
SAN FRANCISCO JULY 22"26 Volume 19, Number 3,1985

FAST SPHERES, SHADOWS, TEXTURES, TRANSPARENCIES,
and IMAGE ENHANCEMENTS IN PIXEL-PLANES *

Henry Fuchs, Jack G o ld fe a the r t , Jeff P. Hultqulst , Susan Spach:~
John D. Austin, Frederick P. Brooks, Jr. , John G. Ey|es, and John Poulton

Depar tment of Compute r Science
University of North Carolina at Chapel Hill

Chapel Hill, NC 27514

ABSTRACT: Pixel-planes is a logic-enhanced memory
system for raster graphics and imaging. Although each
pixel-memory is enhanced with a one-bit ALU, the sys-
tem's real power comes from a tree of one-bit adders that
can evaluate linear expressions Az + By + C for every pLxel
(z, y) simultaneously, as fast as the ALUs and the mem-
ory circuits can accept the results. We and others have
begun to develop a variety of algorithms that exploit this
fast linear expression evaluation capability. In this paper
we report some of those results. Illustrated in this paper
is a sample image from a small working prototype of the
Pixel-planes hardware and a variety of images from simula-
tions of a full-scMe system. Timing estimates indicate that
30,000 smooth shaded triangles can be generated per sec-
ond, or 21,000 smooth-shaded and shadowed triangles can
be generated per second, or over 25,000 shaded spheres can
be generated per second. Image-enhancement by adaptive
histogram equalization can be performed within 4 seconds
on a 512x512 image.

* This research supported in part by the Defense Ad-
vance Research Project Agency, monitored by the U.S.
Army Research Office, Research 'Triangle Park, NC, un-
der contract number DAAG29-83-K-0148 and the National
Science Foundation Grant number ECS-8300970.

t Department of Mathematics, Carleton College, North-
field, MN, on sabbatical at Department of Mathematics at
University of North Carolina at Chapel Hill

$ Now at Hewlett-Packard Labs, Palo Alto, CA

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M 0-89791-166-0/85/007/0111 $00.75

I . I N T R O D U C T I O N

The P/xel-planes development grew out of earlier de-
signs for speeding up raster image generation [Fuchs 1977;
Johnson 1979]. An enhanced design is described in [Clark
lg80]. In these designs, the task of generating pixels is dis-
t r ibuted between several dozen processors. Even when we
were designing these systems, we realized tha t the bott le-
neck in raster image generation was ``pushing pixels, '~ since
bottlenecks earlier in the image generation pipeline could
be eliminated by fast ar i thmetic hardware. Two present ex-
amples are the Weitek multiplier chips [Weitek] and a cus-
tom "geometry engine" chip [Clark 1982]. The l imitat ion of
these earlier systems tha t we sought to overcome with Pixei-
planes was that once the number of processors increases to
one per memory chip, the bottleneck becomes da ta move-
ment into the chip. Even if the processor were much faster
than the memory chip, in any one memory cycle, only one
address-data pair can be put into the chip. Pixel-planes
attempts to overcome this limitation by putting computa-
tion logic right onto the memory chip, with an entire tree of
processing circuits generating many pixels's worth of data
in each memory cycle.

Central to the design is an array of logic-enhanced
memory chips that form the frame buffer. These chips
not only store the scanned-out image but also perform the
pixel-level calculations of area-definition, visibility calcula-
tion and pixel painting. Recently, various individuals have
devised other algorithms for the Pixel-planes engine--for
computing shadows, sphere displays, and even image pro-
ceasing tasks. It is increasingly evident that the structure
of the machine has greater generality and applicability than
first imagined.

Although to many first-time observers Pixel-planes ap-
pears to be a variant of the parallel processor with a pro-
cessor at every pixel, its power and speed come more from
the binary tree of one-bR adders that efficiently compute a
linear expression in z and t/ for every pixel in the entire
system. Given coefficients A, B, and U, the two mul-
tiplier trees and a one-bit adder at each pixel compute
F(z, !t) = Az + By + C in bit-sequential order for each
(z, y) on the screen (see figure I). If this expression had
to be calculated at each pixel with only the one-bit pixel
processor alone, the system would take 20 times as long to
complete the calculation!

For efficiency in the actual chip layout, the two multi-
plier trees have been merged into a single tree and that tree

111

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325205&domain=pdf&date_stamp=1985-07-01

¢,. O S I G G R A P H ' 8 5

compressed into a single column. Thus, the system con-
tains a unified multiplier tree, a one-bit ALU at each pixel,
a one-bit Enable register (controlling write operations of
that pixel), and 32 bits of memory (72 bits in the Pxpl4
implementation now being built). Figure 2 illustrates the
organization that is used on the actual memory chips.

l " e ' 4 lo e-""l o.r, , . .
I bit I od.er I bit _..A " '

...B9

Bq

~ fl~emor ij

I
Fig. 1: C o n c e p t u a l des ign of an 8x8 Pixel-Planes chip.

