache line for that address will
remain cached, thus creating a side channel for leaking the
data. Conversely, Spectre uses legitimate features of branch
predictors to mount an attack: it mistrains the BPU for
conditional branches in Variant 1, and injects BTB entries
with arbitrary branch targets in Variant 2. Variant 1 can
be used to bypass bounds checking and thus read outside
the permitted bounds, while Variant 2 allows cross-process
BTB injection, allowing arbitrary speculative execution of
the code in other processes on the same physical core.

2.3 Return Stack Buffers
A return instruction is a specific type of indirect branch that
always jumps to the top element on the stack (i.e., translated
to pop tmp; jmp tmp). Consequently, in principle, BTBs can
also be used here as a generic prediction mechanism. However,
given that functions are called from multiple different places,
BTBs will frequently mispredict the jump destination. To
increase the prediction rate, hardware manufacturers rely on
the fact that call and return instructions are always executed
in pairs. Therefore, to predict the return address at a return
site, CPUs remember the address of the instruction following
the corresponding call instruction. This prediction is done
via return stack buffers (RSBs) that store the N most recent
return addresses (i.e., the addresses of instructions after the
N most recent calls). Note that, in case of hyperthreading,
RSBs are dedicated to a logical core. The RSB size, N ,
varies per microarchitecture. Most commonly, RSBs are
N = 16 entries large, and the longest reported RSB contains

ret2spec authors’ version; not for redistribution 4

N = 32 entries in AMD’s Bulldozer architecture [11]. In this
paper, we assume an RSB size of 16, unless explicitly stated
otherwise, but our principles also work for smaller or larger
RSBs.

RSBs are modified when the CPU executes a call or return
instruction. Calls are simple: a new entry (the address
of the next instruction) is added to the RSB and the top
pointer is incremented. If the RSB was already full, the
oldest entry will be discarded. Conversely, in case the of
a return instruction, the value is taken from the RSB, the
top pointer is decremented, and the read value is used for
prediction.

Due to the their limited size, it naturally happens that
the RSBs cannot fit all the return addresses. For example,
N + 1 calls followed by N + 1 returns will underflow the RSB
in the last return instruction. The way such an underflow
is handled depends on the microarchitecture. There are the
following possible scenarios: (a) stop predicting whenever
the RSB is empty, (b) stop using the RSB and switch to
the BTB for predictions, and (c) use the RSB as a ring
buffer and continue predicting (using idx%N as the RSB top
pointer). Out of these scenarios, (a) is the easiest to imple-
ment; however, it stops predicting return addresses as soon
as the RSB is empty. The prediction rate is improved in (b),
which incorporates the BTB to predict return destinations.
However, the improvement is made at the expense of BTB
entries, which might detriment other branches. Finally, (c)
is an optimization for deep recursive calls, where all RSB
entries return to the same function. Therefore, no matter
how deep the recursion is, returns to the recursive function
will be correctly predicted. According to a recent study [40],
most Intel CPUs use the cyclic behavior described in variant
(c), while AMD’s use variant (a) and stop prediction upon
RSB underflows. Intel microarchitectures after Skylake are
known to use variant (b)4. Throughout the paper, we will
refer to (c) as cyclic, and (a) and (b) as non-cyclic.

3 GENERAL ATTACK OVERVIEW
Before detailing specific attack scenarios, in this section, we
introduce the basics of how RSB-based speculative execution
can be achieved and be abused. We explore whether and how
attackers may manipulate the RSB entries in order to leak
sensitive data using speculative execution that they could
not access otherwise. Similar to recent microarchitectural
attacks [8, 10, 24, 29, 32], we trick the CPU to execute in-
structions that would not have been executed in a sequential
execution. The goal is to leak sensitive information in spec-
ulation, e.g., by caching a certain memory area that can
be detected in a normal (non-speculative) execution. The
general idea of our attack can be divided into three steps:

(A1) trigger misspeculations in the return address pre-
dictor, i.e., enforce that returns mispredict

(A2) divert the speculative execution to a known/con-
trolled code sequence with the required context

4https://patchwork.kernel.org/patch/10150765/

(A3) modify the architectural state in speculation, such
that it can be detected from outside

(A1) Triggering Misspeculation: From an attacker’s per-
spective, enforcing that the return predictor misspeculates
upon function return is essential to reliably divert speculative
execution to attacker-controlled code (see A2 for how to con-
trol the speculated code). Misspeculations can be achieved in
several ways, depending on the RSB’s underflow behavior (as
discussed in Section 2.3).

Non-Cyclic RSB: If the RSB stops speculating upon under-
flow, triggering a misspeculation will require abnormal control
flow that violates the common assumption that functions re-
turn to their caller. Some examples of such abnormalities are:
(i) exception handling, i.e., a try-catch block in the upper call
stack and throwing an exception in a lower one (Figure 1a);
(ii) a setjmp/longjmp pair, i.e., saving the current execution
context at the time of calling setjmp, and restoring it at any
later point when (longjmp) is called (the stack layout will be
similar to Figure 1a, only with setjmp/longjmp instead of
try-catch/throw); (iii) a context switch from one process to
another, where the process being evicted was doing a chain of
calls, while the scheduled process will do a sequence of returns
(Figure 1b); and (iv) a process that deliberately overwrites
the return address to the desired destination and then re-
turns (Figure 1c). Unsurprisingly, (iv) is not commonly used;
however, it can be helpful for testing RSBs and triggering
the misspeculation on demand. In fact, in contrast to branch
predictors, which require training to trigger misspeculation,
RSBs can be forced to misspeculate with just a single store
instruction (mov [rsp], ADDRESS; ret, as in Figure 1c).

Cyclic RSB: If RSBs are cyclic, misspeculation can—in
addition to the methods mentioned before—be triggered by
overflowing the RSB. Figure1d depicts a scenario in which
function A calls B, function B calls C, and so on. Being limited
in size (N = 4 in this example), the RSB only contains the
4 most recently added return addresses. Therefore, after
correctly predicting four returns, when returning from E, the
RSB will mispredict H as the return address instead of D.

Cyclic RSBs can also be leveraged and prepared by re-
cursive functions. For example, if we have two recursive
functions A and B, and we call them in the following order:

• A calls itself recursively NA times,
• in its deepest recursion level, A then calls B
• B calls itself recursively 16 times (size of the RSB)

then the first 16 returns, from B, will be predicted correctly.
However, the remaining NA returns will be mispredicted,
and B’s call site will be speculated instead of A’s.

(A2) Diverting Speculative Execution: Being able to trig-
ger a misspeculation, the next step is to control the code that
is executed speculatively. Generally, misspeculation means
that instructions from one function (e.g., B) are speculatively
executed within the context of another (e.g., A). As a simple
example, consider a function that returns a secret value in
rax. If this function is predicted to return to code that ac-
cesses attacker-accessible memory relative to rax, this will
leak the secret value. Ideally, we control both, the context

ret2spec authors’ version; not for redistribution 5

...

catch

Z

Y

X

W

Stack

C

B

A

Z

Y

X

W

RSB

throw

ret

(a) Exception handling: While the RSB predicts a return to func-
tion Z, the exception is caught by function C, causing a chain of
misspeculations when C returns, as the RSB is misaligned to the
return addresses on the stack.

