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ABSTRACT 

An implementation in the Maple system 
of Buchberger’s algorithm for computing 
Grabner bases is described. The efficiency of 
the algorithm is significantly affected by 
choices of polynomial representations, by the 
use of criteria, and by the type of coefficient 
arithmetic used for polyndtiial reductions. 
The imorovement Dossible through a sliehtlv 
modified applicatioh of the criterja is de&o& 
strated by presenting time and space statis- 
tics for some sample problems. A fraction- 
free method for polvnomial reduction is 
presented, Timings -on-problems with integer 
and polynomial coefficients show that a 
fraction-free approach is recommended. 

1. Introduction 

The method of Grabner bases provides an impor- 
tant technique for (among other things) solving the 
simplification problem over polynomial ideals, and 
solution of algebraic equations. Hence, an implementa- 
tion of Buchberger’s algorithm would seem to be an 
almost essential feature of any advanced algebra sys- 
tem. It came as a surprise, while working on an imple- 
mentation for the Maple system ([lo], [ll]), just how 
large a Griibner basis problem can result from simple 
input polynomials given an apparently careful imple- 
mentation of the improved algorithm, as described in 
15). This is particularly true when the lexicographic 
ordering of terms is used, as the algorithm is known to 
be sensitive to permutations of the variable ordering in 
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this case. Nonetheless, lexicographic ordering is of 
some practical importance for solving algebraic sys- 
tems. It provides a natural elimination and separation 
of variables in a manner compatible with resultants 
(see [17)), and can result in an elegant form of reduced 
system (see Example 6.15 in [5]) with which back- 
solving is simple. Moreover, it applies even when 
infinitely many solutions exist, {cf. Method 6.12 in (51). 

Using empirical observations, we found a number 
of modest improvements which cumulatively allow 
run-time to be reduced significantly (up to a factor of 
five). These might also be applied when the total 
degree ordering is used; however, as this was not the 
primary focus of our investigations, we give results 
only for lexicographic problems. 

We assume the basic notation of Buchberger ([2], 
[3], [5]), and for brevity omit basic definitions wherever 
possible. In the next section we specify the variant of 
Buchberger’s algorithm chosen, and briefly describe its 
implementation. This includes a slight variant of the 
typical use of the criteria for avoiding unnecessary 
reductions, which often eliminates a good deal more 
unnecessary computation. In section 3 we examine a 
number of different approaches to polynomial reduc- 
tion, and briefly assess their relative performance. 

2. Some details on the implementation 

Since several variants of the basic algorithm are 
possible, we will first outline the one used in the Maple 
implementation. Let F = {j, , . . , fh} be a set of 
polynomials (over some field) in the indeterminates 
x = (2, , . . , CC,}, and let -CT be a total ordering of 
X-terms. Then the following algorithm produces the 
reduced, minimal Griibner basis for F. 

Algorithm 2.1 
G + Minor (F) ; kc length(G) ; 
B+ {[i $1 1 1 < i < j <_ k and Criterion2((i,j], G)) 
while B # 0 do 

Blc {[i,j] 1 [i,j]=SelN(B,G) and 
-rCriterionl([i,j], B, G) } 

while Bl # (21 do 
B +-B - Bl ; Bl + { (as above) } 

[i,j] + SelN(B,G) ; B c B- {[i,j]} 

f + iVormalF(Spoly(Gi,Gj), G) 
if f # 0 then 

G c G u (f} ; k + k-t-l 
B + B lJ {[i,k] 1 l<i<k and Criterion2([i,k],c)) 

G t Minor(G) 
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The procedure Minor consists of the procedures 
ReduceAll and NewBasis given in [S]. It produces a 
set in which each polynomial is in “normal form” w.r.t. 
the other polynomials. The procedures Criterionf and 
Criterion2 are the following criteria ([4], [6]) for 
detecting unnecessary S-polynomial reductions: 

C~iterionl([i,j], B,G) E -3 u, 1 2 u :< k s.t. (2.la) 

{ i#u#j, li,u] P B, Id P B, J&Au) 1 JMi,.i) 1, 

Criterion2((i,j], G) z Ho(i) I&(j) # &(i,j). (2.lb) 