The system is driven by a transformation engine, which
sends vertices of the database to the tm~lator. This board
converts this data to a series on linear equations which de-
scribe the location of each polygon in screen space. Each
linear equation, together with an opcode, is passed to the
image generation controller, which activates the control
lines on the frame buffer chips (see figure 3). Figure 4
shows our latest small working prototype with the color
image being generated by six Pxpl3 chips.

Details of the hardware design and the implementation
are in [Pacth 1982] and in [Poulton 1985 I. The latter of
these papers outlines architectural enhancements that may
increase the speed of the system by a factor of 5. In the
future, we hope to integrate the Pixel-planes architecture
with a silicon-based fiat-screen display, so that the display
itself will handle the display computations [Shiffman 1984;
Vuillemier 1984].

I m a g e - G e n e r t l J o n Con ! r o l l e r

1
Tree ReadlWri)e,

' ' ' ,l I':1
I .o , . l ,..,5 o, . , . , , o . , . , ~l . . ln |

- - I .V Y i d e o C o n t r o l l e r

Fig. 2: F loor p l a n of Pixel-Planes 4 chip.

2. A L G O R I T H M S I N P I X E L - P L A N ~ S

As explained above, the major feature of Pixel-planes
is its ability to evaluate, in parallel, expressions of the form
Az + By + C, where (z, y) is the address of a pixel. The
controller broadcasts A, B, and C, and the expression A:~+
By + C is evaluated and then compared and/or combined
with information already stored in the memory in each pixel
cell. The memory at each pixel can be allocated in any
convenient way. A typical allocation might be:

I) buffers for storage of certain key values (e.g., a ZMIN
buffer for depth storage, and RED, GREEN, and
BLUE buffers for color intensity values)

2) several one-bit flags which are used to enable or disable
pixels (via the Enable register) during various stages
of processing.

The timing analyses apply to the Pxpl memories and
scanout. They assume image generating pipeline modules
before them--the geometric transformation unit, the trans-
lator, and the controller---vperate fast enough to keep up
with the Pxpl memories.

2.1 C O N V E X P O L Y G O N S

The display of objects made up of polygons is accom-
plished in three steps: scan conversion of the polygons, vis-
ibility relative to previously processed polygons, and shad-
ing.

112

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

2.1.1 Scan Conversion. The object of this step is to
determine those pixels which lie inside a convex polygon.
Initially, all Enable registers are set to 1. Each edge of
the polygon is defined by two vertices, ri = (2:1,Yi) and
~2 = (z2, Y2), wliich are ordered so that the polygon lies on
the left of the directed edge vl v2. Then the equation of the
edge is A z + B y + C = 0, where A = Yz - Y2, B = 2:2 - 2:1,
and C = 2:z Y2 - 2:2Yl- Furthermore, f(2:, y) = A2: + B y + C
is positive if and only if (2:, y) lies on the same side of the
edge as the polygon. The translator computes A, B, and
C, and these coefficients are then broadcast to Pixel-planes.
A negative f(2:, y) causes the Enable register for (2:, y) to
be set to 0; otherwise the Enable register is unchanged. A
pixel is inside the polygon if and only if its Enable register
remains 1 after all edges have been broadcast.

2.1.2 Visibi l i ty. Once scan conversion has been per-
formed, final visibility of each polygon is determdned by
a comparison of z values at each pixel. The translator first
computes the plane equation, z = Ax + B y + C, as follows:

S t e p 1: The plane equation in eye space has the form:

A' ze + B l ye + C ' ze + 1~ = O. (1)

The first 3 coefficients, which form the normal to the
plane, are found by computing the cross product of the two
vectors determined by the first three vertices of the polygon.
Alternatively, an object space normal can be part of the
polygon data structure and transformed appropriately to
produce an eye space normM. Assuming that (2:o,Yo,Zo) is
a vertex, the hst coefficient is given by:

Host G r a p h i c 5g3tem + l ~

•i Trlhsf ,ion Unit ~

, '- fP l Cecil 's (k . B . C) l

I " " + - I T r l l t s l l t l r [Cont ro l le r

[Si,-~.ri.,) l
P i x e l - P l e a e s [C a e f f ' s + Ins t r~s_ ,

Graphic Sqstela

Vide#
Caal ro l le r

I
Frame Buf fer -:

(P x t l Hemorv Chip A r r t g)

I,=-I --

I ~illd:i41 i!!iiii~:i:i ili~:iiiiiii~i~iiii~ili::

F i g . 3: L o g i c a l o v e r v i e w of a 3 D graphics system using
Pixel-Planes image buffer memory chips.

