
On Implementin Buchberger’s Algorithm
for Zr2ibner Bases

S.R. Crapor’

K.O. Geddes2

’ Department of Applied Mathematics
2 Department of Computer Science

University of Waterloo
Waterloo, Ontario
Canada N2L 3Gl

ABSTRACT

An implementation in the Maple system
of Buchberger’s algorithm for computing
Grabner bases is described. The efficiency of
the algorithm is significantly affected by
choices of polynomial representations, by the
use of criteria, and by the type of coefficient
arithmetic used for polyndtiial reductions.
The imorovement Dossible through a sliehtlv
modified applicatioh of the criterja is de&o&
strated by presenting time and space statis-
tics for some sample problems. A fraction-
free method for polvnomial reduction is
presented, Timings -on-problems with integer
and polynomial coefficients show that a
fraction-free approach is recommended.

1. Introduction

The method of Grabner bases provides an impor-
tant technique for (among other things) solving the
simplification problem over polynomial ideals, and
solution of algebraic equations. Hence, an implementa-
tion of Buchberger’s algorithm would seem to be an
almost essential feature of any advanced algebra sys-
tem. It came as a surprise, while working on an imple-
mentation for the Maple system ([lo], [ll]), just how
large a Griibner basis problem can result from simple
input polynomials given an apparently careful imple-
mentation of the improved algorithm, as described in
15). This is particularly true when the lexicographic
ordering of terms is used, as the algorithm is known to
be sensitive to permutations of the variable ordering in

This research was supported by the Natural Sciences and Engineering
Research Council of Canada under Grant A8967.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and & date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

this case. Nonetheless, lexicographic ordering is of
some practical importance for solving algebraic sys-
tems. It provides a natural elimination and separation
of variables in a manner compatible with resultants
(see [17)), and can result in an elegant form of reduced
system (see Example 6.15 in [5]) with which back-
solving is simple. Moreover, it applies even when
infinitely many solutions exist, {cf. Method 6.12 in (51).

Using empirical observations, we found a number
of modest improvements which cumulatively allow
run-time to be reduced significantly (up to a factor of
five). These might also be applied when the total
degree ordering is used; however, as this was not the
primary focus of our investigations, we give results
only for lexicographic problems.

We assume the basic notation of Buchberger ([2],
[3], [5]), and for brevity omit basic definitions wherever
possible. In the next section we specify the variant of
Buchberger’s algorithm chosen, and briefly describe its
implementation. This includes a slight variant of the
typical use of the criteria for avoiding unnecessary
reductions, which often eliminates a good deal more
unnecessary computation. In section 3 we examine a
number of different approaches to polynomial reduc-
tion, and briefly assess their relative performance.

2. Some details on the implementation

Since several variants of the basic algorithm are
possible, we will first outline the one used in the Maple
implementation. Let F = {j, , . . , fh} be a set of
polynomials (over some field) in the indeterminates
x = (2, , . . , CC,}, and let -CT be a total ordering of
X-terms. Then the following algorithm produces the
reduced, minimal Griibner basis for F.

Algorithm 2.1
G + Minor (F) ; kc length(G) ;
B+ {[i $1 1 1 < i < j <_ k and Criterion2((i,j], G))
while B # 0 do

Blc {[i,j] 1 [i,j]=SelN(B,G) and
-rCriterionl([i,j], B, G) }

while Bl # (21 do
B +-B - Bl ; Bl + { (as above) }

[i,j] + SelN(B,G) ; B c B- {[i,j]}

f + iVormalF(Spoly(Gi,Gj), G)
if f # 0 then

G c G u (f} ; k + k-t-l
B + B lJ {[i,k] 1 l<i<k and Criterion2([i,k],c))

G t Minor(G)

0 1986 ACM O-89791-199-7/86/0700-0233 75@ 233

http://crossmark.crossref.org/dialog/?doi=10.1145%2F32439.32486&domain=pdf&date_stamp=1986-10-01

The procedure Minor consists of the procedures
ReduceAll and NewBasis given in [S]. It produces a
set in which each polynomial is in “normal form” w.r.t.
the other polynomials. The procedures Criterionf and
Criterion2 are the following criteria ([4], [6]) for
detecting unnecessary S-polynomial reductions:

C~iterionl([i,j], B,G) E -3 u, 1 2 u :< k s.t. (2.la)

{ i#u#j, li,u] P B, Id P B, J&Au) 1 JMi,.i) 1,

Criterion2((i,j], G) z Ho(i) I&(j) # &(i,j). (2.lb)

Finally, SelN is a procedure which selects a pair from
the set B according to the “normal selection strategy”:

SelN(B,G) s [i,j] E B such, that (2.2)

%(i,d = mine @Mu,u) I [u,4 EB),
where

H&i, j) = lcm(hterm(G;), hterm(Gj)). (2.3)

Algorithm 2.1 differs from the “sl;andard” formu-
lation in two important respects. First, the procedure
Criterion2 is applied before adding new pairs to the
set B (as opposed to after selection of [i,j] EB). Using
the lexicographic ordering, many pairs will fail to
satisfy Criterion2 Hence, significant savings in over-
head may result from avoiding them altogether. (Note
that Criterion2 does not depend on B.) The second
difference stems from the fact that SelN is, in fact,
many-valued. Using the lexicographic ordering, there
are often many pairs which satisfy SelN at a given
point. It happens that some of these may satisfy Cm’-
terionl (which depends on B), while others may not.
Hence, we may pass through the inner loop of Alge
rithm 2.1 several times, until all pairs given by SelN
satisfy our criterion. In this way, we might detect
more unnecessary reductions than if we had considered
the pairs one at a time.

We now illustrate the sort of improvement (for
our implementation) that these simple modif’ications
can yield. The timings were done on a Vax 11/785
processor running Maple version 4.0, and using a
fraction-free reduction arithmetic described in the next
section (see “prim3”). The test problems are described
in the Appendix.

storage (K b&es) 1103 819

3 unnecessary reductions 74 35
time 1070 553

storage 1262 1221

5(a) unnecessary reductions 83 55
time 4918 2346

storage 1540 1491

4(b) unnecessary reductions 152 110
time 11259 37 295

storage 2851 2736

Currently, two coefficient domains are handled by
the Ma.ple implementation, namely the rational
numbers (Q), and rational functions (over Q). In the
former domain, all polynomials are kept, in distributed
(expanded) form, and are hence manipulated in the
same mathematical format, in which they are input.
This makes some processes (such as computing head-
terms) slightly cumbersome, but allows all arithmetic
to be done by system functions; it is therefore rela-
tively fast and simple. This approach is not feasible
for the latter coefficient domain, primarily because of
space considerations. In this case, polynomials are
represented in “partially distributed” form. That is,
each term over X appears only once, and with a fully
distributed coefficient. To facilitate this, we represent
a polynomial as a sparse table whose indices are the
terms of the polynomial and whose entries are the
corresponding coefficients. As a result, much larger
problems can be handled without exceeding space limi-
tations.

Also, there is a choice of either the graduated
(total degree) or the lexicographic term ordering. If a
list, of indeterminates X = [zl, . . , zn] is specified, the
order is based on z1 > . . . > z,,; if a set {z,, . . ,z,} is
given, it will be permuted according to the heuristic in
PI*

3. Polynomial reduction: a fraction-free
approach

In [17], Pohst and Yun exploited the relationship
between Buchberger’s algorithm (using lexicographic
ordering) and polynomial remainder sequences.
Roughly, one can view an S-polynomial or reduction of
one polynomial modulo another as a generalized divi-
sion step. In turn one then views a pseuderemainder
as a series of division steps, and a resultant as a series
of pseudo-remainders. The standard approach to poly-
nomial reduction seems to be to work over the fraction
field QI of the base [integral] domain I (e.g. Q when Z
is the base domain), in a manner similar to the Manic
Euclidean PRS Algorithm for GCD computation ([15]).
Noting the superiority of the Primitive PRS Algorithm
in that context (see [14]), we will examine the possibil-
ity of avoiding the fraction field in a similar manner
for the reduction process.