Finally, SelN is a procedure which selects a pair from 
the set B according to the “normal selection strategy”: 

SelN(B,G) s [i,j] E B such, that (2.2) 

%(i,d = mine @Mu,u) I [u,4 EB), 
where 

H&i, j) = lcm(hterm(G;), hterm(Gj)). (2.3) 

Algorithm 2.1 differs from the “sl;andard” formu- 
lation in two important respects. First, the procedure 
Criterion2 is applied before adding new pairs to the 
set B (as opposed to after selection of [i,j] EB). Using 
the lexicographic ordering, many pairs will fail to 
satisfy Criterion2 Hence, significant savings in over- 
head may result from avoiding them altogether. (Note 
that Criterion2 does not depend on B.) The second 
difference stems from the fact that SelN is, in fact, 
many-valued. Using the lexicographic ordering, there 
are often many pairs which satisfy SelN at a given 
point. It happens that some of these may satisfy Cm’- 
terionl (which depends on B), while others may not. 
Hence, we may pass through the inner loop of Alge 
rithm 2.1 several times, until all pairs given by SelN 
satisfy our criterion. In this way, we might detect 
more unnecessary reductions than if we had considered 
the pairs one at a time. 

We now illustrate the sort of improvement (for 
our implementation) that these simple modif’ications 
can yield. The timings were done on a Vax 11/785 
processor running Maple version 4.0, and using a 
fraction-free reduction arithmetic described in the next 
section (see “prim3”). The test problems are described 
in the Appendix. 

storage (K b&es) 1103 819 

3 unnecessary reductions 74 35 
time 1070 553 

storage 1262 1221 

5(a) unnecessary reductions 83 55 
time 4918 2346 

storage 1540 1491 

4(b) unnecessary reductions 152 110 
time 11259 37 295 

storage 2851 2736 

Currently, two coefficient domains are handled by 
the Ma.ple implementation, namely the rational 
numbers (Q), and rational functions (over Q). In the 
former domain, all polynomials are kept, in distributed 
(expanded) form, and are hence manipulated in the 
same mathematical format, in which they are input. 
This makes some processes (such as computing head- 
terms) slightly cumbersome, but allows all arithmetic 
to be done by system functions; it is therefore rela- 
tively fast and simple. This approach is not feasible 
for the latter coefficient domain, primarily because of 
space considerations. In this case, polynomials are 
represented in “partially distributed” form. That is, 
each term over X appears only once, and with a fully 
distributed coefficient. To facilitate this, we represent 
a polynomial as a sparse table whose indices are the 
terms of the polynomial and whose entries are the 
corresponding coefficients. As a result, much larger 
problems can be handled without exceeding space limi- 
tations. 

Also, there is a choice of either the graduated 
(total degree) or the lexicographic term ordering. If a 
list, of indeterminates X = [zl, . . , zn] is specified, the 
order is based on z1 > . . . > z,,; if a set {z,, . . ,z,} is 
given, it will be permuted according to the heuristic in 
PI* 

3. Polynomial reduction: a fraction-free 
approach 

In [17], Pohst and Yun exploited the relationship 
between Buchberger’s algorithm (using lexicographic 
ordering) and polynomial remainder sequences. 
Roughly, one can view an S-polynomial or reduction of 
one polynomial modulo another as a generalized divi- 
sion step. In turn one then views a pseuderemainder 
as a series of division steps, and a resultant as a series 
of pseudo-remainders. The standard approach to poly- 
nomial reduction seems to be to work over the fraction 
field QI of the base [integral] domain I (e.g. Q when Z 
is the base domain), in a manner similar to the Manic 
Euclidean PRS Algorithm for GCD computation ([15]). 
Noting the superiority of the Primitive PRS Algorithm 
in that context (see [14]), we will examine the possibil- 
ity of avoiding the fraction field in a similar manner 
for the reduction process. 

