
POSTER: Cashing in on the File-System Cache
Trishita Tiwari
Boston University

Boston, Massachusetts
trtiwari@bu.edu

Ari Trachtenberg
Boston University

Boston, Massachusetts
trachten@bu.edu

ABSTRACT
We consider the disk cache (file-system cache) information channel,
and show how it can be exploited on various systems to yield
potentially sensitive information. Our approach can be used locally
by an unprivileged adversary to detect whether another user is
writing to disk, and if so, the rate at which data is being written.
Further, we also show how an attacker can detect whether specific
files have been recently accessed by the victim. We then extend this
attack to remote access through a web server, using timing analysis
to identify recent access of chosen pages.

CCS CONCEPTS
• Security and privacy → Systems security;

KEYWORDS
File System Caches, Side Channels, Covert Channels
ACM Reference Format:
Trishita Tiwari and Ari Trachtenberg. 2018. POSTER: Cashing in on the
File-System Cache. In 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’18), Oct. 15–19, 2018, Toronto, ON, Canada. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3243734.3278499

1 INTRODUCTION
On many systems, disk input/output is slow, and file system caches
are thus employed as an optimization. However, like last-level
caches for memory, file system caches are typically shared amongst
all users on the same machine. This opens the caches to potential
timing attacks based on cache hits, misses, and flushes.

More precisely, when a user writes to a file descriptor, the corre-
sponding data is written to the file system cache first. When the
cache is full, it is flushed and the data is written to disk. We show
that this periodic flushing allows a collocated (but unprivileged)
attacker to infer whether another user is writing to disk at a given
point in time, and, if so, the write-rate of the victim.

Further, due to slow disk access times, the latency difference of
a cache hit versus a cache miss is clearly demarcated. This allows
us to identify cache hits and misses both locally and remotely over
the network, thereby allowing us to determine if specific files have
been recently accessed by some user (local or remote).

Our contributions thus involve two types of exploits of the
heretofore under-explored disk cache information leakage:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3278499

• Collocated attacks:
(1) Detect if another user is writing to disk.
(2) If a user is writing to disk, infer the user’s write rate.
(3) Infer if a specific file has been recently accessed.
• Remote Attacks:
(1) Infer if a specific file has been recently accessed.

2 MOTIVATION
The types of disk cache information leakage we describe could lead
to more significant attacks. We show initial results for some of these
attacks, while the others are extensions or works in progress:

(1) Detecting access frequency for specialized web pages, such
as admin log pages, could allow an attacker to infer admin
operational patterns for further social-engineering or oppor-
tunity attacks.

(2) Disk cache hits and misses could also be used to encode
information to form a covert channel. Further, since the dis-
tinction between a file system cache hit and miss is fairly
conspicuous, such a covert channel could be used to trans-
mit information even remotely over the network. This is a
promising avenue that we are currently looking into.

(3) Detecting if certain system libraries have been recently ac-
cessed can link inputs to executions. Indeed, whereas Linux
does reveal process names through the ps command, un-
privileged adversaries are not given access to information
about which libraries are used by these processes. Such in-
formation could reveal interesting behavioral information
of processes, such as whether particular (vulnerable) crypto-
graphic library has been recently accessed.

(4) Access patterns for files that are modified only on system or
software upgrades could allow attackers to remotely identify
the current version or upgrade frequency of various system
components.

(5) Being able to infer write rates to log files could allow correla-
tion between activity and error logs, lengths of log messages,
and the like. Identifying disk writes could also reveal when
file uploads happen on web-servers, database servers, and
other systems.

3 RELATEDWORK
There has been much work done in the field of memory-based
cache side channel attacks. For instance, the FLUSH+RELOAD [7]
attack shows how an adversary can extract encryption keys from
GnuPG by timing accesses to certain instructions in shared last-level
caches on both the same operating system and across collocated
Virtual Machines. Within the realm of disks, there has been work
that utilizes the contention that arises from sharing hard disks to
create a covert channel between Virtual Machines [4]. Further, lazy

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2303

https://doi.org/10.1145/3243734.3278499
https://doi.org/10.1145/3243734.3278499
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3243734.3278499&domain=pdf&date_stamp=2018-10-15


page mappings have also been shown as a potential covert channel,
since reading a page that has already been mapped into memory
takes lesser time than processing the page fault that would result
otherwise [5]. However, despite the fact that disks based channels
are not uncharted territory, to the best of our knowledge, there
is no work yet that utilizes the caches associated with them as a
potential source of information.