K.YP1.D

K.X

P1.D

P1.C

P1.B

P1.A P1.C

K.Y

K.X

P1.D

P1.C

RSB of P1 RSB of P2

RSB of OS

(b) Context switch: When the kernel switches from process P1 to P2,
the kernel will only evict a few entries with kernel-internal functions.
After the context switch, P2 may thus mispredict and return to the
remaining RSB entries that were added by P1.

F

C

B

A

Stack

D

C

B

A

RSB

ret

mov [rsp], F
...

(c) Direct overwrite: A process can enforce return mispredictions by
replacing return addresses stored on the stack.

H

G

F

E

Stack

B

A

...

H

G

F

E

RSB

C

D

ret

ret

ret

ret

ret

ret

ret

ret

ret

(d) Circular RSB: After returning N = 4 times, the predictor cycles
over and will repeat the same prediction sequence of return addresses.

Figure 1: Ways to enforce RSB misspeculation. We reduced the RSB size to N = 4 entries for readability. The bold arrow points
to the top element of each RSB. Thin solid arrows indicate actual returns, thin dashed arrows speculated returns.

and the speculated code; however, having either one or the
other can also be sufficient for a successful exploitation.

Let function B return and trigger a misspeculation in A
(right after the call to B). In the ideal case, we control the code
that is misspeculated in A, and the context (i.e., the contents
of the registers) in B. Combining them together allows us to
execute arbitrary code speculatively. This will be the case for
our attack in Section 5. Another, more complicated case is
when the context is fixed, e.g., the values of some registers are
known, and we are also limited with the possibly-speculated
code, e.g., it can be chosen from existing code pieces. In this
case, the challenge is to find code gadgets that use the correct
registers from the context to leak their values. For example,
if we know that r8 contains a secret, we need to find a gadget
that leaks r8. This case will be shown in Section 4.

(A3) Feedback Channel: Finally, being able to execute
arbitrary code in speculation, we have to report back the
results from within the speculative execution to the normal

execution environment. To this end, similar to several side
channels proposed in the past [18, 34, 41], we use secret-
dependent memory accesses that modify the caching state.
Technically, if we want to leak the value in rax, we read
attacker-accessible memory using the secret value as offset,
e.g., shl rax,12; mov r8,[rbx+rax]. This will result in
caching the corresponding memory address (rbx+rax*4096,
where 4096 bytes is the page size). Therefore, identifying the
index of the cached page from rbx will reveal the value of
rax.

The adversary can then use existing side channel techniques
to observe these cache changes, such as Flush+Reload [41]
or Prime+Probe [34]. Flush+Reload is most accurate, but
requires that the attacker and victim processes share mem-
ory. Typically this is granted, given that operating systems
share dynamic libraries (e.g., libc) to optimize memory us-
age. Alternatively, Prime+Probe [34] works even without
shared memory. Here, the attacker measures whether the

ret2spec authors’ version; not for redistribution 6

victim evicts one of the attacker-prepared cache lines. By
detecting the evicted cache line, the attacker can leak the
bits corresponding to the cache line address.

4 CROSS-PROCESS SPECULATIVE EXEC.
In this section, we will describe how an attacker can abuse the
general attack methodology described in the previous section
to leak sensitive data from another process. In Section 5, we
will describe RSB-based attacks in scripting environments to
read memory beyond the memory bounds of sandboxes.

4.1 Threat Model
In the following, we envision a local attacker that can execute
arbitrary user-level code on the victim’s system. The goal of
the attacker is to leak sensitive data from another process
(presumably of a different user) on the system, e.g., leaking
input fed to the target process. In our concrete example, we
target a command line program that waits for user input
(character-by-character), i.e., a blocking stdin, and we aim
to read the user-entered data. This setting is in line with
Linux programs such as bash or sudo. The attack principle,
however, generalizes to any setting where attackers aim to
read confidential in-memory data from other processes (e.g.,
key material, password lists, database contents, etc.).

For demonstration purposes, we assume that the kernel
does not flush RSBs upon a context switch. For example, this
can be either an older kernel before without such patches, or
an up-to-date kernel using an unprotected microarchitecture.
Furthermore, we assume that the victim process contains
all attacker-required gadgets. In our example, we simply
add these code pieces to the victim process. Finally, we
assume that ASLR is either disabled or has been broken by
the attacker.

4.2 Triggering Speculative Code Execution
We now apply the general attack principles to the scenario
where an adversarial process executes alongside a victim
process. The attacker aims to trigger return address mispre-
diction in the victim’s process, and divert the speculative
control flow to an attacker-desired location. The fact that
victim and attacker are in different processes complicates
matters, as the context of the execution (i.e., the register
contents) is not under the control of the attacker. To the
attacker’s benefit, though, the RSB is shared across processes
running on the same logical CPU. This allows the RSB to
be poisoned from one process, and then be used by another
process after a context switch. For this attack to work, the
attacker has to perform the following steps:

• The attacker first fills the RSB with addresses of suit-
able code gadgets that leak secrets by creating a call
instruction just before these gadgets’ addresses and
executing the call 16 times (step A2 from Section 3).

RSBs store virtual addresses of target instructions.
Therefore, in order to inject the required address,
we assume the attacker knows the target process’s
address space. In theory, in the case of a randomized

address space (e.g., with ASLR), the attacker can
use RSBs the opposite way, i.e., to leak the RSB
entries, and thus to reveal the addresses of the victim
process. However, we do not study this technique
further in our evaluation.

• After filling the RSB, the attacker forces a context
switch to the victim process (step A1 from Section 3).
For example, the attacker could call sched_yield in
order to ask the kernel to reschedule, ideally to the
victim process. For this, we assume that the attacker
process runs on the same logical CPU as the victim,
and thus shares the RSB. This can be accomplished
by changing the affinity of the process, to pin it to
the victim’s core (e.g., by using taskset in Linux),
or alternatively, spawn one process per logical CPU.

4.3 Proof-of-Concept Exploit
To illustrate the general possibility of such cross-process data
leaks, we picked a scenario where an attacker wants to leak
user input, e.g., in order to capture user-entered passwords.
Thus, in our tested example, the victim is a terminal process
that waits for user input, such as bash or sudo. At a high
level, such processes execute the following code:

while (inp = read_char (stdin)) {
handle_user_input (inp);

}

The following shows the (simplified) steps taken in a typical
iteration of such an input-processing loop:

(1) The main loop starts.
(2) read_char is called, which itself calls other inter-

mediate functions, finally reaching the read system
call.

(3) The stdin buffer will be empty (until the user starts
typing) and the victim process is thus evicted.

(4) When the user presses a key, the victim process,
waiting for buffer input, is scheduled.

(5) Execution continues within the read system call
(which has just returned), and a chain of returns are
executed until the execution reaches the main loop.

