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ABSTRACT: Pixel-planes is a logic-enhanced memory 
system for raster graphics and imaging. Although each 
pixel-memory is enhanced with a one-bit ALU, the sys- 
tem's real power comes from a tree of one-bit adders that 
can evaluate linear expressions Az + By + C for every pLxel 
(z, y) simultaneously, as fast as the ALUs and the mem- 
ory circuits can accept the results. We and others have 
begun to develop a variety of algorithms that exploit this 
fast linear expression evaluation capability. In this paper 
we report some of those results. Illustrated in this paper 
is a sample image from a small working prototype of the 
Pixel-planes hardware and a variety of images from simula- 
tions of a full-scMe system. Timing estimates indicate that 
30,000 smooth shaded triangles can be generated per sec- 
ond, or 21,000 smooth-shaded and shadowed triangles can 
be generated per second, or over 25,000 shaded spheres can 
be generated per second. Image-enhancement by adaptive 
histogram equalization can be performed within 4 seconds 
on a 512x512 image. 
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I .  I N T R O D U C T I O N  

The P/xel-planes development grew out of earlier de- 
signs for speeding up raster  image generation [Fuchs 1977; 
Johnson 1979]. An enhanced design is described in [Clark 
lg80]. In these designs, the task of generating pixels is dis- 
t r ibuted between several dozen processors. Even when we 
were designing these systems, we realized tha t  the bott le-  
neck in raster  image generation was ``pushing pixels, '~ since 
bottlenecks earlier in the image generation pipeline could 
be eliminated by fast ar i thmetic hardware.  Two present ex- 
amples are the Weitek multiplier chips [Weitek] and a cus- 
tom "geometry engine" chip [Clark 1982]. The l imitat ion of 
these earlier systems tha t  we sought to overcome with Pixei- 
planes was that  once the number of processors increases to 
one per  memory chip, the bottleneck becomes da ta  move- 
ment into the chip. Even if the processor were much faster 
than the memory chip, in any one memory cycle, only one 
address-data pair can be put into the chip. Pixel-planes 
attempts to overcome this limitation by putting computa- 
tion logic right onto the memory chip, with an entire tree of 
processing circuits generating many pixels's worth of data 
in each memory cycle. 

Central to the design is an array of logic-enhanced 
memory chips that form the frame buffer. These chips 
not only store the scanned-out image but also perform the 
pixel-level calculations of area-definition, visibility calcula- 
tion and pixel painting. Recently, various individuals have 
devised other algorithms for the Pixel-planes engine--for 
computing shadows, sphere displays, and even image pro- 
ceasing tasks. It is increasingly evident that the structure 
of the machine has greater generality and applicability than 
first imagined. 

Although to many first-time observers Pixel-planes ap- 
pears to be a variant of the parallel processor with a pro- 
cessor at every pixel, its power and speed come more from 
the binary tree of one-bR adders that efficiently compute a 
linear expression in z and t/ for every pixel in the entire 
system. Given coefficients A, B, and U, the two mul- 
tiplier trees and a one-bit adder at each pixel compute 
F(z, !t) = Az + By + C in bit-sequential order for each 
(z, y) on the screen (see figure I). If this expression had 
to be calculated at each pixel with only the one-bit pixel 
processor alone, the system would take 20 times as long to 
complete the calculation! 

For efficiency in the actual chip layout, the two multi- 
plier trees have been merged into a single tree and that tree 
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compressed into a single column. Thus, the system con- 
tains a unified multiplier tree, a one-bit ALU at each pixel, 
a one-bit Enable register (controlling write operations of 
that pixel), and 32 bits of memory (72 bits in the Pxpl4 
implementation now being built). Figure 2 illustrates the 
organization that is used on the actual memory chips. 
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Fig. 1: C o n c e p t u a l  des ign  of an 8x8 Pixel-Planes chip. 

The system is driven by a transformation engine, which 
sends vertices of the database to the tm~lator. This board 
converts this data to a series on linear equations which de- 
scribe the location of each polygon in screen space. Each 
linear equation, together with an opcode, is passed to the 
image generation controller, which activates the control 
lines on the frame buffer chips (see figure 3). Figure 4 
shows our latest small working prototype with the color 
image being generated by six Pxpl3 chips. 