4 BACKGROUND
4.1 Stat
The stat [3] system call in Linux provides, among other things,
information on the most recent atime (access time) and mtime
(modification time) of any given file, updates to which are triggered
respectively by read and write operations to said file. Since kernel
2.5.48, stat supports nanosecond resolution for the file time-stamp
fields [3]. However, since providing nanosecond resolution would
lead to performance overhead, in reality, most implementations
employ some optimizations including buffered writes [2], updating
timestamps only under specific circumstances [1], and the like.

4.2 File System Caches
In order to reduce disk write latencies, most write operations per-
formed on file descriptors write to the file system buffer first, and
then, at some later time (or when the buffer is full), flush it and
perform actual writes to disk.

Similarly, reading data from file descriptors stores the inode
and the file data into the file system cache, and hence subsequent
accesses to the same file are much faster. [6]

Operating systems today employ file system caches by allocating
unused memory for such disk caching purposes. This essentially
means that a cache hit is a memory read while a cache miss is a disk
read, and the difference in the respective latencies is conspicuous
enough to be detected locally, and even over the network.

5 COLLOCATED ATTACKS
Threat Model. For this attack, we assume that the attacker is an

unprivileged adversary on the same machine as the victim. The
victim machine uses the Linux kernel and therefore can stat files.

Stat Attacks. The attacker writes to his own file in a loop (at a
known rate), and continuously runs stat on his file to monitor the
mtime time-stamp. The attacker then obtains a time-series of file
modification times for his own file, and then obtains a first order
difference.

If the attacker has a large write rate (say, 106Bytes/Loop), then
the disk cache fills up quickly and is forced to flush (having a smaller
write rate will only prolong cache flushing, not obviate it – hence,
the side channel will still exist). This shows up as both small and
large peaks in Figure 1 (the small peaks are slightly greater than
0.003s, and therefore are not easily visible). Since the disk cache is
shared, we see more frequent flushing than usual if there is another
user who is simultaneously writing to his own file (see Figure 2).

This increase in the frequency of the peaks when another user
is writing to disk with the attacker allows us to detect the victim’s
presence. Further, we could attempt to correlate the average time
between consecutive peaks with the victim’s write rate and see if

Figure 1: Consecutive modification time changes of the at-
tacker’s file when a write load is applied by just the attacker

Figure 2: Consecutive modification time changes of the at-
tacker’s filewhen awrite load is applied by both the attacker
and the victim.

there is a discernible trend. (Peaks were detected by a simple thresh-
old of 0.003s determined after manual inspection.) The resulting
graph is shown in Figure 3. There are 10,000 data points, and each
data point is an average of 3 trials. Here, we see the contours of a
trend that reinforces the notion that a shorter period for flushing
the disk cache means that the victim is writing at a faster rate, since
the cache fills up faster. Indeed, as outlined in Section 2, such knowl-
edge of write rates could be used to infer things like the length of
log messages written, detect file uploads to web-servers or data
written to database servers, and other such interesting information.
However, we do note that the trend is noisy and warrants further
investigation.

Figure 3: Victim’s write rate vs. the average time between
consecutive write latency peaks

Cache hits vs. Misses. Another attack involves exploiting timing
differences between cache hits and misses. This could be used for a
variety of purposes, one of which is to enumerate which libraries

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2304



the victim’s system is using. If a user is already using a particular
library, it should be present in the disk cache and therefore should
load faster when the attacker attempts to access it.

For this attack, we have an experiment that involved repeatedly
loading a python library (the socket library) under two conditions:

(1) When it was already loaded by another program before,
triggering a cache hit.

(2) Loading the library when no one else used it, triggering a
cache miss.

We conducted 3 trials, repeating both scenarios 2000 times per trial.
The average latency for loading a library in the cache hit situation
was 0.011s, 0.012s and 0.011s. However, in the cache miss scenario,
the average load time was measurably higher: 0.030s, 0.032s and
0.029s (roughly 3x higher in each case). Further, the 99th percentile
of the cache hit latency distribution was found to be at the 0th
percentile of the cache miss scenario in all three trials, suggesting
that cache misses are almost always larger than cache hits.

6 REMOTE ATTACKS
Threat Model. Here we assume that the attacker does not have

physical access to the victim machine, but can access it over the
network (i.e., the victim machine could be running a web-server).

Experimental Setup. Here, the victim machine was operating
as a web-server that hosted a file named index.html which was
accessible by any user. The web-server and attacker machines were
on separate networks (but within the same geographical area).

Cache hits vs. Misses. To check if disk cache hits and misses are
detectable over the network, we remotely accessed index.html
1813 times (without clearing the disk cache on the web server,
thereby ensuring cache hits.We also ensured that therewas no other
intermediary network/proxy caching by setting the appropriate
HTTP headers on index.html).