(6) handle_user_input handles the read character.
In order to leak key presses, the attacker process has to be

scheduled before the victim continues execution in (5). This
will guarantee that when resuming the execution from read,
the victim process will use the attacker-tainted RSB entries.

4.3.1 Leaking Key Presses. To show the plausibility of this
attack, we implemented three programs:

Attacker: fills up RSB entries and preempts itself, so
the victim process is scheduled after it.

Measurer: probes for a predetermined set of memory
pages to leak data from the victim process (using
Flush+Reload [41]).

Victim: simulates the behavior of bash, i.e., waits for
new keystrokes and handles them when they are
available. We replicate the call chain similarly to

ret2spec authors’ version; not for redistribution 7

bash from the main loop to the read system call,
and also return the same values.

There are several challenges with this approach:
(1) ASLR: Given that RSBs predict virtual addresses

of jump targets, address space randomization in the
victim makes tainting the RSB extremely difficult if
not impossible.

(2) Small speculation window: Since we use memory
accesses as a feedback mechanism, there is a race
condition between adversarial memory access in spec-
ulation and reading the real return address off the
stack.

(3) Post-Meltdown/Spectre ([24, 29]) patches: RSBs
have already been identified as a potential future
risk that allows speculative execution. Thus, for
CPU architectures that fall back to BTB upon RSB
underflow, most modern OS kernels flush (technically,
overwrite) RSBs every time a context switch occurs.

(4) Speculation gadgets: In bash, the character returned
by the read system call is moved into rax and the
function returns. We targeted this return for specu-
lation; thus, the required gadgets have to first shift
rax at the very least to a cache-line boundary (i.e.,
6 bits to the left), and then do a memory access
relative to shared memory (e.g., r10, which contains
the return address of the system call, pointing into
libc: shl rax,6; mov rbx,[r10+rax])

Out of these challenges, (3) is a real limitation that cannot
be avoided. Flushing the RSB at context switches destroys
the aforementioned attack. To show that this prophylactic
patch in modern OSes is indeed fundamental and needs to
be extended to all affected CPUs, we for now assume RSBs
are not flushed upon context switch. Challenge (4) strongly
depends on the compiler that was used to compile the victim
program. Therefore, each target requires its unique set of
gadgets to be found. Using an improved gadget finder, or
by scanning various dynamic libraries, we believe the issue
can be solved. For our demo, we added the required gadgets.
Limitation (2) can be overcome by using another thread that
evicts the addresses from the cache that correspond to the
victim’s stack. In our experiments, for simplicity, we instead
used clflush (an instruction invalidating the cache line of
the provided address) to evict the victim’s stack addresses
in order to increase the speculation time window. Finally,
for limitation (1), we believe that our attack can be tweaked
to derandomize ASLR of other processes. For example, it
could be possible to reverse the attack direction and cause
the attacker process to speculate based on the victim’s RSB
entries to leak their value. However, we do not evaluate this
attack and assume that ASLR is either not deployed or there
is an information leak that can be used to find the addresses
of required gadgets in the victim process.

4.4 Evaluation
In the following, we evaluate the efficacy of our proof-of-
concept implementation. We carried out our experiments on

Ubuntu 16.04 (kernel 4.13.0), running on Intel Haswell CPU
(Intel® Core™ i5-4690 CPU @3.50GHz). The Linux kernel,
used in our evaluation, did not use RSB stuffing.

The execution environment was set according to the at-
tack description in the previous section. In the following, we
note some implementation specifics. So as to get resched-
uled after each read key, our Victim process did not use
standard input (stdin) buffering, which is in line with our
envisioned target programs bash and sudo. Additionally, a
shared memory region is mapped in Victim, which will be
shared with Measurer. In our case, it was an mmap-ed file,
but in reality this can be any shared library (e.g., libc).
In order to increase the speculation time, we used clflush
in the Victim. In practice, this has to be done by another
thread that runs in parallel to Victim and evicts the cor-
responding cache lines of the Victim’s stack. Finally, we
also added the required gadget to Victim: shl rax,12; mov
rbx,[r12+rax]. At the point of speculative execution (i.e.,
when returning from read), rax is the read character and
r12 points to the shared memory region.

Measurer maps the shared (with Victim) memory in its ad-
dress space, and constantly monitors the first 128 pages (each
corresponding to an ASCII character). In our experiments,
we use Flush+Reload [41] as a feedback channel. Finally, to
be able to inject entries into Victim’s RSB, Attacker needs
to run on the same logical CPU as Victim. To this end, we
modify both Victim’s and Attacker’s affinities to pin them
to the same core (e.g., using taskset in Linux). After that,
Attacker runs in an infinite loop, pushing gadget addresses
to the RSB and rescheduling itself (sched_yield), hoping
that Victim will be scheduled afterwards.

To measure the precision of our attack prototype, we
determine the fraction of input bytes that Measurer read
successfully. To this end, we compute the Levenshtein dis-
tance [27], which measures the similarity between the source
(S) and the destination (D) character sequences, by count-
ing the number of insertions, deletions, and substitutions
required to get D from S. To measure the technique for each
character in the alphabet, we used the famous pangram “The
quick brown fox jumps over the lazy dog”. In the experiment,
a new character from the pangram was provided to Victim
every 50 milliseconds (i.e., 1200 cpm, to cover even very fast
typers). Running the total of 1000 sentences resulted in an
average Levenshtein distance of 7, i.e., an overall precision
of ≈84%. It therefore requires just two password inputs
to derive the complete password entered by a user using
RSB-based speculative execution.

5 SPECULATIVE EXEC. IN BROWSERS
The cross-process attack presented in Section 4 has demon-
strated how a victim process might accidentally leak secrets
via RSB-based misspeculations. In this section, we consider
a different setting with just a single process, in which a
sandbox-contained attacker aims to read arbitrary memory
of a browser process outside of their allowed memory bounds.

ret2spec authors’ version; not for redistribution 8

5.1 Threat Model
Scripting environments in web browsers have become ubiq-
uitous. The recent shift towards dynamic Web content has
led to the fact that web sites include a plenitude of scripts
(e.g., JavaScript, WebAssembly). Browser vendors thus op-
timize script execution as much as possible. For example,
Just-in-Time (JIT) compilation of JavaScript code was a
product of this demand, i.e., compiling JavaScript into native
code at runtime. Yet running possibly adversarial native
code has its own security implications. Multiple attacks
have been proposed abusing JIT compilation for code injec-
tion [4, 30, 31, 38]. Consequently, browser vendors strive to
restrict their JIT environments as much as possible. One
such restriction, which our attack can evade, is sandboxing
the generated JIT code such that it cannot read or write
memory outside the permitted range. For example, browsers
compare the object being accessed and its corresponding
bounds. Any unsanitized memory access would escape such
checks, and thus enable adversaries to read browser-based
secrets or to leak data from the currently (or possibly all)
open tabs, including their cross-origin frames.