Details of the hardware design and the implementation 
are in [Pacth 1982] and in [Poulton 1985 I. The latter of 
these papers outlines architectural enhancements that may 
increase the speed of the system by a factor of 5. In the 
future, we hope to integrate the Pixel-planes architecture 
with a silicon-based fiat-screen display, so that the display 
itself will handle the display computations [Shiffman 1984; 
Vuillemier 1984]. 
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Fig.  2: F loor  p l a n  of Pixel-Planes 4 chip. 

2. A L G O R I T H M S  I N  P I X E L - P L A N ~ S  

As explained above, the major feature of Pixel-planes 
is its ability to evaluate, in parallel, expressions of the form 
Az + By + C, where (z, y) is the address of a pixel. The 
controller broadcasts A, B, and C, and the expression A:~+ 
By + C is evaluated and then compared and/or combined 
with information already stored in the memory in each pixel 
cell. The memory at each pixel can be allocated in any 
convenient way. A typical allocation might be: 

I) buffers for storage of certain key values (e.g., a ZMIN 
buffer for depth storage, and RED, GREEN, and 
BLUE buffers for color intensity values) 

2) several one-bit flags which are used to enable or disable 
pixels (via the Enable register) during various stages 
of processing. 

The timing analyses apply to the Pxpl memories and 
scanout. They assume image generating pipeline modules 
before them--the geometric transformation unit, the trans- 
lator, and the controller---vperate fast enough to keep up 
with the Pxpl memories. 

2.1 C O N V E X  P O L Y G O N S  

The display of objects made up of polygons is accom- 
plished in three steps: scan conversion of the polygons, vis- 
ibility relative to previously processed polygons, and shad- 
ing. 
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2.1.1 Scan Conversion. The object of this step is to 
determine those pixels which lie inside a convex polygon. 
Initially, all Enable registers are set to 1. Each edge of 
the polygon is defined by two vertices, ri = (2:1,Yi) and 
~2 = (z2, Y2), wliich are ordered so that the polygon lies on 
the left of the directed edge vl v2. Then the equation of the 
edge is A z +  B y +  C = 0, where A = Yz - Y2, B = 2:2 - 2:1, 
and C = 2:z Y2 - 2:2Yl- Furthermore, f(2:, y) = A2: + B y  + C 
is positive if and only if (2:, y) lies on the same side of the 
edge as the polygon. The translator computes A, B, and 
C, and these coefficients are then broadcast to Pixel-planes. 
A negative f(2:, y) causes the Enable register for (2:, y) to 
be set to 0; otherwise the Enable register is unchanged. A 
pixel is inside the polygon if and only if its Enable register 
remains 1 after all edges have been broadcast. 

2.1.2 Visibi l i ty.  Once scan conversion has been per- 
formed, final visibility of each polygon is determdned by 
a comparison of z values at each pixel. The translator first 
computes the plane equation, z = Ax + B y  + C, as follows: 

S t e p  1: The plane equation in eye space has the form: 

A'  ze + B l  ye + C '  ze + 1~ = O. (1) 

The first 3 coefficients, which form the normal to the 
plane, are found by computing the cross product of the two 
vectors determined by the first three vertices of the polygon. 
Alternatively, an object space normal can be part of the 
polygon data structure and transformed appropriately to 
produce an eye space normM. Assuming that (2:o,Yo,Zo) is 
a vertex, the hst coefficient is given by: 
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F i g .  3:  L o g i c a l  o v e r v i e w  of  a 3 D  graphics system using 
Pixel-Planes image buffer memory chips. 

F i g .  4:  P i x e l - P l a n e s  3 S y s t e m .  John Poulton (left) 
and Henry Fuchs and the working Pixel-Planes 3 prototype. 
(photo by Jerry Markatos} 

I T  = - A % o  - B 'yo  - C '  zo 

S t e p  2: Using the transformation equations: 

2:¢ = ( - x  - k t ) / ( z ' r t )  , 

Y,  = C-Y  - ~ ) l ( z ' r 2 ) ,  and 

ze = - - l / z  w 

(2) 

(3) 

where r l , r :z ,kt ,k2 are constants related to the screen res- 
olution and the location of the screen origin, we can trans- 
form (1) to screen space and still retain the form: 

z / = A ' z  + B ' y  + C'  (4) 

S t e p  3: Given that n bits are reserved for the ZMIN buffer, 
and that the minimum and maximum z values z l , z 2 ,  for 
the object to be displayed are known, we can rescale the 
equation so that 0 < z < 2" - 1 by replacing z '  by: 