F i g . 4: P i x e l - P l a n e s 3 S y s t e m . John Poulton (left)
and Henry Fuchs and the working Pixel-Planes 3 prototype.
(photo by Jerry Markatos}

I T = - A % o - B 'yo - C ' zo

S t e p 2: Using the transformation equations:

2:¢ = (- x - k t) / (z ' r t) ,

Y, = C-Y - ~) l (z ' r 2) , and

ze = - - l / z w

(2)

(3)

where r l , r :z ,kt ,k2 are constants related to the screen res-
olution and the location of the screen origin, we can trans-
form (1) to screen space and still retain the form:

z / = A ' z + B ' y + C' (4)

S t e p 3: Given that n bits are reserved for the ZMIN buffer,
and that the minimum and maximum z values z l , z 2 , for
the object to be displayed are known, we can rescale the
equation so that 0 < z < 2" - 1 by replacing z ' by:

- (s)

Combining this with (4) we can write z in the form
z = A x % B y + C. The visible pixels are then determined
by using the standard Z-buffer algorithm [Sutherland 1974 l
at each pixel simultaneously. The controller broadcasts
the plane equation of the current polygon, z = f(x, y) =
A2: + By + C. Each pLxel whose Enable bit is still 1 com-
pares its f(x, y) to the value in its ZMIN buffer. The pixel
is visible if and only if f(2:,y) < ZMIN, so pLxels with
f(2:, y) > ZMIN set their Enable bits to 0. The controller
rebroadcasts A, B, and C so that the still-enabled pixels
can store their new ZMIN values.

2.1.3 S h a d i n g . To determine the proper color for each
pixel, the controller broadcasts 3 sets of coefficientsi one
for each primary color component. For fiat shading, A =
B = 0 and C = color. A smooth shading effect simil~r
to Gouraud shading [Gouraud 1971], created by linearly
interpolating the colors at the vertices of the polygon, can
also be achieved.

113

@ S I G G R A P H '85

Fig. 5: The Chapel Hill "OId Well" rendered by a
Pixel-Planes functional simulator with input of 357 poly-
gons. Estimated image generation time (assuming a 10Mhz
clock) is 9 msec.

For example, suppose the polygon has 3 vertices
(z1,~h), (zz,y2), and (z~,ya) with red components
RI ,R2,Rs. Geometrically, one can visualize linear inter-
polation of the red component at (z,y) as selecting the
third component of the point (z, y, R) that lies on the plane
passing through (z l ,y l ,Rl) , (z~,y2,P~), and (z3,y3,R3)
in zyR-space. The translator computes the equation of this
plane as follows:

Step 1: The vector equation

(= , ~) = s (= 2 - z l , y 2 - y l)

+t(=~ - =,,y3 - y,) + (=~, y~)
(o)

Fig. 6: "Old Well" wi th shadows (simulation). Esti-
mated time: 13.8 Insec.

Timing Analysis. The time it takes to process a
polygon depends on the number of edges and the number of
bits needed for the representation of Az+ By+ C. Suppose
we require an E bit representation for enabling pixels on one
side of an edge, a D bit representation for the depth buffer,
a C bit representation for each color component, and N bits
for the representation of screen coordinates (usually 2 more
than the log of the screen resolution), then scan conversion
of an edge requires E + A T + 3 clock cycles, and the visibility
calculation of a polygon requires 2(D+ N + 3) clock cycles.
Once this is determined, shading of the polygon without
subdivision requires 3(C + N % 3) additional clock cycles,
while 3(C+N+3)+(E+N+3) additional cycles are needed
for each subdivision. Hence, the total time to process a
"worst case" ~-sided polygon is:

is solved for s and t which are written in the form:

s = A l z + B i y + 01
(7)

t = A~z + B~y + O~

Step 2: The plane equation is written in the form R =
Az + By + C, where

A = A i (P ~ - R i) + A2(R3 - R i)

B = B , (P ~ - R ,) + B2(R3 - R~)

0 = C i (R ~ - I ~) + 0 2 (R 3 - R ,) + S~

(8)

The controller broadcasts A, B, and C, and Am+By+
C is stored in the RED color buffer for pixels that are still
enabled after the scan conversion and visibility computa-
tions. If there are more than three vertices, the transla-
tor checks the colors R4, P~, . . . at the remaining vertices
n4 ~- (z4, y4), vs -- (zs ,ys) , Only in the case that for
some i, P~ ~ Azi + Byi + C is it necessary to subdivide
the polygon by introducing new edges. Note that this sub.-
division is performed only during the shading stage and is
not required during any other phase of processing.

n(E+ N + 3) + 2(D + N + 3)

+ (n - 3)(E+ N +3)

+ 3(n - 2)(0 + N + 3)

clock cycles. If we assume that E= 12, D = 20, C = 8,
N ~- II, n = 4, and a clock period is I00 nanoseconds, a 4-
sided polygon can be processed in 33 microseconds. Hence,
about 30,000 such polygons can be processed per second.
This permits real-time display of quite complex objects {see
figure 5).

2.2 S H A D O W S

After the visible image has been constructed, shadows
created by various light sources can be determined (see fig_
ure 6). Our approach determines shadow volumes [Crow
1977] defined as logical intersections of half-spaces. This is
most similar to [Brotman 1984] except that explicit calcu-
lation of the shadow edge polygons is unnecessary in Pixel-
planes. Briefly, the algorithm proceeds as follows:

Step 1: Flag init ialisation. For each pixel, a Shadow
flag is allocated from pixel memory, and both the Enable
register and Shadow flags are set to 0.