In our threat model, we envision that the victim visits an
attacker-controlled website. The victim’s browser supports
JIT-compiled languages such as WebAssembly or JavaScript,
as done by all major browsers nowadays. We assume that
the browser either has a high precision timer, or the attacker
has an indirect timer source through which precise timing
information can be extracted.

5.2 WebAssembly-Based Speculation
Our second attack scenario is also based on the general prin-
ciples described in Section 3. However, in contrast to the
scenario in Section 4, victim and target share the same pro-
cess. Furthermore, the attacker can now add (and therefore
control) code that will be executed by the browser. To this
end, an attacker just has to ship JavaScript or WebAssembly
code, both of which will be JIT-compiled by off-the-shelf
browsers. For illustration purposes and to have more control
over the generated code, we focus on WebAssembly.

WebAssembly is a new assembly-like language, that is
supported by all modern browsers (Edge from version 16,
Chrome from 57, Firefox from 52, and Safari from 11.2)5. As
it is already low-level, compiling WebAssembly bytecode into
native code is very fast. The key benefit of WebAssembly
is that arbitrary programs can be compiled into it, allowing
them to run in browsers. The currently proposed WebAssem-
bly specification considers 4GiB accessible memory. This
makes sandboxing the generated code easier. For example,
in Firefox, usually a single register (r15 in x86) is dedicated
as the pointer to the beginning of the memory, called the We-
bAssembly heap. Consequently, all the memory is accessed
relative to the heap. To restrict all possible accesses into
the 4GiB area, Firefox generates code that uses 32-bit x86
registers for encoding the offset. Modifying a 32-bit register
in x86-64 will zero the upper bits (e.g., add eax,1 will set
5https://caniuse.com/#feat=wasm

A

(1) call A

(6) ret

B

(3) call B

(4) ret

𝑁𝐴

(5) ret

(2) call B

𝑁𝐴

𝑁𝐵

𝑁𝐵

𝑁𝐴

(5')(6')

A
A
A
A

A
A
A
A

B
B
B
B

B
B
B
B

B
B
B
B

(1) (2)

(3)

(4)(5)

Figure 2: Cyclic RSB with recursive functions A and B. Dashed
arrows show mispredicted returns, solid ones actual returns.

the upper 32 bits of rax to 0), thus limiting the maximum
offset to 4 GiB.

For our browser-based attack, we leverage cyclic RSBs
to trigger misspeculation. More precisely, we define two
recursive functions A and B, as shown in Figure 2. In step
(1), A calls itself NA times and then calls B in step (2).
In step (3), B then calls itself recursively NB times, NB
being the size of the RSB in this case. The function B
follows two purposes. First, being a recursive function, B
will overwrite all RSB entries with return addresses pointing
to the instruction in B following its recursive call. Second, B
includes code right after calling itself to leak sensitive data
using speculative execution in the context of A. In step (4),
B returns NB times to itself, consuming all NB entries of
the RSB. However, since the RSB is cyclic, all the entries still
remain there. At this point, the return instruction in step
(5) returns from B to A and triggers the first misprediction.
In step (6), NA more returns will be executed, all of them
mispredicting B as the return target. The state of the RSB
(shortened to N = 4) after each of these steps is also depicted
in Figure 2.

5.3 Reading Arbitrary Memory
Compiling functions like those in Figure 2 into WebAssembly
bytecode will result in arbitrary speculation of the generated
native code. As a next step, we need to generate speculated
code that leaks memory outside of the sandboxed memory
region. The key observation here is that whenever we trigger a
misspeculation, we execute instructions of one function in the
context of another. For example, in the case of the functions
A and B from Figure 2, after returning from B to A, code of
function B will be speculatively executed, while the register

ret2spec authors’ version; not for redistribution 9

1 uint8_t *B(int rec_N) {
2 unsigned char *loc;
3 if (rec_N > 0)
4 loc = B(rec_N -1);
5 // <-- speculation
6 return & bytearray [bytearray [loc [0] < <12]];
7 }
8 uint64_t A(int rec_N) {
9 uint_64 res = 0;

10 if(rec_N > 0)
11 res += A(rec_N -1);
12 // <-- speculation context
13 else
14 res += *B(16);
15 return ADDRESS ; // attacker - controlled value
16 }

Listing 1: Arbitrary memory read in speculation

1 B: ...
2 call B
3 mov al , [r15+rax] ; r15=heap , rax = ADDRESS
4 shl eax , 12 ; eax= leaked byte
5 mov al , [r15+rax] ; report back the byte
6
7 A: ...
8 mov rax , ADDRESS
9 ret ; trigger speculation in A, at line 3

10 ; rax= ADDRESS will be used in speculation

Listing 2: Disassembly of functions A and B (important parts)

values will stem from A. This confusion of contexts allows
evasion of defenses that are in place to sandbox JIT-compiled
code. As a simple example of context confusion, consider the
following instruction accessing memory: mov rbx,[rax]. In
normal execution, rax will always be sanitized, e.g., by using
32-bit registers for offset calculation. However, in speculation,
triggered by another function (e.g., mov rax,0x12345678;
ret), rax can be set to an arbitrary value, thus reading the
data at an arbitrary memory location.

We will use these basic principles to generate speculative
code that reads arbitrary memory contents—notably outside
of the sandboxed region. To this end, we extend the general
concept presented in Figure 2 and derive WebAssembly code
that emits the required instructions after compilation (List-
ing 1). The key concept here stays the same: function A calls
itself recursively rec_N times before calling B, which then
recursively calls itself 16 times in order to fill up the RSB.
After 16 returns from B, A will return rec_N times, each time
triggering the speculation of instructions following the call
statement in B, notably with the register contents of A.

The disassembly of the compiled functions A and B from
Listing 1 are shown in Listing 2. After executing 16 returns
from B (all with correct return address prediction), execution
reaches the function A. In A, the return value (rax) is set (line
8) and the function returns (line 9). At this point, as RSB
was underflowed by executing 16 returns, the return address
is mispredicted. Namely, RSB’s top entry will point to B
(line 3). While the correct return address is being read from
the stack, lines 3 onwards are being executed speculatively.

1 A: ...
2 call rcx ; rcx =A, dynamically set
3 mov r14 ,[rsp] ; rsp =& argN of B
4 mov r15 ,[r14 +24] ; r15= argN of B
5 mov al , [r15+rax] ; al = argN [ADDRESS]
6 shl eax , 12 ; eax = leaked byte
7 mov al , [r15+rax] ; report back the byte

Listing 3: Disassembly of the function B with indirect call

The initial memory read operation (line 3) assumes a return
value (rax) to be set by B, which is supposed to be sanitized.
The base address, r15, is a fixed pointer to WebAssembly’s
heap, which is also assumed to remain the same. However, in
our case, rax was set in A with the attacker-controlled value.
This allows the attacker to read arbitrary memory relative
to the WebAssembly heap. Lines 4–5 are then used to report
the value back by caching a value-dependent page. That
is, line 4 multiplies the read byte by 4096, aligning it to a
memory page. The page-aligned address is then used in line
5, where the N -th page of WebAssembly’s heap is accessed.
After speculation, WebAssembly’s heap can be probed to see
which page was cached, revealing the leaked byte.