- (s) 

Combining this with (4) we can write z in the form 
z = A x  % B y  + C.  The visible pixels are then determined 
by using the standard Z-buffer algorithm [Sutherland 1974 l 
at each pixel simultaneously. The controller broadcasts 
the plane equation of the current polygon, z = f(x, y) = 
A2: + By + C. Each pLxel whose Enable bit is still 1 com- 
pares its f(x, y) to the value in its ZMIN buffer. The pixel 
is visible if and only if f(2:,y) < ZMIN, so pLxels with 
f(2:, y) > ZMIN set their Enable bits to 0. The controller 
rebroadcasts A, B, and C so that the still-enabled pixels 
can store their new ZMIN values. 

2.1.3 S h a d i n g .  To determine the proper color for each 
pixel, the controller broadcasts 3 sets of coefficientsi one 
for each primary color component. For fiat shading, A = 
B = 0 and C = color. A smooth shading effect simil~r 
to Gouraud shading [Gouraud 1971], created by linearly 
interpolating the colors at the vertices of the polygon, can 
also be achieved. 
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Fig. 5: The Chapel  Hill "OId Well" rendered by a 
Pixel-Planes functional simulator with input of 357 poly- 
gons. Estimated image generation time (assuming a 10Mhz 
clock) is 9 msec. 

For example, suppose the polygon has 3 vertices 
(z1,~h), (zz,y2), and (z~,ya) with red components 
RI ,R2,Rs. Geometrically, one can visualize linear inter- 
polation of the red component at (z,y) as selecting the 
third component of the point (z, y, R) that lies on the plane 
passing through (z l ,y l ,Rl) ,  (z~,y2,P~), and (z3,y3,R3) 
in zyR-space. The translator computes the equation of this 
plane as follows: 

Step 1: The vector equation 

( = , ~ )  = s ( = 2  - z l , y 2  - y l )  

+t(=~ - =,,y3 - y,) + (=~, y~) 
(o) 

Fig. 6: "Old Well" wi th  shadows (simulation). Esti- 
mated time: 13.8 Insec. 

Timing Analysis.  The time it takes to process a 
polygon depends on the number of edges and the number of 
bits needed for the representation of Az+  By+ C. Suppose 
we require an E bit representation for enabling pixels on one 
side of an edge, a D bit representation for the depth buffer, 
a C bit representation for each color component, and N bits 
for the representation of screen coordinates (usually 2 more 
than the log of the screen resolution), then scan conversion 
of an edge requires E +  A T + 3 clock cycles, and the visibility 
calculation of a polygon requires 2(D+ N + 3) clock cycles. 
Once this is determined, shading of the polygon without 
subdivision requires 3(C + N % 3) additional clock cycles, 
while 3(C+N+3)+(E+N+3) additional cycles are needed 
for each subdivision. Hence, the total time to process a 
"worst case" ~-sided polygon is: 

is solved for s and t which are written in the form: 

s = A l z  + B i y  + 01 
(7) 

t = A~z + B~y + O~ 

Step 2: The plane equation is written in the form R = 
Az + By + C, where 

A = A i ( P ~  - R i )  + A2(R3  - R i )  

B = B , ( P ~  - R , )  + B2(R3 - R~) 

0 = C i ( R ~  - I ~ )  + 0 2 ( R 3  - R , )  + S~ 

(8) 

The controller broadcasts A, B, and C, and Am+By+ 
C is stored in the RED color buffer for pixels that are still 
enabled after the scan conversion and visibility computa- 
tions. If there are more than three vertices, the transla- 
tor checks the colors R4, P~, . . .  at the remaining vertices 
n4 ~- (z4, y4), vs -- (zs ,ys) , . . . .  Only in the case that for 
some i, P~ ~ Azi + Byi + C is it necessary to subdivide 
the polygon by introducing new edges. Note that this sub.- 
division is performed only during the shading stage and is 
not required during any other phase of processing. 

n(E+ N + 3 )  + 2(D + N + 3) 

+ ( n -  3)(E+ N +3) 

+ 3(n - 2)(0 + N + 3) 

clock cycles. If we assume that E= 12, D = 20, C = 8, 
N ~- II, n = 4, and a clock period is I00 nanoseconds, a 4- 
sided polygon can be processed in 33 microseconds. Hence, 
about 30,000 such polygons can be processed per second. 
This permits real-time display of quite complex objects {see 
figure 5). 