By definition, a polynomial p is in normal form
w.r.t. a set of polynomials F = {F,, F,, . . , Fk} iff no
headterm of any polynomial in F divides any term of
p. If instead p = cut + q, and 3 Fj, p, u such that

hterm (Fi) 1 t , 0.t = P.u. head (Fj), (3.1)
then p reduces w.r.t. Fj For efficiency, we reduce
those terms which are CT -maximal first, noting that p
is in normal form (mod F) iff

(a) hterm(p) is irreducible, (3.2a)

(6) rest(p) is in normal form (modF). (3.2b)

The simplest approach to the arithmetic in (3.1)
is to choose

so that

(3.3)

p 3 (at + Q) - flu.Fj = p ‘- (3.4)

234

This is more efficient if the Fj have been divided by
their respective head coefficients (i.e., made manic
over X). We might carry this a step further, re-scaling
the reduced polynomial after every reduction, in the
hope of controlling coefficient growth a little better.
This involves more work if p’ is larger than any poly-
nomial in F, as will often be the case.

To avoid rationals altogether, we have to cross-
multiply. If v = hcoeff(Fj), we compute 7 = gcd(u, o)
and

p > (F) (CY~ + q) - (:).u. Fj .

In the Primitive PRS algorithm, it is obvious that one
should remove the content of each pseudoremainder;
otherwise, it will be carried into the next step of the
sequence, producing rapid expression swell. On the
other hand, if our reducing basis F contains only prim-
itive polynomials, there is no reason to expect growth
of the same magnitude during reduction of another
polynomial. It may happen that extraction of the
primitive part is only essential just before appending
the reduced polynomial to F (and using it in subse-
quent reductions). If this were the case, the overhead
of the content sub-computations would not be prohibi-
tive. Also, it is often possible to compute the content
of the reduced polynomial very efficiently, using a pre
babilistic algorithm ([lS]). It is natural to compare
three approaches:

~~%~!ned
remove content only when normal form
,

(prime) - remove content when the coefficients
become “large”, and when normal form is
obtained,

(prim3) - remove content after each single reduc-
tion,

where, for example, the “prim2” scheme might be
arranged as follows.

procedure Normalf(f,G)
f + Hreduce(f, G, 1)
h + head(f) ; k c h ; rest + f - h
contin i- 1
while rest # 0 do

temp c Hreduce(rest,G,contin,scale,contout)
if temp # rest and contin # contout then

ck c content(k)
k c k/ck ; scale c ckecale
fcont + gcd(scale, contout)
contout + contout/fcont
scale t scale/fcont

h c head(temp) ; rest c temp - h
k t sca1e.k + cont0ut.h
contin c contout

return(k/content(k))

procedure Hreduce(f,G, contin, scale, contout)
big + 3.max{ length(hcoeff(Gi))] Gi E G}
ascale t 1 ; acont + contin ; n + 1 G]
for j from 1 to n while f # 0 do

if hterm(Gj) 1 hterm(f) then
u + htcrm(f)/htcrm(Gj)
temp c gcd(hcoeff(Gj), hcoefflf))
ml c hcoeff(Gj)/temp
m2 + hcoeff(f)/temp
f + (m1.f) - (m2.u.Gj)
ascale c ml.a.scale
iff#O
and length(hcoeff(f)) > big then

temp c content(f) ; f t f/temp
acont t aconttemp

j+0
scale 4- ascale; contout + acont
return(f)

Needless to say, there are other (perhaps better) ways
to compute the bound “big” in the above. We did not
attempt to fine-tune this calculation.

Since different system functions are involved for
the two domains considered, we first examine problems
with integer coefficients, comparing the three previous
codes with the following:

(monicl) - rescale (i.e. make manic) after each
reduction,

(monic2) - rescale when normal form is obtained.

All times are in seconds; the space statistics (in K
bytes) are parenthesized.

We first note that the extra re-scaling done in the
“monicl” scheme does not seem to yield any significant
savings in space. Next we note that the gap between
the analogous schemes “monic2” and “prim3” widens as
the size of the coefficients increases. Finally, it
requires a large problem to confirm that “prim3” is
indeed asymptotically better than “priml”. (The
potential gain of the less conservative schemes is likely
small because of the relative speed of Maple’s integer
gcd and content functions; unlike their polynomial
counterparts, these functions are part of Maple’s com-
piled kernel.)