In our example, memory is leaked from an address relative
to r15, which points to WebAssembly’s heap. While the
attacker-controlled offset (rax) is a 64-bit register and covers
the entire address space, it might still be desirable to read ab-
solute addresses, e.g., in case one wants to leak the data from
non-ASLRed sections of the memory. This is easily doable
with a simple modification of the WebAssembly bytecode.
Instead of using a direct call (call opcode in WebAssembly),
we can use an indirect call (indirect_call opcode). The
JIT compiler assumes that indirect calls might modify the
r15 register, and therefore restores it from the stack when the
callee returns. Listing 3 shows the disassembly of Listing 2
with this simple modification that added lines 3 and 4. Line
3 restores the WebAssembly context register from the stack,
while line 4 reads the heap pointer. However, in speculative
execution with A’s context, rsp points to one of the argu-
ments passed to A, which is controlled by the attacker. Thus,
the attacker controls the value of the heap pointer, and, by
setting it to 0, can allow absolute memory accesses.

5.4 Evaluation
We now evaluate the efficacy and precision of our attack when
applied for reading arbitrary memory in browsers. We im-
plemented our proof of concept in Firefox 59 on Windows 10
(version 10.0.16299), running on Intel’s Haswell CPU (Intel®

Core™ i5-4690 CPU @3.50GHz). It is worth noting that
Firefox, together with other browsers, has recently reduced
the precision of performance counters to 2 milliseconds6 as a
defensive measure against Spectre [24]. Given that finding
alternative and more precise timing sources is out of the
scope of this paper, we manually increased the performance
counters to the old, more precise, state.
6https://developer.mozilla.org/docs/Web/API/Performance/now

ret2spec authors’ version; not for redistribution 10

The main part of the proof of concept is a WebAssembly
module that triggers the speculation. The number of specu-
latively executed returns is customizable in the module by
choosing a different recursion depth of function A (NA); we
set it to 64 return mispredictions in our experiments. To feed
back the speculatively read value, we used the WebAssembly
heap of our module (from offset 0x4000 to avoid collision with
other variables). To avoid hardware prefetching interference,
we access the heap at a page granularity, i.e., Heap + 0x4000
+ value*4096. After running the speculative code, we access
the WebAssembly heap from JavaScript and measure the
access times of each page. Leaking the entire byte will require
walking 256 memory pages, which would be very slow. To op-
timize this, we split the byte in half (e.g., into (value»4)&0xf
and value&0xf) and leak each nibble separately. This only
requires scanning 16 pages per nibble, i.e., 32 scans per byte.
This could be further optimized to 8 per-bit reads.

Our measurements worked in the following order: (a) Us-
ing JavaScript, write the same pangram from Section 4.4
into a 1024-byte buffer. (b) Compute the offset from the
WebAssembly heap to the buffer containing the text. (c)
Trigger the eviction of the feedback cache lines from the
cache, by doing random memory accesses to the same cache
line in JavaScript. (d) Call the WebAssembly module to
speculatively execute the gadget from Listing 2, reading the
value from the specified offset. (e) Scan the WebAssembly
heap from JavaScript, and record the access times to each
page. (f) Repeat steps (c)–(e) 100 times to increase the con-
fidence in the leaked data. (g) Process the timings, recorded
in (e), to find the page with the fastest average access time.
(h) Return the index of the found page.

In our evaluation, we ran each 1024-byte reading itera-
tion 10 times. Each iteration, on average, took 150 seconds,
i.e., ≈55 bps reading speed—leaking a single byte thus takes
146ms. Note that the main bottleneck in our measurements
constitutes the code that evicts the cache lines (step (c)). In
our proof of concept, we simply map an L3 cache-sized buffer
in JavaScript and then access each page to the correspond-
ing cache line. This approach can be further improved by
initializing the eviction set prior to attack, and then walking
the smaller set for eviction, as shown in [17].

To measure the accuracy, similar to Section 4.4, we used
Levenshtein distance. The evaluation showed that the read
byte was correct ≈80% of the time. Increasing the iterations
or number of speculations will increase the precision, however
at the expense of reading speed. We leave a more accurate
and efficient implementation open for future work.

6 COUNTERMEASURES
Seeing the immense impact of this new attack vector, in
this section, we discuss countermeasures against RSB-based
speculative execution. Furthermore, we will describe the
vendor reactions that followed our responsible disclosure
process.

6.1 Possible Mitigations
In the following, we discuss possible mitigation techniques
that can be employed to defend against our attacks.

6.1.1 Hardware-based Mitigations. A naive approach to
get rid of all speculative execution problems in hardware is to
simply disable speculative execution. That would, however,
decrease performance drastically—making branch instruc-
tions serializing and forcing the execution of only a few
instructions (between branches) at a time. Of course, one
could try to enable speculative execution while prohibiting
speculative memory accesses, or at least caching them in spec-
ulation. However, given that memory accesses are already
a bottleneck for modern CPUs, blocking their speculative
execution would incur a significant slowdown.

To counter our first attack in hardware, RSBs could be
flushed by the CPU at every context switch. Arguably, this
will not impose any significant slowdown on performance, as
the predictions after context switches will mispredict anyway
in the vast majority of cases. This is due to the fact that
the RSB state is rarely shared between processes, as their
virtual addresses are not the same (e.g., because of ASLR).
Furthermore, hardware-assisted flushing will be more efficient
than a software-based solution that requires several artificially
introduced calls (as implemented right now). Hardware-
backed RSB flushing would reliably prevent our cross-process
attack, even in operating systems that do not flush RSBs
themselves.

To counter our second attack, one could scrutinize the
cyclic structure of RSBs and argue that switching to stack-
based implementations mitigates the problem. However,
triggering a misspeculation is still possible in a size-bound
(16-entry) RSB, e.g., by using exceptions in JavaScript, or
relying on bailouts from JIT-compiled code (cf. Section 3).
We believe resorting to a combination of hardware/compiler
solutions would allow more reliable security guarantees to
defend against the second attack.

6.1.2 Compiler-based Mitigations. To study how our sec-
ond attack can be defended against in software, it is natural
to ask how JIT compilers can be hardened. Despite the fact
that the general problem of speculative execution is caused
by hardware, we can make our software environments more
robust to these types of attacks. The importance of this
issue was recently highlighted, when multiple researchers
proposed severe microarchitectural attacks, breaking down
the core assumptions we had about hardware-based isolation
and execution models [24, 29].