2.2 S H A D O W S  

After the visible image has been constructed, shadows 
created by various light sources can be determined (see fig_ 
ure 6). Our approach determines shadow volumes [Crow 
1977] defined as logical intersections of half-spaces. This is 
most similar to [Brotman 1984] except that explicit calcu- 
lation of the shadow edge polygons is unnecessary in Pixel- 
planes. Briefly, the algorithm proceeds as follows: 

Step 1: Flag init ialisation. For each pixel, a Shadow 
flag is allocated from pixel memory, and both the Enable 
register and Shadow flags are set to 0. 
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S t e p  2: D e t e r m i n a t i o n  o f  p ixe l s  in s h a d o w .  For each 
polygon, the set of visible pixels that  lie in the frustum of 
the po!ygon's cast shadow are determined and the Enable 
registers for these pixels is set to 1. The logical OR of 
Shadow and Enable is then stored in Shadow. 

Step  3: D e t e r m i n a t i o n  o f  color  intens i ty  o f  shad-  
o w e d  pixe ls .  After all polygons have been processed, 
those pixels whose Shadow flag is 1 are in the shadow of 
one or more polygons. The color intensity of these pixels is 
diminished by an appropriate factor. 

The implementation of this algorithm is based on the 
parallel linear evaluation capability of Pixel-planes, to- 
gether with ZMIN value that  is stored for each plxel. The 
idea is to disable those pixels which are on the "wrong" side 
of each face of the shadow frustum. We begin by choosing 
an edge of the current polygon, and finding the plane P 
determined by this edge and the light source. We want to 
disable those plxels which are not in the same half-space 
relative to P as the current polygon (see figure 7). The 
algorithm must handle two cases. 

Case I: P does not pass through the origin ~ eye 
space. In this case we observe that if the eye and the 
current polygon are in the same half-space relative to P, 
then it suffices to disable pixels that are farther away than 
P, and if the eye and the current polygon are in different 
half-spaces relative to P, then it suffices to disable pixels 
that are closer than P. In order to accomplish this we do 
the following: 

a) The translator determines the equation of the plane P 
in the form z = f ( z , y )  = Az  + By  + C, chooses a 
vertex (~:~, Yi) of the polygon not on P, and finds the 
sign of f (x i ,  Yi)- 

b) The  coefficients A, B, and C are broadcast so that  f 
can be evaluated simultaneously at all pixels. 

c) If f (x i , y l )  is positive, all pixels whose ZMIN is less 
than ff(z, y) are disabled, and if ff(zi, Yi) is negative, all 
pixels whose gMIN is greater than f ( x ,  y) are disabled. 

Case 2: P passes t h r o u g h  the or ig in  in eye space. 
This relatively rare case is easier to process than Case I. 
We observe that P projected on the screen is an edge so it 
suffices to disable pixels which are not on the same side of 
this edge as the projected current polygon. We proceed as 
follows: 

a} The translator determines the edge equation of the in- 
tersectlon of P with the plane of the screen in the form 
Ax + By + C = O. In addition, the translator deter- 
mines the sign of f ( z ,  y) = Ax  + B y  + C at a vertex 
(xi, Yi) not on P. 

b} The coefficients A, B, and C are broadcast and those 
pixels whose f(x,y) is not the same sign as f(xi,yi) 
are disabled. 

After each edge of the polygon has been processe~l in 
this manner, the pixels that are on the same side of the 
plane of the polygon as the fight source must still be dis- 
abled. We let P be the plane of the polygon itself, and use 

After shadow post-processing of first edge of triangle. 

After shadow post-processing of second edge of triangle. 

After completing shadow post-processing of triangle. 

Result of all shadow processing. 

Fig. 7: Shadowing Algor|thm 
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either Case 1 or Case 2 above, with the one exception that 
we check the sign of f at the light source. Note that in the 
same half-space relative to P, we disable pixels for which 
Z M I N  : f ( z , y ) ,  and if they are in different half-spaces 
we do not disable pixels for which Z M I N  : .f(z, y). In 
this way, we can display either the lit or the unlit side of a 
polygon. 