235

When there are free parameters present, we
proceed more cautiously because of the increased
cost/complexity of the GCD s&computations
involved. First, we note that the content can often be
computed with a single GCD computation, as follows:

procedure Gcontenl(p)
ic c integer-content(p) ; p + p/it
h c head(p) ; ch 6 hcoefffp)
k + a monomial in (p-h) ; ck + hcoe.ff(k)
gl t- gcd(ch, ck) ; gl + gl/integer_content(gl)
if gl 1 p then return (ic gl)

dQwree(p,t,)+l
else return ic .content(p - h - k+ gl :cr 1

Since the head coefficient is often smallest, the GCD
of the coefficients of p is often gl (up to an integer
multiple). Otherwise, we impose a dummy head coeffi-
cient (term) on p, neglect the coefficients (terms)
already considered, and compute the content by
another method (such as Maple’s standard content
function, or by repeating Gcontent).

Second, we expect the effects of coefficient
growth to be more pronounced. Ideally, we would like
to control this growth as. much as possible without
having to compute the content after each reduction.
Since no counterpart to Collins’ Reduced PRS algo-
rithm is available, we consider instead a trial division
approach similar to that of Hearn ([13]) for the Primi-
tive PRS. While Hearn’s algorithm uses only the lead-
ing coefficients of the sequence polynomials as trial
divisors, it is necessary in the present case to look for
ratios of head coefficients. Fortunately, (for lexico-
graphic ordering) these coefficients typically contain
many of the same factors; hence their irreducible com-
ponents can often be obtained by trial divisions alone,
as follows. If

H = {hcoeff(FJ, hcoef.f(F&, hcoe.f.Wk)),

then we use as trial divisors D = cdecomp(H), where
cdecomp is defined as:

procedure cdecomp(H)
DC@; RtH-((HnZ)
while R # (21 do

kER; RcR-{k}

for d ED do while d 1 k do k + $

ifk@Zthen

Do+ 0
for d ED do

ifk Idthen
Do+-D,u 4

CJ
R+-Ru{$

D+D-D,,lJ{k}
RtR-(RnZ)

return D

This appears to work well, in that the components
obtained are often irreducible without further (formal)
factoring, and length(D) is usually less than length(H).
When a new polynomial (with head coefficient h) is
added to the basis, the set of trial divisors becomes
cdecomp(D U {h)). S everal combinations with the pre-
vious schemes are possible; we implemented the follow-
ing:

(prim4) - after each reduction, perform trial divi-
sions; remove any left-over content via Gcontent
at the end of each Hreduce call,

which compares most directly to the “prim3” scheme.

The various schemes compare as follows.

(1458) 1 1124 (795) 1 (959) 1 (1409) 1 (795)

9(a) 1 505 1 375 1 735 1 969 1 1014 1 219

~

(i) >125000 see. ; (ii) >I3000 K bytes ; (iii) >16000 K bytes

It should be noted that Maple’s GCD poly-
algorithm handles most simple GCD problems very
efficiently without Hensel techniques (see [9] for a
description of “gcdheu”). With this in mind, several
conclusions are suggested by the above results. First,
the “manic” schemes can be slightly more space-
efficient, but much slower. (The sole exception is
Problem 9(a), in which the GCD sub-problems encoun-
tered in the manic schemes are done via gcdheu; note,
however, that the “prim4” scheme is still significantly
faster.) In fact, because of the efficiency of gcdheu and
Gcontent, the trial division code “prim4” is actually
slower on one-parameter problems. It is, however,
remarkably effective on multi-parameter problems. A
more efficient combination of this technique with a
primitive reduction scheme might involve “prim2”,
suitably tuned.

Acknowledgements

We are deeply indebted to Michael Monagan,
who suggested the idea of avoiding the fraction field to
us. We have also benefitted from many helpful
discussions involving the Maple system, particularly
with regard to implementation of the “partially distri-
buted” polynomial representation.