114

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

S t e p 2: D e t e r m i n a t i o n o f p ixe l s in s h a d o w . For each
polygon, the set of visible pixels that lie in the frustum of
the po!ygon's cast shadow are determined and the Enable
registers for these pixels is set to 1. The logical OR of
Shadow and Enable is then stored in Shadow.

Step 3: D e t e r m i n a t i o n o f color intens i ty o f shad-
o w e d pixe ls . After all polygons have been processed,
those pixels whose Shadow flag is 1 are in the shadow of
one or more polygons. The color intensity of these pixels is
diminished by an appropriate factor.

The implementation of this algorithm is based on the
parallel linear evaluation capability of Pixel-planes, to-
gether with ZMIN value that is stored for each plxel. The
idea is to disable those pixels which are on the "wrong" side
of each face of the shadow frustum. We begin by choosing
an edge of the current polygon, and finding the plane P
determined by this edge and the light source. We want to
disable those plxels which are not in the same half-space
relative to P as the current polygon (see figure 7). The
algorithm must handle two cases.

Case I: P does not pass through the origin ~ eye
space. In this case we observe that if the eye and the
current polygon are in the same half-space relative to P,
then it suffices to disable pixels that are farther away than
P, and if the eye and the current polygon are in different
half-spaces relative to P, then it suffices to disable pixels
that are closer than P. In order to accomplish this we do
the following:

a) The translator determines the equation of the plane P
in the form z = f (z , y) = Az + By + C, chooses a
vertex (~:~, Yi) of the polygon not on P, and finds the
sign of f (x i , Yi)-

b) The coefficients A, B, and C are broadcast so that f
can be evaluated simultaneously at all pixels.

c) If f (x i , y l) is positive, all pixels whose ZMIN is less
than ff(z, y) are disabled, and if ff(zi, Yi) is negative, all
pixels whose gMIN is greater than f (x , y) are disabled.

Case 2: P passes t h r o u g h the or ig in in eye space.
This relatively rare case is easier to process than Case I.
We observe that P projected on the screen is an edge so it
suffices to disable pixels which are not on the same side of
this edge as the projected current polygon. We proceed as
follows:

a} The translator determines the edge equation of the in-
tersectlon of P with the plane of the screen in the form
Ax + By + C = O. In addition, the translator deter-
mines the sign of f (z , y) = Ax + B y + C at a vertex
(xi, Yi) not on P.

b} The coefficients A, B, and C are broadcast and those
pixels whose f(x,y) is not the same sign as f(xi,yi)
are disabled.

After each edge of the polygon has been processe~l in
this manner, the pixels that are on the same side of the
plane of the polygon as the fight source must still be dis-
abled. We let P be the plane of the polygon itself, and use

After shadow post-processing of first edge of triangle.

After shadow post-processing of second edge of triangle.

After completing shadow post-processing of triangle.

Result of all shadow processing.

Fig. 7: Shadowing Algor|thm

115

@ S I G G R A P H '85
~ I I I I

either Case 1 or Case 2 above, with the one exception that
we check the sign of f at the light source. Note that in the
same half-space relative to P, we disable pixels for which
Z M I N : f (z , y) , and if they are in different half-spaces
we do not disable pixels for which Z M I N : .f(z, y). In
this way, we can display either the lit or the unlit side of a
polygon.

T iming Analys is . Step 1 requires 2 clock cycles for each
polygon. In order to process each plane of the shadow frus-
tum of a polygon, we need (E + N + 3) cycles for the
broadcast of A,B, and C and 2 additional cycles for the
resetting of the Shadow flag. After all polygons have been
processed, 3C cycles are required to modify the color com-
ponent. Hence, in order tc~ process P polygons, we need
P ((a + 1)(E + N + 3) + 2) + 3C + 2 clock cycles. For
example, if E--12, N = l l , n=4, C=8, and a clock period
is 100 nanoseconds, 78,000 polygons can be processed per
second.

]Fig. 9: T r i m e t h o p r l m (simulation).
Estimated time: 1.3 msec.

Presorted data.

2.3 C L I P P I N G

Clipping of polygons by boundary planes, a procedure
usually performed in the geometry pipeline, is not neces-
sary when displaying an image in Pixel-planes. Time can
be saved by performing only a bounding box type of triv-
ial rejection/acceptance. Edges which lie wholly or par-
tially off the screen will still disable the appropriate pixels
during scan conversion. Even hither and yon clipping can
be achieved by passing (at most) the two edges of the in-
tersection of the polygon plane with the hither and yon
planes, and dis~bling pixels which are on the appropriate
side of these edges. The shadow volumes must be similarly
clipped, by the addition of the shadow planes determined
by the light source and the line of intersection of the plane
of the polygon and each of the clipping planes (see figure 8).