T iming  Analys is .  Step 1 requires 2 clock cycles for each 
polygon. In order to process each plane of the shadow frus- 
tum of a polygon, we need (E + N + 3) cycles for the 
broadcast of A,B,  and C and 2 additional cycles for the 
resetting of the Shadow flag. After all polygons have been 
processed, 3C cycles are required to modify the color com- 
ponent. Hence, in order tc~ process P polygons, we need 
P ( ( a  + 1)(E + N + 3) + 2) + 3C + 2 clock cycles. For 
example, if E--12, N = l l ,  n=4, C=8, and a clock period 
is 100 nanoseconds, 78,000 polygons can be processed per 
second. 

]Fig. 9: T r i m e t h o p r l m  (simulation). 
Estimated time: 1.3 msec. 

Presorted data. 

2.3 C L I P P I N G  

Clipping of polygons by boundary planes, a procedure 
usually performed in the geometry pipeline, is not neces- 
sary when displaying an image in Pixel-planes. Time can 
be saved by performing only a bounding box type of triv- 
ial rejection/acceptance. Edges which lie wholly or par- 
tially off the screen will still disable the appropriate pixels 
during scan conversion. Even hither and yon clipping can 
be achieved by passing (at most) the two edges of the in- 
tersection of the polygon plane with the hither and yon 
planes, and dis~bling pixels which are on the appropriate 
side of these edges. The shadow volumes must be similarly 
clipped, by the addition of the shadow planes determined 
by the light source and the line of intersection of the plane 
of the polygon and each of the clipping planes (see figure 8). 

2.4 S P H E R E S  

Fred Brooks suggested to us a method for drawing 
filled circles in Pixel-planes. We have extended that method 
to spheres with Z-buffer and an arbitrary light source. Since 
Pixel-planes is essentially a linear machine, it might seem 
difficult to display objects rapidly which are defined via 
quadratic expressions. However, by using an algorithm 
that, in effect, treats a circle as a polygon with one edge, 
and by using some appropriate approximations, we can 
overcome these difficulties (see figures 9,10). Just as in 
polygon display, we proceed through a scan conversion, a 
visibility, and a shading phase [Max 1979; Pique 1983]. 

]Fig. 8: ~Old Well z w i t h  shadows  cut by hither plane 
within the Pixel-Planes memories (simulation). 177 poly- 
gons after trivial rejection. Estimated time: 8.8 msec. 

]Fig. 10: ' I t - ime thopr im wi th  Z-buffer  (simulation). 
Unsorted data. Estimated time: 1.7 msec. 
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S t e p  1: S c a n  Conve r s i on .  Note that the equation of a 
circle with radius r and center C a, b) can be written in the 
form: 

u(z ,  v)  = A. + B y  + C - q = o (9) 

where A = 2a, B = 2b, C = r 2 - a 2 - b  2, and Q = z 2 + y  2. A 
section of the memory at each pixel, called the Q-buffer, is 
allocated for the storage of z 2 + ya, and is loaded with this 
value a t  system initialization time. The translator com- 
putes A, B, and C and f ( z ,  y) = A z  + B y  + C is evaluated 
at each pixel. The value in the Q-buffer is subtracted from 
f ( z ,  y) and those plxels for which f (z ,  y) - Q is negative 
are disabled. 

S t e p  2: Visibi l i ty.  If the eye coordinate system is chosen 
so that the z > 0 half-space contains the sphere, then the 
visible hemisphere is the set of points ( z , y , z )  satisfying 

= * - V :  - ( ~  - ~ ) ~  - ( v  - b)~ ( l O )  

where r is the radius and (a,b,c)  is the center of the sphere. 
We can approximate this by 

z = c - ( r  2 - i x - a) 2 - ( y  - b ) 2 ) / r  (11)  

which in effect approximates the hemisphere with a 
paraboloid. Using a method similar to that described in 
Step 1, the expression in (11) can be evaluated, compared 
with the existing contents of the ZMIN buffer, and then 
stored if necessary, in the ZMIN buffer. Visibility is then 
determined in the same way as it is for polygon display. 