By definition, a polynomial p is in normal form 
w.r.t. a set of polynomials F = {F,, F,, . . , Fk} iff no 
headterm of any polynomial in F divides any term of 
p. If instead p = cut + q, and 3 Fj, p, u such that 

hterm (Fi) 1 t , 0.t = P.u. head (Fj), (3.1) 
then p reduces w.r.t. Fj For efficiency, we reduce 
those terms which are CT -maximal first, noting that p 
is in normal form (mod F) iff 

(a) hterm(p) is irreducible, (3.2a) 

(6) rest(p) is in normal form (modF). (3.2b) 

The simplest approach to the arithmetic in (3.1) 
is to choose 

so that 

(3.3) 

p 3 (at + Q) - flu.Fj = p ‘- (3.4) 
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This is more efficient if the Fj have been divided by 
their respective head coefficients (i.e., made manic 
over X). We might carry this a step further, re-scaling 
the reduced polynomial after every reduction, in the 
hope of controlling coefficient growth a little better. 
This involves more work if p’ is larger than any poly- 
nomial in F, as will often be the case. 

To avoid rationals altogether, we have to cross- 
multiply. If v = hcoeff(Fj), we compute 7 = gcd(u, o) 
and 

p > (F) (CY~ + q) - (:).u. Fj . 

In the Primitive PRS algorithm, it is obvious that one 
should remove the content of each pseudoremainder; 
otherwise, it will be carried into the next step of the 
sequence, producing rapid expression swell. On the 
other hand, if our reducing basis F contains only prim- 
itive polynomials, there is no reason to expect growth 
of the same magnitude during reduction of another 
polynomial. It may happen that extraction of the 
primitive part is only essential just before appending 
the reduced polynomial to F (and using it in subse- 
quent reductions). If this were the case, the overhead 
of the content sub-computations would not be prohibi- 
tive. Also, it is often possible to compute the content 
of the reduced polynomial very efficiently, using a pre 
babilistic algorithm ([lS]). It is natural to compare 
three approaches: 

~~%~!ned 
remove content only when normal form 
, 

(prime) - remove content when the coefficients 
become “large”, and when normal form is 
obtained, 

(prim3) - remove content after each single reduc- 
tion, 

where, for example, the “prim2” scheme might be 
arranged as follows. 

procedure Normalf(f,G) 
f + Hreduce(f, G, 1) 
h + head(f) ; k c h ; rest + f - h 
contin i- 1 
while rest # 0 do 

temp c Hreduce(rest,G,contin,scale,contout) 
if temp # rest and contin # contout then 

ck c content(k) 
k c k/ck ; scale c ckecale 
fcont + gcd(scale, contout) 
contout + contout/fcont 
scale t scale/fcont 

h c head(temp) ; rest c temp - h 
k t sca1e.k + cont0ut.h 
contin c contout 

return( k/content(k) ) 

procedure Hreduce(f,G, contin, scale, contout) 
big + 3.max{ length(hcoeff(Gi)) ] Gi E G} 
ascale t 1 ; acont + contin ; n + 1 G ] 
for j from 1 to n while f # 0 do 

if hterm(Gj) 1 hterm(f) then 
u + htcrm(f)/htcrm(Gj) 
temp c gcd(hcoeff(Gj), hcoefflf) ) 
ml c hcoeff(Gj)/temp 
m2 + hcoeff(f)/temp 
f + (m1.f) - (m2.u.Gj) 
ascale c ml.a.scale 
iff#O 
and length(hcoeff(f)) > big then 

temp c content(f) ; f t f/temp 
acont t aconttemp 

j+0 
scale 4- ascale; contout + acont 
return(f) 

Needless to say, there are other (perhaps better) ways 
to compute the bound “big” in the above. We did not 
attempt to fine-tune this calculation. 

Since different system functions are involved for 
the two domains considered, we first examine problems 
with integer coefficients, comparing the three previous 
codes with the following: 

(monicl) - rescale (i.e. make manic) after each 
reduction, 

(monic2) - rescale when normal form is obtained. 

All times are in seconds; the space statistics (in K 
bytes) are parenthesized. 