236

Appendix: List of test problems

It should be noted that the variable orderings
used are not necessarily optimal, either in the strict
sense or that of [l]. In many cases we have deli-
berately permuted the variables to produce more diffi-
cult test problems.

Problem 1 : Trinks system [lQ], using the variable
ordering w>p>z>t>s>b. Using Algorithm 2.1, 11 new
polynomials are created. If we work over the integers,
the largest head coefficient which appears is 10”.

Problem 2 :
FI = 8z2-2zy-6zz+3z+3y2-7yz+10y+10z2-8z4,

F2 = 10z2-2zy+6za-6z+9y2-yz-4y--2z2+5t-9,

F3 = 5z2+8zy+4zz+8z+9y2-6yz+Zy-t2-7z+5,

using z > y > I.
(17 new polynomials are created; the largest head coef-
ficient is lo".)

Problem 3 : Butcher’s system (see [S]) of 8 equations
in 8 unknowns, using the ordering
bI>as2>b2>bs>a>c,>c2>b.
(38 new polynomials are created; the largest head coef-
ficient is lo'.)

Problem 4 : Katsura’s system (see [l]) of 5 equat,ions
in 5 unknowns.

(a) Use the ordering u4 > u,, > u2 > me > u1
(53 new polynomials are created; the largest head
coefficient is lOso)

(b) Use the ordering u1 > u,, > ug > u2 > u1
(140 new polynomials are created; the largest
head coefficient is 10’~)

Problem 5 (1121):
F, = 2(b-1) +2(q-pq+p2)+c2(q-l)*-2bq+2cd(l-q)(q-p)

+2bpqd(d-c)+b2d2(l-2p)+2bd2(p-q)+abdc(p-1)

+2bpq(c+1)+(b2-2b)p2d2+2b2p2+4b(ld)p+d2(p-q)2,

F2 = d(2p+l)(q--p)+c(p+2)(1-q)+b(b-2)d+b(l-2b)pd

+bc(q+p-pq-l)+b(b+l)p2d,

F3 = -b2(p-l)2+2p(p-q)-2(q-l),

F4 = b2+4(p-q2)+3c2(q-l)2-3d2(p-q)2

+3bzd2(p-l)*+b2p(p-2)+6bdc(p+q+pq-1) .

(a) Substitute b=2, and use the ordering q>c>p>d
(78 new polynomials are created; the largest head
coefficient is 10m.)

(bi Consider b a free parameter, and use the ordering
’ ’ q>c>d>p

(24 new polynomials are created; the largest head
coefficient is of degree 24 in b.)

Problem 6: Butcher’s system (see [7]) of 3 equations
in 3 unknowns, with 2 free parameters, using the vari-
able ordering a > b > g.
(10 new polynomials are created; the largest head coef-
ficient is of total degree 18.)

F2 = bz2 + 4dzy + 2ex + gy2 + hy + k,

using 5 > y.
(2 new polynomials are ‘created; the largest head coeffi-
cient is of total degree 6.)

Problem 8: Rimey’s system 1181 of 3 equations in 3
unknowns, with 4 free parameters, with the ordering of
variables z > y > z.

(a) Substitute LY = B = I .
(I4 new polynomials are created; the largest head
coefficient is of total degree 4.)

(b) Substitute 6 = X = /9 = 1 in all polynomials, and
a = 1 in f only.
(48 new polynomials are created; the largest head
coefficient is of degree 27 in o.)

(c) Substitute B = 1 in all polynomials, and a = 1 in
f, h.
(40 new polynomials are created; the largest head
coefficient is of total degree 12.)

Problem 9 :
F1 = r2 + ayz + dx f g,

F2=y2+bzs+ey+h,

Fs = z2 + cxy + Jz + k,

using 2 > y > t.

(a) Substitute d = e = f = 0.
(13 new polynomials are created; the largest head
coefficient is of total degree 12.)

(b) Substitute a = b = c = g = h = k = I.
(15 new polynomiab are created; the largest head
coefficient is of total degree 12, and dense.)