2.4 S P H E R E S

Fred Brooks suggested to us a method for drawing
filled circles in Pixel-planes. We have extended that method
to spheres with Z-buffer and an arbitrary light source. Since
Pixel-planes is essentially a linear machine, it might seem
difficult to display objects rapidly which are defined via
quadratic expressions. However, by using an algorithm
that, in effect, treats a circle as a polygon with one edge,
and by using some appropriate approximations, we can
overcome these difficulties (see figures 9,10). Just as in
polygon display, we proceed through a scan conversion, a
visibility, and a shading phase [Max 1979; Pique 1983].

]Fig. 8: ~Old Well z w i t h shadows cut by hither plane
within the Pixel-Planes memories (simulation). 177 poly-
gons after trivial rejection. Estimated time: 8.8 msec.

]Fig. 10: ' I t - ime thopr im wi th Z-buffer (simulation).
Unsorted data. Estimated time: 1.7 msec.

116

S A N F R A N C I S C O JULY 2 2 - 2 6 Vo lume 19, N u m b e r 3, 1985

S t e p 1: S c a n Conve r s i on . Note that the equation of a
circle with radius r and center C a, b) can be written in the
form:

u(z , v) = A. + B y + C - q = o (9)

where A = 2a, B = 2b, C = r 2 - a 2 - b 2, and Q = z 2 + y 2. A
section of the memory at each pixel, called the Q-buffer, is
allocated for the storage of z 2 + ya, and is loaded with this
value a t system initialization time. The translator com-
putes A, B, and C and f (z , y) = A z + B y + C is evaluated
at each pixel. The value in the Q-buffer is subtracted from
f (z , y) and those plxels for which f (z , y) - Q is negative
are disabled.

S t e p 2: Visibi l i ty. If the eye coordinate system is chosen
so that the z > 0 half-space contains the sphere, then the
visible hemisphere is the set of points (z , y , z) satisfying

= * - V : - (~ - ~) ~ - (v - b)~ (l O)

where r is the radius and (a,b,c) is the center of the sphere.
We can approximate this by

z = c - (r 2 - i x - a) 2 - (y - b) 2) / r (11)

which in effect approximates the hemisphere with a
paraboloid. Using a method similar to that described in
Step 1, the expression in (11) can be evaluated, compared
with the existing contents of the ZMIN buffer, and then
stored if necessary, in the ZMIN buffer. Visibility is then
determined in the same way as it is for polygon display.

S t e p 3: S h a d i n g due t o l ight sources a t infinity.
The unit outward normal at the visible point (, , y, z) on
the sphere with center C a, b, c) and radius r is

: : = (1 / ~) (. - a, v - ~, z - c)

(l / r) (z - a, y - b, - x / r ~ - (z - a) 2 - (y - b) 2) E

(12)

Let L = (li, 1~,/~) be the unit direction of an arbitrary
light source. Then the point of maximum highlight on the
sphere is (rli + a , r h + b , r la+c) . Denote by CM/Nthe am-
bient color value and by C M A X the maximum color value
for a given color component. Then for diffuse shading of
the sphere, the color value at (z, y) is

C o l o r (z , y) =

C M I N + (C M A X - C M I N) (L . N) ,
C M I N ,

(13)

i f L . N _ > 0 ;
i fL-2Y < 0 .

Using the parabolic approximation of the hemisphere
as we did in Step 2, we can approximate L . N by:

L . N ~ (ltCx - a) + 12(y - b)) / r

- 13(r 2 - (z - a) ~ - (v - b P) l :
(14)

Then the color at a given pixel can be written in the form:

Color(z , y) = K (A z + B y + C - Q) + C M I N (15)

where

K = - (C M A X - C M I N) I a / r a,

A = --ll r/13 + 2a,

B = -12r]13 + 2b,

C = ltra]13 + Grb/13 + r 2 - a 2 -- b 2

(16)

The translator computes A, B, C, and K. Multiplication
by K is accomplished by first approximating K by the first
n non-zero bits of its binary representation:

trg

i = 1

Then for each j in the sum, the controller broadcasts 2YA,
21B, 2iC. Q is shifted by j bits and subtracted from the
linear expression determined by the three broadcast coeffi-
cients. The resultant value:

2Y(Az + B y + C - Q) (1 8)

is added to the contents of the appropriate color buffer,
COLBUF. After all the terms in the sum have been pro-
cessed, we set C O L B U F to 0 if C O L B U F < 0. The con-
stant value C M I N is broadcast and added to C O L B U F .

T i m i n g Ana lys i s . The initial loading o f the Q-buffer re-
quires 37(E + N + 3) clock cycles. Scan conversion and
visibility are the same as in polygon processing and take
(E + N + 3) and 2(D + N + 3) cycles, respectively. Shad-
ing requires 4(C + N + 3) cycles for each term in the sum
used to approximate K, and the broadcast of C M I N re-
quires 20 cycles. Hence, if k is the number of terms in the
approximation of K, it takes

37(E + N + 3)

+ S ((E + N + 3) + 2(D + N + 3)

+ 4k(C + N + 3) + 20)

clock cycles to process S spheres. For example, if k =
3, E = 20, N = 11, D = 20, C = 8, then 34,000 spheres
can be processed per second.