S t e p  3: S h a d i n g  due  t o  l ight  sources  a t  infinity.  
The unit outward normal at the visible point ( , ,  y, z) on 
the sphere with center C a, b, c) and radius r is 

: :  = ( 1 / ~ ) ( . -  a, v - ~, z -  c) 

( l / r )  ( z  - a, y - b, - x / r  ~ - ( z  - a)  2 - (y  - b) 2 )  E 

(12) 

Let L = (li, 1~,/~) be the unit direction of an arbitrary 
light source. Then the point of maximum highlight on the 
sphere is (rli  + a , r h + b ,  r la+c) .  Denote by CM/Nthe  am- 
bient color value and by C M A X  the maximum color value 
for a given color component. Then for diffuse shading of 
the sphere, the color value at (z, y) is 

C o l o r ( z ,  y) = 

C M I N  + ( C M A X  - C M I N ) ( L .  N ) ,  
C M I N ,  

(13) 

i f L . N _ > 0 ;  
i fL-2Y < 0 .  

Using the parabolic approximation of the hemisphere 
as we did in Step 2, we can approximate L .  N by: 

L .  N ~ (ltCx - a) + 12(y - b ) ) / r  

- 13(r 2 - ( z  - a )  ~ - ( v  - b P ) l :  
(14) 

Then the color at a given pixel can be written in the form: 

Color(z ,  y) = K ( A z  + B y  + C - Q) + C M I N  (15) 

where 

K = - (  C M A X  - C M I N ) I a / r  a, 

A = --ll r/13 + 2a, 

B = -12r]13 + 2b, 

C = ltra]13 + Grb/13 + r 2 - a 2 -- b 2 

(16)  

The translator computes A, B, C, and K. Multiplication 
by K is accomplished by first approximating K by the first 
n non-zero bits of its binary representation: 

trg 

i = 1  

Then for each j in the sum, the controller broadcasts 2YA, 
21B, 2iC. Q is shifted by j bits and subtracted from the 
linear expression determined by the three broadcast coeffi- 
cients. The resultant value: 

2Y(Az + B y  + C - Q) ( 1 8 )  

is added to the contents of the appropriate color buffer, 
COLBUF. After all the terms in the sum have been pro- 
cessed, we set C O L B U F  to 0 if C O L B U F  < 0. The con- 
stant value C M I N  is broadcast and added to C O L B U F .  

T i m i n g  Ana lys i s .  The initial loading o f  the Q-buffer re- 
quires 37(E + N + 3) clock cycles. Scan conversion and 
visibility are the same as in polygon processing and take 
(E  + N + 3) and 2(D + N + 3) cycles, respectively. Shad- 
ing requires 4(C + N + 3) cycles for each term in the  sum 
used to approximate K,  and the broadcast of C M I N  re- 
quires 20 cycles. Hence, if k is the number of terms in the 
approximation of K, it takes 

37(E + N + 3) 

+ S ( ( E +  N + 3 )  + 2(D + N + 3) 

+ 4k(C + N + 3) + 20) 

clock cycles to process S spheres. For example, if k = 
3, E = 20, N = 11, D = 20, C = 8, then 34,000 spheres 
can be processed per second. 

1 1 7  



S I G G R A P H '85 

Z.G A D A P T I V E  H I S T O G R A M  E Q U A L I Z A T I O N  

In computed tomographic (CT) scan displays, CT 
numbers must be assigned (grey) intensity levels so that 
the viewer can perceive appropriate degrees of contrast and 
detail. Because the range of CT numbers is, in general, 
greater than the range of intensity levels, some compression 
has to take place. This makes it difficult to control the con- 
trast in both light and dark areas. The standard method, 
selection of windows in the CT range, results in intensity 
discontinuities and loss of information. AHE [Pizer 1984] is 
an assignment scheme that makes use of regional frequency 
distributions of image intensities. The processed image has 
high contrast everywhere and the intensities vary smoothly 
(see figures 11,12). The method proceeds as follows. For 
each point (z, y) in the image: 

S t e p  1: A %ontextual" region centered at (z, y) is chosen, 
and the frequency histogram of CT numbers in this region 
is computed. Typically, this region is a circle, or a square 
with edges parallel to the screen boundaries. 

Step 2: In this histogram, the percentile rank, r, of the 
CT number at (z, y) is determined. 

]Fig. 11: Or ig ina l  C T  scan  image .  

Fig.  12: C T  scan image  a f t e r  A H E  e n h a n c e m e n t  
(simulation). Estimated time for this 256x256 pixel image: 
1 second. 

Step 3: This rank is used to compute an intensity level, i, 
in some grey scale ranging between , say, it and 12. Specif- 
ically, i = i l  + r ( i 2  - i l  ). 