Problem 7 :
FL = az2 + bzy + cz + dy2 + ey + J,

237

References

111

PI

PI

PI

PI

161

I71

PI

PI

WI

WI

[121
1131

I141

1151

W. B&e! R. Gebauer, H. Kredel: “Some Examples
for Solvmg Systems of Algebraic Equations by
Calculating GrGbner Bases”, J. Sym.bolic Compu-
tation, Vol. 1, 1985 (to appear). 1161

B. Buchberger: “A Theoretical Basis for the
Reduction of Polynomials to Canonical Forms”,
ACM SIGSAM Bull., Vol. 10, No. 3, Aug.. 1976.

B. Buchberger: “Some Properties of Grabner-
Bases for Polynomial Ideals”, ACM SIGSAM
Bull., Vol. 10, No. 4, Nov. 1976.

B. Buchberger: “A criterion for detecting
unnecessary -reductions in the construction of
Grijbner bases”. Proc. EUROSAM ‘79. Marseille.
June 1979, (W. Ng, ed.), Lecture Notes in Com-
puter Science, Vol. 72, 1979, pp.3-21.

B. Buchberger: “Grijbner Bases: An Algorithmic
Method in Polynomial Ideal Theory”, in Progress,
directions and open problems in multidimen-
sional systems theory, (N.K. Bose, ed.), D. Reidel
Publishing Co., 1985, pp.184-232.

3. Buchberger, F. Winkler: ‘Miscellaneous
Results on the construction of Griibner bases for
polynomial ideals”, Tech. Rep. 137, Univ. of Linz,
Math. Inst., 1979.

J.C. Butcher: “Stability Properties for a General
Class of Methods for Ordinary Differential Equa-
tions”, SIAM J. Numer. Anal. 18, No. 1, 1981,
pp.37-44.

J.C. Butcher:
Kutta space”,

“An application of the Runge
BIT Computer Science Numer.

Math., Vol. 24, 1984, pp.425-440.

B.W. Char, K.O. Geddes, G.H. Gonnet:
“GCDHEU: Heuristic Polynomial GCD Algo
rithm Based on Integer GCD Computation”,
Proc. EUROSAM 84, Cambridge, July 1984, (J.P.
Fitch, ed.), Lecture Notes in Computer Science,
Vol. 174, 1984, pp.285296

B.W. Char, K.O. Geddes, W.M. Gentleman, G.H.
Gonnet: “The design of Maple: A compact, port-
able, and powerful computer algebra system”,
Proc. EUROCAL ‘83, Lecture Notes in Compzller
Science, Vol. 162, 1983, pp.lOl-115.

B.W. Char, K-0. Geddes, G.H. Gonnet, S.M.
Watt: “Maple User’s Guide”, WATCOM Publica-
tions, Waterloo, Ontario, 1985.

G. Fee (Private communication.)

A.C. Hearn: “Non-modular Computation of Poly-
nomial GCD’s using Trial Divisions”, Proc.
EUROSAM 79, Marseille, June 1979, (W. Ng,
ed.), Lecture Notes in Computer Science, Vol.
72, 1979, pp.227-239.

D. E. Knuth: The Art of Computer Program-
ming, Vol.,& Addison-Wesley, Reading, Mass.,
1969.

R. Loos: “Generalized polynomial remainder
sequences”, in Computer Algebra - Symbolic and

w

Algebraic Computation, (B. Buchberger, R. Loos
and G.E. Collins, ed.), Springer, Wren New York,
2nd edition, 1983, pp.115-138.

M.B. Monagan (Private communication.)

M.E. :Pohst, D.Y.Y. Yun: “On Solving Systems of
Alzebraic Eauations via Ideal Bases and Elimina-
tio”n Theory”, Proc. of the 1981 ACM Symposium
on Symbolic and Algebraic Computation (SYM-
SAC ‘Sl), (P.S. Wang, ed.), Utah, Aug. 1981,
pp.206-211.

K. Rimey: “A System of Polynomial Equations
and a Solution by an Unusual Method’, ACM
SIGSAM Bull., Vol. 18, No. 1, Feb. 1984.

W. Trinks: “Wber B. Buchbergers Verfahren, Sys-
teme algebraischer Gleichungen zu losen”, J.
Number Theory, Vol. 10, No. 4, NOV. 1978,
pp.475-488.

238