For example, JIT compilers can aim to ensure that the
code at call sites cannot be abused with any possible execu-
tion context. The safest bet would be to stop all speculative
executions at call sites, e.g., by using already-proposed so-
lutions, such as lfence/mfence instructions (e.g., adding an
lfence instruction after every call instruction). Alterna-
tively, one could introduce a modified version of a retpoline7

7https://support.google.com/faqs/answer/7625886

ret2spec authors’ version; not for redistribution 11

that replaces all return instructions emitted by JIT compilers
by a construct that destroys the RSB entry before returning:

1 call return_new ;
2 speculate : ; this will speculate
3 pause ; trap speculation until...
4 jmp speculate ; ...return address is read
5 return_new : ;
6 add rsp , 8 ; return to original addr.
7 ret ; predict to <speculate >

The call instruction (line 1) guarantees that the RSB will
have at least one entry and will not underflow. Lines 6-
7 then make sure that the architectural control flow will
continue from the original return address (rsp+8), while the
speculative one will be trapped in the infinite loop (lines 2-4).

Alternatively, one could improve the memory access sani-
tization in JIT compilers. For example, JIT-compiled code
could always use 32-bit registers as a natural way to con-
strain addresses to a 4GiB range in memory—the current
memory limit in WebAssembly. However, this by itself does
not provide strong security guarantees. As we have shown
in Section 5.3, the base addresses can also be modified in
speculation. Having said this, WebAssembly is a relatively
new addition to browsers, and new features are still being fre-
quently suggested/developed. Each of these feature needs to
be reevaluated in our context. In particular, the proposals to
add exception handling and threading support to WebAssem-
bly need to be carefully revisited. Built-in exception handling
will allow RSB speculation even with a non-cyclic RSB, while
adding WebAssembly support for threading might introduce
new precise timing side channels.

Regardless of the precise countermeasure, one can limit
the overhead of compiler-based defenses. In particular, code
parts that are guaranteed to be secure against all potential
abuses (e.g., possibly speculated code that does not have
memory accesses) can be left as is.

6.1.3 Browser-based Mitigations. One of the directions
that browser vendors take to mitigate side-channel attacks
is to deprive the attackers of precise timings. Having no
timers, adversaries cannot distinguish between cached and
non-cached memory accesses, which is a fundamental require-
ment for cache- and timing-based side-channel attacks. Given
the complexity of JavaScript environments, merely decreas-
ing the performance.now counter (as done in most browsers)
is insufficient. For example, Gras et al. [14] showed that
SharedArrayBuffer can be used to acquire a timing source
of nanosecond precision, while Schwarz et al. [37] studied
different timing sources in modern browsers, ranging from
nanosecond to microsecond precision. Approaches presented
in academia thus aim to advance this protection to the next
level. For example, the “Deterministic Browser” from Cao
et al. [6] tries to tackle the issue by proposing deterministic
timers, so that any two measurements from the same place
will always result in the same timing value, thus making
it useless for the attacker. In another study, Kohlbrenner
and Shacham [25] propose Fuzzyfox, which aims to eliminate
timers by introducing randomness, while also randomizing

the execution to remove indirect time sources. Motivated by
these works, and by the recent discovery of Spectre, browsers
decreased their timing precision to 2 milliseconds, while also
introducing a jitter, such that the edge thresholding technique
shown by Schwarz et al. [37] is also mitigated.

Alternatively, browsers can alleviate the threats by stronger
isolation concepts. In the most extreme case, browsers can
add dedicated processes for each entity (e.g., per site) to
enforce a strict memory separation and to isolate pages from
each other. By doing so, one can guarantee that even with a
severe vulnerability at hand, such as arbitrary memory read,
adversaries are constrained to read memory of the current per-
page process. Reportedly, modern browsers already consider
this technique, e.g., Chrome uses a dedicated sandboxed
process per domain [13], while Firefox plans to switch to a
similar architecture in the near future.

6.2 Responsible Disclosure
Seeing the severity of our findings, we have reported the
documented attacks to the major CPU vendors (Intel, AMD,
ARM), OS vendors (Microsoft, Redhat) and browser de-
velopers (Mozilla, Google, Apple, Microsoft) in April 2018,
and subsequently engaged in follow-up discussions. In the
following, we will summarize their reactions and our risk
analysis.

Intel: Intel acknowledged this “very interesting” issue of
RSB-based speculative execution and will further review the
attack and its implications. Their immediate advice is to
resort to mitigations similar to Spectre is to defend against
our attack (see Section 6.1); this is, however, subject to
change as part of their ongoing RSB investigations that we
triggered.

Mozilla Foundation: The Mozilla Foundation likewise ac-
knowledged the issue. They decided to refrain from using
compiler-assisted defenses, as they would seemingly require
complex changes to JIT-compiled and C++ code. Instead,
they aim to remove all (fine-granular) timers from Firefox to
destroy caching-based feedback channels. Furthermore, they
referred to an upcoming Firefox release that includes time
jittering features similar to those described in FuzzyFox [25],
which further harden against accurate timers.

Google: Google acknowledged the problem in principle
also affects Chrome. Similar to Firefox, they do not aim to
address the problem with compiler-assisted solutions. Instead,
they also refer to inaccurate timers, but more importantly,
focus on a stronger isolation between sites of different origins.
Chrome’s so-called Site Isolation prevents attackers from
reading across origins (e.g., sites of other domains).

AMD / ARM: Although we have not tested our attacks
against ARM and AMD architectures, they acknowledged
the general problem.

Microsoft: Microsoft has acknowledged the problem and is
working on fixes, but has not disclosed technical details yet.

Apple: As of 08/15/2018, we have not heard back from
Apple yet.

ret2spec authors’ version; not for redistribution 12

Redhat: Redhat was thankful for our disclosure and said
that the current Spectre defenses such as flushing RSBs—
without considering RSB-based attacks—might otherwise
have been removed by the kernel developers in the near future.
In particular, Redhat stressed that fixing RSB underflows
will not fully solve the problems we point out in our paper.

7 RELATED WORK
In the following, we discuss concepts related to our paper.
First, we provide an overview of the two recent papers on
speculative and out-of-order executions that are both closest
to our work. We will then briefly summarize other similar
work done in that area. Further, we look into microarchitec-
tural attacks in general, discussing some notable examples.
Finally, we also discuss proposed defense techniques and their
efficacy against our proposed attacks.

7.1 Out-of-Order/Speculative Execution
Despite being implemented in CPUs since the early 90s, out-
of-order and speculative executions have only recently caught
the attention of security researchers. Fogh was the first to
document speculative execution and reported his (negative)
findings [12]. Spurred by this general concept, multiple re-
searchers then ended up discovering similar bugs [24, 29, 32]
more or less simultaneously. In the following, we summarize
the principles behind two representative candidates from this
general attack class, namely Meltdown and Spectre.

On the one hand, Meltdown [29] (a.k.a. Variant 3) abuses
a flaw in Intel’s out-of-order execution engine, allowing ad-
versaries to have access to data for a split-second without
checking the privileges. This race condition in the execution
core allows attackers to disclose arbitrary privileged data
from kernel space. While it is the most severe, Meltdown is
relatively easy to counter with stronger separation between
user and kernel space [15].