1 1 7

S I G G R A P H '85

Z.G A D A P T I V E H I S T O G R A M E Q U A L I Z A T I O N

In computed tomographic (CT) scan displays, CT
numbers must be assigned (grey) intensity levels so that
the viewer can perceive appropriate degrees of contrast and
detail. Because the range of CT numbers is, in general,
greater than the range of intensity levels, some compression
has to take place. This makes it difficult to control the con-
trast in both light and dark areas. The standard method,
selection of windows in the CT range, results in intensity
discontinuities and loss of information. AHE [Pizer 1984] is
an assignment scheme that makes use of regional frequency
distributions of image intensities. The processed image has
high contrast everywhere and the intensities vary smoothly
(see figures 11,12). The method proceeds as follows. For
each point (z, y) in the image:

S t e p 1: A %ontextual" region centered at (z, y) is chosen,
and the frequency histogram of CT numbers in this region
is computed. Typically, this region is a circle, or a square
with edges parallel to the screen boundaries.

Step 2: In this histogram, the percentile rank, r, of the
CT number at (z, y) is determined.

]Fig. 11: Or ig ina l C T scan image .

Fig. 12: C T scan image a f t e r A H E e n h a n c e m e n t
(simulation). Estimated time for this 256x256 pixel image:
1 second.

Step 3: This rank is used to compute an intensity level, i,
in some grey scale ranging between , say, it and 12. Specif-
ically, i = i l + r (i 2 - i l).

This method requires the computation of a CT dis-
tribution at every pixel in the image, and so it is far too
inefficient for most uses, requiring approximately 5 minutes
to compute on a 256 × 256 image on a VAX 11/780. A more
efficient alternative, requiring about 30 seconds for a 256 x
256 image, is ko compute the distribution only at a small
set of sample points and use a linear interpolation scheme
to approximate the intensity levels at the other points.

An efficient alternative, which finds the exact value at
each pixel, can be implemented in Pixel planes. The idea
is to make use of the parallel processing capability to con-
struct the rank incrementally at each pixel simultaneously.

S t e p 1: The CT numbers are loaded into the pixel mem-
ories, and a counter at each pixel is initialized.

S t ep 2: For each pixel (x0, Yo):

a) The coefficients necessary to disable those pixels that
are outside the contextual region centered at (zo, !to)
are broadcast. For example, if the region is a polygon
or a circle, this is equivalent to the scan conversion
step discussed earlier.

b) The CT number, N(zo,yo), is broadcast and com-
pared, in parallel, to the CT number, N(z, y) which
is stored at each enabled pixel (z,y). If N(z, y) >
N(zo, Yo), the counter at (z, y) is incremented.

S t ep 3: After all pixels have been processed, the counter at
each pixel contains the rank of the pixel CT number within
its own contextual region. If both the number of pixels in
the contextual region and the length of the grey scale are
powers of 2, this rank can easily be scaled to an intensity
by shifting bits.

T i m i n g Analys is . It requires 25 cycles to load each pixel
with its CT value and initialize its counter. It requires
2(E+N+3) cycles to disable pixels outside each contextual
region and 40 cycles to broadcast the CT numbers and
increment the counters. On a 512 × 512 display with N =
11 and E = 12, we have estimated the time required to
perform AHE is about 4 seconds.

3. A L G O R I T H M S U N D E R D E V E L O P M E N T

This section describes algorithms still under develop-
ment. Only functional simulations (rather than detailed
behavioral ones) have been executed and the timing esti-
mates are thus less precise. In particular, we are still ex-
ploring speedups for multiplication and division in the pixel
processors. The timing estimates given in the figures are
conserwtive (we hope), but still assume a 10MHz clock.

3.1 T E X T U R E M A P P I N G

One way of producing a texture on a polygon is to
compute a texture plane address (u, v) associated to each
pixel (~, y) and then look up the appropriate color value in
a texture table indexed by u and v. The Pixel planes linear
evaluator can be used to determine, in parallel, this texture
plane address.

118

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

To see how this is done, we proceed through some
mathematical computations. In order to orient a texture
on a polygon in eye space we first choose a_point P0 on the
polygon and 2 orthonormal vectors S and T in the plane of
the polygon. Then the texture address (u, v) associated to
the point X on tl/e polygon is given by:

. = s . (x - P o) ,
(1 9)

v = T - (X - P0)-

If S = (s , , s2 , s3) , T = (t t , t 2 , t s) , P = (Pi,P2,P3),
and X = (zc, y,,zc), equations (19) can be rewritten in
coordinate form as:

3 .2 T R A N S P A R E N C Y

Transparency effects can be achieved by disabling pat-
terns of pixels prior to polygon processing. For example,
one could broadcast the coefficients I, I, 0 in order to eval-
uate z + y, and disable those pixels for which z + y is even
(see figure 14).