We first note that the extra re-scaling done in the 
“monicl” scheme does not seem to yield any significant 
savings in space. Next we note that the gap between 
the analogous schemes “monic2” and “prim3” widens as 
the size of the coefficients increases. Finally, it 
requires a large problem to confirm that “prim3” is 
indeed asymptotically better than “priml”. (The 
potential gain of the less conservative schemes is likely 
small because of the relative speed of Maple’s integer 
gcd and content functions; unlike their polynomial 
counterparts, these functions are part of Maple’s com- 
piled kernel.) 
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When there are free parameters present, we 
proceed more cautiously because of the increased 
cost/complexity of the GCD s&computations 
involved. First, we note that the content can often be 
computed with a single GCD computation, as follows: 

procedure Gcontenl(p) 
ic c integer-content(p) ; p + p/it 
h c head(p) ; ch 6 hcoefffp) 
k + a monomial in (p-h) ; ck + hcoe.ff(k) 
gl t- gcd(ch, ck) ; gl + gl/integer_content(gl) 
if gl 1 p then return (ic gl) 

dQwree(p,t,)+l 
else return ic .content(p - h - k+ gl :cr 1 

Since the head coefficient is often smallest, the GCD 
of the coefficients of p is often gl (up to an integer 
multiple). Otherwise, we impose a dummy head coeffi- 
cient (term) on p, neglect the coefficients (terms) 
already considered, and compute the content by 
another method (such as Maple’s standard content 
function, or by repeating Gcontent). 

Second, we expect the effects of coefficient 
growth to be more pronounced. Ideally, we would like 
to control this growth as. much as possible without 
having to compute the content after each reduction. 
Since no counterpart to Collins’ Reduced PRS algo- 
rithm is available, we consider instead a trial division 
approach similar to that of Hearn ([13]) for the Primi- 
tive PRS. While Hearn’s algorithm uses only the lead- 
ing coefficients of the sequence polynomials as trial 
divisors, it is necessary in the present case to look for 
ratios of head coefficients. Fortunately, (for lexico- 
graphic ordering) these coefficients typically contain 
many of the same factors; hence their irreducible com- 
ponents can often be obtained by trial divisions alone, 
as follows. If 

H = {hcoeff(FJ, hcoef.f(F&, hcoe.f.Wk)), 

then we use as trial divisors D = cdecomp(H), where 
cdecomp is defined as: 

procedure cdecomp(H) 
DC@; RtH-((HnZ) 
while R # (21 do 

kER; RcR-{k} 

for d ED do while d 1 k do k + $ 

ifk@Zthen 

Do+ 0 
for d ED do 

ifk Idthen 
Do+-D,u 4 

CJ 
R+-Ru{$ 

D+D-D,,lJ{k} 
RtR-(RnZ) 

return D 

This appears to work well, in that the components 
obtained are often irreducible without further (formal) 
factoring, and length(D) is usually less than length(H). 
When a new polynomial (with head coefficient h) is 
added to the basis, the set of trial divisors becomes 
cdecomp(D U {h)). S everal combinations with the pre- 
vious schemes are possible; we implemented the follow- 
ing: 

(prim4) - after each reduction, perform trial divi- 
sions; remove any left-over content via Gcontent 
at the end of each Hreduce call, 

which compares most directly to the “prim3” scheme. 

The various schemes compare as follows. 

(1458) 1 1124 (795) 1 (959) 1 (1409) 1 (795) 

9(a) 1 505 1 375 1 735 1 969 1 1014 1 219 

~ 

(i) >125000 see. ; (ii) >I3000 K bytes ; (iii) >16000 K bytes 

It should be noted that Maple’s GCD poly- 
algorithm handles most simple GCD problems very 
efficiently without Hensel techniques (see [9] for a 
description of “gcdheu”). With this in mind, several 
conclusions are suggested by the above results. First, 
the “manic” schemes can be slightly more space- 
efficient, but much slower. (The sole exception is 
Problem 9(a), in which the GCD sub-problems encoun- 
tered in the manic schemes are done via gcdheu; note, 
however, that the “prim4” scheme is still significantly 
faster.) In fact, because of the efficiency of gcdheu and 
Gcontent, the trial division code “prim4” is actually 
slower on one-parameter problems. It is, however, 
remarkably effective on multi-parameter problems. A 
more efficient combination of this technique with a 
primitive reduction scheme might involve “prim2”, 
suitably tuned. 
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Appendix: List of test problems 

It should be noted that the variable orderings 
used are not necessarily optimal, either in the strict 
sense or that of [l]. In many cases we have deli- 
berately permuted the variables to produce more diffi- 
cult test problems. 