The mean access time of this distribution was 0.008s.
On the flip side, if the file is being accessed directly from disk

(i.e., the file is not in cache), then the remote access times are higher.
To measure this, we repeated the previous experiment, only this

time we manually cleared the disk cache on the web-server after
every access to ensure cache misses.

The resulting distribution was composed of 1812 points (we
removed 1 outlier), with a significantly higher mean access time of
0.023s.

Comparing both distributions, we see that the mean of the cache
miss latencies is 2.875 times that of the cache hit access times,
despite accounting for network transmission times. This lends cre-
dence to the inference that file system cache hits and misses can
be identified over the network. This is further corroborated by the
observation that 80% of the data points in the cache hit latency
distribution lie below 0.009s, while only 36% of those in the cache
miss access time distribution lie below said threshold. This suggests
that even if we demarcate cache misses from hits by merely setting
a hard threshold of 0.009s, we would be making correct predictions
most of the time. Hence, this could be relatively reliably used to
determine over the network if a certain file was recently accessed.
Indeed, as discussed in Section 2, this technique could be used to
obtain patterns on accesses of specialized web pages such as admin

login pages, or could be used to create a covert channel to transmit
information over the network solely through cache hits and misses.

7 CONCLUSIONS AND FUTUREWORK
We show how to potentially infer a variety of revealing information
about a system by utilizing the timing information of reads, writes,
and file accesses.

For the write rate detection attacks, future work would involve
attempting to obtain a less noisy trend on Figure 3. The noise could
be explained by optimizations on stat that preclude nanosecond
precision. Or it could be due to our simplifying assumption that a
peak is any latency above a hard threshold – clearly, not all peaks
are of the same height (due to different layers of write-buffering).

For the file access detection attack, while we show that it is
possible to discern (both locally and remotely) whether a file has
been recently accessed, the ability to infer its access patterns over
a long period of time would necessitate repeated measurements of
the file’s access latency. However, a potential issue with this attack
is that an attempt by the attacker to measure access latency will
itself involve accessing the file, thereby tainting the cache with said
file’s presence. This precludes any future measurements of this sort,
as long as the file is still present in the cache. For our experiments,
we manually cleared the cache between individual measurements
(which requires super user privileges), but for a realistic attack
scenario, there is need for an unprivileged/remote mechanism to
accomplish cache flushing.

Thiswill allow us to potentially craft an attack like FLUSH+RELOAD [7],
where the attacker can time access to a certain file to see if its been
recently accessed, flush the cache, wait for the victim to access the
file, then repeat the process over a long period to obtain fine grained
access patterns. Or we could potentially use a cache hit/miss to
encode one bit, thereby allowing two (physically) separated col-
luding adversaries to communicate via a covert channel. The next
step would therefore involve implementing a remote/unprivileged
flushing mechanism to remove from the cache all traces of the file
in question.

8 ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CCF-1563753. It is also supported
in part by Boston University’s Distinguished Summer Research
Fellowship, and the department of Electrical and Computer Engi-
neering.

REFERENCES
[1] Jonathan Corbet. 2009. That massive filesystem thread. https://lwn.net/Articles/

326471/
[2] Jonathan Corbet. 2014. Introducing lazytime. https://lwn.net/Articles/621046/
[3] Michael Kerrisk. 2017. stat(2) Linux User’s Manual (4.16 ed.). Linux man-pages

project, http://man7.org/linux/man-pages/man2/stat.2.html.
[4] Bartosz Lipinski, Wojciech Mazurczyk, and Krzysztof Szczypiorski. 2014. Improv-

ing hard disk contention-based covert channel in cloud computing. In Security
and Privacy Workshops (SPW), 2014 IEEE. IEEE, 100–107.

[5] Colin Percival. 2005. Cache missing for fun and profit.
[6] David A. Rusling. 1997. The VFS Inode Cache. http://www.science.unitn.it/

~fiorella/guidelinux/tlk/node110.html
[7] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,

Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium, Vol. 1.
22–25.

Poster Presentation CCS’18, October 15-19, 2018, Toronto, ON, Canada

2305

https://lwn.net/Articles/326471/
https://lwn.net/Articles/326471/
https://lwn.net/Articles/621046/
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node110.html
http://www.science.unitn.it/~fiorella/guidelinux/tlk/node110.html

	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 Background
	4.1 Stat
	4.2 File System Caches

	5 Collocated attacks
	6 Remote attacks
	7 Conclusions and Future Work
	8 Acknowledgments
	References