(z 0)

Substituting the equations (3), which relate screen
space to eye space, into (20) and using the plane equa-
tion Az, + Bye + Cze + D = 0, we can write ~ and v in the
form:

u = (A,z+ BIy+ C,)/z

v = (A2z + B2y + c2)/z (21)

The translator computes A,, B,, and Cl, and the con-
troller broadcasts them to P]xel-planes. The division of

A , z + B ly + C1 by s (which is already stored in ZMIN) is
done in parallel at the pixel level, and the result is stored
in a U-buffer. The V-buffer value is found in a similiar
manner. A texture table is then passed, entry by entry, to
Pixel-planes, and each pixel selects a texture value corre-
sponding to its stored (u, v) value. For periodic patterns
(checkerboards, bricks, etc.) it is only necessary to transmit
a small table defining the unit pattern (see figure 13).

F i g . 14: SOld Well s wi th t r an spa ren t co lumns (sim-
ulation). 64 transparent polygons out of a total of 357.
Estimated time: 13.8 msec.

Transparency effects can also be produced with sub-
pixel mask successive refinement, where transparent poly-
gons are ignored on particular passes over the database. For
example, transparent polygons can be ignored every other
pass or every third pass, thereby yielding different degrees
of transparency.

3.3 A N T I - A L I A S I N G

We have been developing several anti-aliasing tech-
niques for polygons. We have come to believe that the
essential difference between various approaches is whether
the visibility at the subpixel level is performed before or
after the anti-aliasing computations. Our first approach,
which aims at producing an image rapidly and ~improving"
the image with each screen refresh, makes no assumptions
about visibility determination before the Pxpl memories.
The second approach, which takes more time, but produces
a high quality anti-aliased image initially, assumes visibility
ordering has already been done.

Fig . 13: B r i c k e d SOld Well ~ (simulation). 66 textured
polygons out of a total of 357. Estimated time: 14.3 msec.

M e t h o d 1: Successive Ref inement . Each pixel (z, y), is
subdivided into a grid of subpixels so that each subpixel has
an address of the form (z+zoffset, y+yoffset). We generate
the image several times (16, perhaps), each time offsetting
the image slightly by some (zoffset, yoffset) in such a way
that the sample points within a pixel's area form a reason-
able distribution. (The shift is easily achieved by adding
A- zoffset + B - yoHset to the C coefficient of each broad-
cast triple.) Two sets of color buffers are maintained, one
to store the color generated by the IMest image generation
offset and the other to store a running average as we move
around the subpixel grid.

119

@ @ S I G G R A P H '85

The extra cost of the algorithm over standard sub-
plxel asuper-samplin~ is the color blending between each
pass over the graphic database. This is less than 1000
clock cycles (I00 microseconds) per pass. This particular
super-sampling successive refinement technique, however,
supports dynamically interactive applications. The initial
images appear similar to common anti-aliased images, and
significant refinement is produced within a few additional
sampling passes.

Method 2: Subpl.xel Coverage Mask. The polygons
are sorted from front to back, perhaps by first transforming
the polygon list into a BSP tree [Fuchs 1983]. Each pixel
is subdivided into a number of subpixels and one bit of the
pixel memory is reserved for each such subpixel. During the
scan conversion step of polygon processing, the coefficients
defining each edge are normalized to yield the distance from
the center of the pixel to the edge. The coverage mask and
area contribution of an edge can be passed from a precom-
puted table [Carpenter 1984] in the controller indexed by
this distance and A, the coefficient of z. (Note that only
one row of the table needs to be passed for any edge.) The
number of ones in the mask is used to compute a color
contribution which is added to the color buffers. When
the number of ones in the coverage mask stored at each
pixel reaches the total number of subpixels, the pixel is dis-
abled. Since polygons are processed in front to back order,
"leakage" of color from hidden polygons is avoided. This
approach is somewhat similar to the one used in the Evans
and Sutherland CT-5 real*time image generation system
often used for flight training [Schumacker 1980].

4. C O N C L U S I O N S

We have highlighted in this paper the aspects of Pixel-
planes that give it computing power and efficiency--the
parallel linear expression evaluator embodied in the tree of
one-bit adders. We have illustrated this capability by de-
scribing a variety of algorithms (shadows, spheres, image
enhancement) that appear to run efficiently in this ma-
chine. Pictures from the Pixel-planes simulators indicate
that hlgh-quallty images can be generated rapidly enough
for dynamic, often real-time, interaction. The images from
the working small prototype (see figure 4) are simpler than
the images from the simulators due to the small number of
custom chips presently available. We expect Pixel-planes
4, with considerably increased speed and resolution, to
start working by June 1985. We expect that a full-scale
(500-1000 line) display system can be built with less than
500 Pxpl memory chips in currently available (1.5micron
CMOS) technology. We also hope that the algorithm devel-
opments, especially those based on simplifying algorithms
into linear form, will be useful for those developing graphics
algorithms on other parallel machines.