Problem 1 : Trinks system [lQ], using the variable 
ordering w>p>z>t>s>b. Using Algorithm 2.1, 11 new 
polynomials are created. If we work over the integers, 
the largest head coefficient which appears is 10”. 

Problem 2 : 
FI = 8z2-2zy-6zz+3z+3y2-7yz+10y+10z2-8z4, 

F2 = 10z2-2zy+6za-6z+9y2-yz-4y--2z2+5t-9, 

F3 = 5z2+8zy+4zz+8z+9y2-6yz+Zy-t2-7z+5, 

using z > y > I. 
(17 new polynomials are created; the largest head coef- 
ficient is lo".) 

Problem 3 : Butcher’s system (see [S]) of 8 equations 
in 8 unknowns, using the ordering 
bI>as2>b2>bs>a>c,>c2>b. 
(38 new polynomials are created; the largest head coef- 
ficient is lo'.) 

Problem 4 : Katsura’s system (see [l]) of 5 equat,ions 
in 5 unknowns. 

(a) Use the ordering u4 > u,, > u2 > me > u1 
(53 new polynomials are created; the largest head 
coefficient is lOso) 

(b) Use the ordering u1 > u,, > ug > u2 > u1 
(140 new polynomials are created; the largest 
head coefficient is 10’~) 

Problem 5 (1121): 
F, = 2(b-1) +2(q-pq+p2)+c2(q-l)*-2bq+2cd(l-q)(q-p) 

+2bpqd(d-c)+b2d2(l-2p)+2bd2(p-q)+abdc(p-1) 

+2bpq(c+1)+(b2-2b)p2d2+2b2p2+4b(ld)p+d2(p-q)2, 

F2 = d(2p+l)(q--p)+c(p+2)(1-q)+b(b-2)d+b(l-2b)pd 

+bc(q+p-pq-l)+b(b+l)p2d, 

F3 = -b2(p-l)2+2p(p-q)-2(q-l), 

F4 = b2+4(p-q2)+3c2(q-l)2-3d2(p-q)2 

+3bzd2(p-l)*+b2p(p-2)+6bdc(p+q+pq-1) . 

(a) Substitute b=2, and use the ordering q>c>p>d 
(78 new polynomials are created; the largest head 
coefficient is 10m.) 

(bi Consider b a free parameter, and use the ordering 
’ ’ q>c>d>p 

(24 new polynomials are created; the largest head 
coefficient is of degree 24 in b.) 

Problem 6: Butcher’s system (see [7]) of 3 equations 
in 3 unknowns, with 2 free parameters, using the vari- 
able ordering a > b > g. 
(10 new polynomials are created; the largest head coef- 
ficient is of total degree 18.) 

F2 = bz2 + 4dzy + 2ex + gy2 + hy + k, 

using 5 > y. 
(2 new polynomials are ‘created; the largest head coeffi- 
cient is of total degree 6.) 

Problem 8: Rimey’s system 1181 of 3 equations in 3 
unknowns, with 4 free parameters, with the ordering of 
variables z > y > z. 

(a) Substitute LY = B = I . 
(I4 new polynomials are created; the largest head 
coefficient is of total degree 4.) 

(b) Substitute 6 = X = /9 = 1 in all polynomials, and 
a = 1 in f only. 
(48 new polynomials are created; the largest head 
coefficient is of degree 27 in o.) 

(c) Substitute B = 1 in all polynomials, and a = 1 in 
f, h. 
(40 new polynomials are created; the largest head 
coefficient is of total degree 12.) 

Problem 9 : 
F1 = r2 + ayz + dx f g, 

F2=y2+bzs+ey+h, 

Fs = z2 + cxy + Jz + k, 

using 2 > y > t. 

(a) Substitute d = e = f = 0. 
(13 new polynomials are created; the largest head 
coefficient is of total degree 12.) 

(b) Substitute a = b = c = g = h = k = I. 
(15 new polynomiab are created; the largest head 
coefficient is of total degree 12, and dense.) 

Problem 7 : 
FL = az2 + bzy + cz + dy2 + ey + J, 
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