Spectre [24] (a.k.a. Variants 1 and 2), on the other hand,
does not rely on implementation bugs in CPUs, and is there-
fore also significantly harder to tackle. Technically, Spectre
uses a benign CPU feature: speculative execution. The prob-
lem, however, is that the branch predictor is shared between
different processes and even between different privileges run-
ning on the same core. Therefore, in Spectre, adversaries are
able to inject arbitrary branch targets into predictors and,
by doing so, trigger arbitrary speculative code execution in
victim processes (similar to our first attack). Furthermore,
similar to our second attack, Spectre also proposed an in-
browser attack to abuse the branch predictor in the same
process, where mispredicting a branch path can lead to leak-
age of unauthorized data. Spectre is thus closely related to
our approach. The difference is that we achieve similar attack
goals by abusing a completely different prediction mechanism
of the CPU: return stack buffers. While RSBs were already
mentioned as a potential security risk [19, 24], it was so far
unclear whether RSBs indeed pose a threat similarly severe
as BTBs. Our work answers this open question and provides
countermeasures to this problem.

Follow-up works naturally arose out of the general discov-
ery of Meltdown and Spectre. In SgxPectre, for example,
Chen et al. [8] showed that it is possible to use branch target
injection to extract critical information from an SGX enclave.
Similarly, in BranchScope, Evtyushkin et al. [10] studied the
possible abuses of direct branch predictors to leak sensitive
data from different processes, including SGX enclaves.

7.2 Cache-Based Side Channels
Given that accessing main memory in modern CPUs can take
hundreds of cycles, current architectures employ multiple
layers of caches. Each layer has various characteristics and
timing properties, thus providing unique information as side
channels. The key idea of cache side channel attacks is to
distinguish the access times between cache hits and misses,
revealing whether the corresponding data was cached or not.

Cache attacks can be divided into attacks on instruction
and data caches. The attacks on instruction caches aim to
leak information about the execution of the target program.
For example, information from instruction caches can be used
to reconstruct the execution trace of colocated programs [1–
3, 7] or even VMs on the same machine [42].

In contrast, side channels from data caches reveal data
access patterns in the target program, which again can be
either a colocated program or a VM, depending on the level
of the attacked cache. Per-core caches (e.g., L1 and L2) can
be used as side channels against programs running on the
same physical core. This has been shown to be useful for
reconstructing cryptographic keys [39]. Conversely, shared
last-level caches (LLC) can be used to leak information, e.g.,
keystrokes or user-typed passwords, from any process running
on the same CPU—notably even across VMs [36].

There are different ways to leak data via caches. Most
notably, Flush+Reload [41] uses clflush to flush the re-
quired cache lines from all cache levels including the last-
level cache shared with the victim. By measuring the access
time to the same cache line, the attacker can detect whether
the victim has accessed a certain cache line. Some varia-
tions of the Flush+Reload attack include Evict+Reload [18],
which tries to evict the target cache line by doing memory
accesses instead of the clflush instruction. This is impor-
tant for cases where clflush cannot be used, e.g., in JIT
code (cf. Section 5), or architectures without an instruction
similar to clflush [28]. The inverse of Flush+Reload is
Prime+Probe [34], where the adversary allocates (primes)
the entire cache (or a specific cache set) with its own data,
and then triggers the execution of the victim. Then, the
attacker will probe the cache lines to see which of them have
been evicted (i.e., which cache lines have been accessed) by
the victim.

7.3 Other Microarchitectural Side Channels
Given the complexity and abundance of optimizations, side
channels in microarchitectures is not surprising anymore.
Therefore, there are plenty of different attack techniques

ret2spec authors’ version; not for redistribution 13

proposed by researchers, each of which target microarchitec-
tural features of modern CPUs. For example, Evtyushkin
et al. [9] use collisions in BTBs to leak information about
the kernel address space, and by doing so derandomize the
kernel-level ASLR (KASLR). Similar to Meltdown, which
uses out-of-order execution to suppress exceptions, Jang et
al. [22] use Intel’s transactional synchronization extensions
(TSX). By accessing kernel pages with TSX, depending on
the type of the generated exception (e.g., a segmentation
fault if memory is unmapped, or a general protection fault
if the process does not have the privileges to access certain
memory regions), the time to roll back the transaction dif-
fers. This constitutes a timing side channel that can be used
to bypass KASLR, as an attacker can probe pages mapped
in the kernel. Similarly, Gruss et al. [16] measure timing
differences between prefetching various kernel-land memory
addresses to distinguish between mapped and unmapped
addresses. Finally, Hund et al. [20] propose three different
attack techniques to derandomize KASLR: Cache Probing,
Double Page Fault, and Cache Preloading.

7.4 ret2spec vs. Spectre Returns
The general attack idea of our paper was also discovered by
Koruyeh et al. [26], who called the attack Spectre Returns.
The authors of Spectre Returns describe the general prob-
lem with RSBs and propose a few attack variations that are
similar to ours described in Section 4. Additionally, they
proposed using RSB poisoning to trigger speculative execu-
tion in SGX. Instead, we target JIT environments to read
arbitrary memory in modern browsers, an attack that even
works in presence of RSB flushes. We would like to highlight
that our paper submission (to ACM CCS ’18) predates the
one of Specture Returns (to both USENIX WOOT ’18 and
Arxiv), as also illustrated by the fact that our responsible
disclosure started already in April 2018.

8 CONCLUSION
In this work, we investigate the security implications of spec-
ulative execution caused by return stack buffers (RSBs),
presenting general principles of RSB-based speculative ex-
ecution. We show that RSBs are a powerful tool in the
hands of an adversary, fueled by the simplicity of triggering
speculative execution via RSBs. We demonstrate that return
address speculation can lead to arbitrary speculative code
execution across processes (unless RSBs are flushed upon
context switches). Furthermore, we show that in-process
speculative code execution can be achieved in a sandboxed
process, resulting in arbitrary memory disclosure.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers
for their valuable comments. Moreover, we would like to
thank Fabian Schwarz for his feedback and support during
the writing process of the paper.

This work was supported by the German Federal Ministry
of Education and Research (BMBF) through funding for the
CAMRICS project (FKZ 16KIS0656).

REFERENCES
[1] Onur Aciiçmez. 2007. Yet another microarchitectural attack:

exploiting I-cache. In Proceedings of the 2007 ACM workshop
on Computer security architecture. ACM, 11–18.

[2] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. 2010.
New results on instruction cache attacks. In Conference on Cryp-
tographic Hardware and Embedded Systems (CHES), Vol. 2010.
Springer, 110–124.

[3] Onur Aciiçmez and Werner Schindler. 2008. A vulnerability
in RSA implementations due to instruction cache analysis and
its demonstration on OpenSSL. In CT-RSA, Vol. 8. Springer,
256–273.

[4] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychron-
akis, Georgios Portokalidis, and Sotiris Ioannidis. 2015. The Devil
is in the Constants: Bypassing Defenses in Browser JIT Engines.
In Proceedings of the Network and Distributed System Security
(NDSS) Symposium.

[5] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).
[6] Yinzhi Cao, Zhanhao Chen, Song Li, and Shujiang Wu. 2017.

Deterministic Browser. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
163–178.