5. A C K N O W L E D G E i ~ I E N T S

We wish to thank Fred Brooks for the basic circle
scan-conversion algorithm, Alan Paeth and Alan Bell of Xe-
rox Palo Alto Research Center for years of assistance with
the design and early implementations of Pixel-planes, Scott
Hennes for assista~lce with the implementation of the Pxpl3

memory chip, Hsieh Cheng-Hong and Justin Helnecke for
discussions about architecture and algorithm interactions,
Turner Whirred for discussions about anti*aliasing and
transparency algorithms, Eric Grant for 3D data of the Old
Well, Steve Pizer, John Zimmerman, and North Carolina
Memorial Hospital for CT chest data, Mike Pique, Doug
Schiff, Dr. Michael Corey and Lee Kuyper (Corey and
Kuyper from Burroughs Wellcome) for Trimethoprim drug
molecule data, Trey Greer for TEX help, and Bobette Eck-
land for secretarial support. Special thanks go to Andrew
Glassner, who supervised the layout and paste-up of this
paper.

6. R E P E R E N C E S

Brotman, L.S. and N.I. Badler. October 1984. "Generating SoIt
Shadows with a Depth Buffer Algorithm," IEEE Comptter Graphics
and Applications, 5-12.

Carpenter, L. July 1984. "The A-buffer, em Antialin~ed Hidden
Surface Method," Computer Graphics, 18(3), 103-109 (Proc. Siggraph
'84}.

Clark, J.H. July 1982. "The Geometry Engine: A VLSI Geon~e-
try System for Graphics," Compgter Graphics, 16(3), 127-133 (Proc.
Siggraph '82).

Clark, J.H. and M.R. Hannah. $th Quarter, 1980. "Distributed
Processing in a High-Performance Smart Image Memory," Lambda, 40-
45 {Lambda is now VLSI Design).

Crow, F.C. July 1977. "Shadow Algorithms for Computer Graph-
ics," Compster Graphics, 11{2), 242-248 {Proc. Siggraph '77).

Fuchs, H. 1977. "Distributing a Visible Surface Algorithm over
Multiple Processors," Proceedings o] |he AUM Annam Con]erence, 449-
451.

Fuchs, H. and B. Johnson. April, 1979. "An Expandable Mul-
tiprocessor Architecture for Video Graphics," Proceedings o] the 6th
A CM-IEEE Symposilm on Compgter Archi~ectffirc, 58-67.

Fuchs, H., J. Poulton, A. Paeth, and A. Bell. January, 1982. "De-
veloping PLxel-Planes, A Smart Memory-Based Raster Graphics Sys-
tem," Proceedings of the 198~ MIT Conference on Advanced Research
irt VLSI, 137-146.

Fuchs, H., G.D. Abram, and E.D.Grant. July 1983. "Near Real-
Time Shaded Display of Rigid Objects, ~ Computer Graphics, 17(3),
65-72 {Proc. Siggraph '83).

Gouraud, H. 1971. "Computer Display of Curved Surfaces, ~ IEEE
Transcatlons on Compgter#, 20(6}, 623-629.

Max, N.L. July 1979. "ATOMILL: Atoms with Shading and High-
lights," Compffiter Graphics, 13{3), 105--173 [Proc. Siggraph '79).

Pique, M.E. 1983. Fast 3D Display of Space-Filfing Molecular
Models, Technical Report 83-004, Department of Computer Science,
UNC Chapel Hill.

Pizer, S.M., J.B. Zimmerman, and E.V.Staab. April 1984. "Adap-
tive Grey Level Assignment in CT Scan Display," Jolrma] of Comptter
A sslsted Tomographu, 8(2), ~00-305, Raven Press, NY.

Poulton, J., J.D. Austin, J.G. Eyles, J. Heinecke, C.H. Hsieh, and
H. Fuchs. 1985. Pixel-Planes 4 Graphics Engine, Technical Report
1985, Department of Computer Science, UNC Chapel Hill (to appear).

Schumaeker, R.A. November 1980. "A New Visual System Archi-
tecture," Proceedings of the ~nd Annwal IITEC, Salt Lake City.

ShitTman, R.R. and R.H. Parker. 1984. "An Electrophoretie Im-
age Display With Internal NMOS Address Logic and Display Drivers",
Proceedings of the Society for Information Displalt, 25(2), 10,5-152.

Sutherland, I.E., R.F. Sproull, and R.A. Schumacker. 1974. "A
Characterization of Ten Hidden-Surface Algorithms," A CM Compmtin¢
SIrtmys, 6(1), 1-55.

Vuillemier, R., A. Perret, F. Porret, P. Weiss. July 1984. ~Novel
Electromechanica] Microshutter Display Device," Proceeding, of the
IgS~ Earodisplay Conference.

Weitek. 1983. Dezigning tvith the WTL 103£/1055, Weitek Cor-
poration, Santa Clara, CA (Weitek publication 83ANI12.1M}.

120