[7] Caisen Chen, Tao Wang, Yingzhan Kou, Xiaocen Chen, and
Xiong Li. 2013. Improvement of trace-driven I-Cache timing
attack on the RSA algorithm. Journal of Systems and Software
86, 1 (2013), 100–107.

[8] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. 2018. SGXPECTRE Attacks: Leak-
ing Enclave Secrets via Speculative Execution. arXiv preprint
arXiv:1802.09085 (2018).

[9] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
2016. Jump over ASLR: Attacking branch predictors to by-
pass ASLR. In Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–13.

[10] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry
Ponomarev, et al. 2018. BranchScope: A New Side-Channel
Attack on Directional Branch Predictor. In Proceedings of the
Twenty-Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM,
693–707.

[11] Agner Fog. 2018. The microarchitecture of Intel, AMD and VIA
CPUs. http://www.agner.org/optimize/microarchitecture.pdf

[12] Anders Fogh. 2018. Negative Result: Reading Kernel Mem-
ory From User Mode. https://cyber.wtf/2017/07/28/
negative-result-reading-kernel-memory-from-user-mode/

[13] Google. 2018. Site Isolation Design Document. https://www.
chromium.org/developers/design-documents/site-isolation

[14] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Chris-
tiano Giuffrida. 2017. ASLR on the line: Practical cache attacks
on the MMU. NDSS (Feb. 2017) (2017).

[15] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. 2017. Kaslr is dead:
long live kaslr. In International Symposium on Engineering
Secure Software and Systems. Springer, 161–176.

[16] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. 2016. Prefetch side-channel attacks: By-
passing SMAP and kernel ASLR. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 368–379.

[17] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016.
Rowhammer. js: A remote software-induced fault attack in
javascript. In International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer,
300–321.

[18] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015.
Cache Template Attacks: Automating Attacks on Inclusive Last-
Level Caches.. In USENIX Security Symposium. 897–912.

[19] Jann Horn. 2018. Reading privileged memory with a side-
channel. https://googleprojectzero.blogspot.de/2018/01/
reading-privileged-memory-with-side.html

[20] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practi-
cal timing side channel attacks against kernel space ASLR. In

http://www.agner.org/optimize/microarchitecture.pdf
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation
https://googleprojectzero.blogspot.de/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.de/2018/01/reading-privileged-memory-with-side.html

ret2spec authors’ version; not for redistribution 14

Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
191–205.

[21] Intel. 2018. Intel Analysis of Speculative Ex-
ecution Side Channels. https://newsroom.
intel.com/wp-content/uploads/sites/11/2018/01/
Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf

[22] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking
kernel address space layout randomization with intel tsx. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 380–392.

[23] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
2014. Flipping bits in memory without accessing them: An exper-
imental study of DRAM disturbance errors. In ACM SIGARCH
Computer Architecture News, Vol. 42. IEEE Press, 361–372.

[24] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks:
Exploiting Speculative Execution. ArXiv e-prints (Jan. 2018).
arXiv:1801.01203

[25] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers
for Uncertain Times.. In USENIX Security Symposium. 463–480.

[26] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. 2018. Spectre Returns! Specu-
lation Attacks using the Return Stack Buffer. In 12th USENIX
Workshop on Offensive Technologies (WOOT 18). USENIX As-
sociation, Baltimore, MD. https://www.usenix.org/conference/
woot18/presentation/koruyeh

[27] VI Levenshtein. 1992. On perfect codes in deletion and insertion
metric. Discrete Mathematics and Applications 2, 3 (1992),
241–258.

[28] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. 2016. ARMageddon: Cache Attacks
on Mobile Devices.. In USENIX Security Symposium. 549–564.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown. ArXiv e-prints
(Jan. 2018). arXiv:1801.01207

[30] Giorgi Maisuradze, Michael Backes, and Christian Rossow. 2016.
What Cannot Be Read, Cannot Be Leveraged? Revisiting As-
sumptions of JIT-ROP Defenses. In 25th USENIX Security Sym-
posium (USENIX Security 16). Austin, TX.

[31] Giorgi Maisuradze, Michael Backes, and Christian Rossow. 2017.
Dachshund: Digging for and Securing Against (Non-) Blinded
Constants in JIT Code. In Proceedings of the 15th Conference on
Network and Distributed System Security Symposium (NDSS).

[32] Giorgi Maisuradze and Christian Rossow. 2018. Speculose:
Analyzing the Security Implications of Speculative Execution
in CPUs. CoRR abs/1801.04084 (2018). arXiv:1801.04084
http://arxiv.org/abs/1801.04084

[33] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. 2015. The spy in the sandbox: Practical
cache attacks in javascript and their implications. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 1406–1418.

[34] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache
attacks and countermeasures: the case of AES. In Cryptographers’
Track at the RSA Conference. Springer, 1–20.

[35] Colin Percival. 2005. Cache missing for fun and profit.
[36] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan

Savage. 2009. Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings of the 16th
ACM conference on Computer and communications security.
ACM, 199–212.

[37] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. 2017. Fantastic timers and where to find them:
high-resolution microarchitectural attacks in JavaScript. In In-
ternational Conference on Financial Cryptography and Data
Security. Springer, 247–267.

[38] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David
Melski. 2015. Exploiting and Protecting Dynamic Code Genera-
tion. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2014.

[39] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient
cache attacks on AES, and countermeasures. Journal of Cryptol-
ogy 23, 1 (2010), 37–71.

[40] Henry Wong. 2018. Microbenchmarking Return Address
Branch Prediction. http://blog.stuffedcow.net/2018/04/
ras-microbenchmarks

[41] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A
High Resolution, Low Noise, L3 Cache Side-Channel Attack. In
USENIX Security Symposium. 719–732.

[42] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-
tenpart. 2012. Cross-VM side channels and their use to extract
private keys. In Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 305–316.

https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
http://arxiv.org/abs/1801.01203
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.04084
http://arxiv.org/abs/1801.04084
http://blog.stuffedcow.net/2018/04/ras-microbenchmarks
http://blog.stuffedcow.net/2018/04/ras-microbenchmarks

	Abstract
	1 Introduction
	2 Background
	2.1 Out-of-Order Execution
	2.2 Speculative Execution
	2.3 Return Stack Buffers

	3 General Attack Overview
	4 Cross-Process Speculative Exec.
	4.1 Threat Model
	4.2 Triggering Speculative Code Execution
	4.3 Proof-of-Concept Exploit
	4.4 Evaluation

	5 Speculative Exec. in Browsers
	5.1 Threat Model
	5.2 WebAssembly-Based Speculation
	5.3 Reading Arbitrary Memory
	5.4 Evaluation

	6 Countermeasures
	6.1 Possible Mitigations
	6.2 Responsible Disclosure

	7 Related Work
	7.1 Out-of-Order/Speculative Execution
	7.2 Cache-Based Side Channels
	7.3 Other Microarchitectural Side Channels
	7.4 ret2spec vs. Spectre Returns

	8 Conclusion
	References