This method requires the computation of a CT dis- 
tribution at every pixel in the image, and so it is far too 
inefficient for most uses, requiring approximately 5 minutes 
to compute on a 256 × 256 image on a VAX 11/780. A more 
efficient alternative, requiring about 30 seconds for a 256 x 
256 image, is ko compute the distribution only at a small 
set of sample points and use a linear interpolation scheme 
to approximate the intensity levels at the other points. 

An efficient alternative, which finds the exact value at 
each pixel, can be implemented in Pixel planes. The idea 
is to make use of the parallel processing capability to con- 
struct the rank incrementally at each pixel simultaneously. 

S t e p  1: The CT numbers are loaded into the pixel mem- 
ories, and a counter at each pixel is initialized. 

S t ep  2: For each pixel (x0, Yo): 

a) The coefficients necessary to disable those pixels that 
are outside the contextual region centered at (zo, !to) 
are broadcast. For example, if the region is a polygon 
or a circle, this is equivalent to the scan conversion 
step discussed earlier. 

b) The CT number, N(zo,yo),  is broadcast and com- 
pared, in parallel, to the CT number, N(z,  y) which 
is stored at each enabled pixel (z,y).  If N(z,  y) > 
N(zo, Yo), the counter at (z, y) is incremented. 

S t ep  3: After all pixels have been processed, the counter at 
each pixel contains the rank of the pixel CT number within 
its own contextual region. If both the number of pixels in 
the contextual region and the length of the grey scale are 
powers of 2, this rank can easily be scaled to an intensity 
by shifting bits. 

T i m i n g  Analys is .  It requires 25 cycles to load each pixel 
with its CT value and initialize its counter. It requires 
2(E+N+3) cycles to disable pixels outside each contextual 
region and 40 cycles to broadcast the CT numbers and 
increment the counters. On a 512 × 512 display with N = 
11 and E = 12, we have estimated the time required to 
perform AHE is about 4 seconds. 

3. A L G O R I T H M S  U N D E R  D E V E L O P M E N T  

This section describes algorithms still under develop- 
ment. Only functional simulations (rather than detailed 
behavioral ones) have been executed and the timing esti- 
mates are thus less precise. In particular, we are still ex- 
ploring speedups for multiplication and division in the pixel 
processors. The timing estimates given in the figures are 
conserwtive (we hope), but still assume a 10MHz clock. 

3.1 T E X T U R E  M A P P I N G  

One way of producing a texture on a polygon is to 
compute a texture plane address (u, v) associated to each 
pixel (~, y) and then look up the appropriate color value in 
a texture table indexed by u and v. The Pixel planes linear 
evaluator can be used to determine, in parallel, this texture 
plane address. 
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To see how this is done, we proceed through some 
mathematical computations. In order to orient a texture 
on a polygon in eye space we first choose a_point P0 on the 
polygon and 2 orthonormal vectors S and T in the plane of 
the polygon. Then the texture address (u, v) associated to 
the point X on tl/e polygon is given by: 

. = s .  (x - P o ) ,  
( 1 9 )  

v = T - ( X  - P0)- 

If S = ( s , , s2 , s3) ,  T = ( t t , t 2 , t s ) ,  P = (Pi,P2,P3), 
and X = (zc, y,,zc), equations (19) can be rewritten in 
coordinate form as: 

3 .2  T R A N S P A R E N C Y  

Transparency effects can be achieved by disabling pat- 
terns of pixels prior to polygon processing. For example, 
one could broadcast the coefficients I, I, 0 in order to eval- 
uate z + y, and disable those pixels for which z + y is even 
(see figure 14). 

( z 0 )  

Substituting the equations (3), which relate screen 
space to eye space, into (20) and using the plane equa- 
tion Az, + Bye + Cze + D = 0, we can write ~ and v in the 
form: 

u = (A,z+ BIy+ C,)/z 

v = (A2z + B2y + c2)/z (21) 

The translator computes A,, B,, and Cl, and the con- 
troller broadcasts them to P]xel-planes. The division of 

A , z  + B ly  + C1 by s (which is already stored in ZMIN) is 
done in parallel at the pixel level, and the result is stored 
in a U-buffer. The V-buffer value is found in a similiar 
manner. A texture table is then passed, entry by entry, to 
Pixel-planes, and each pixel selects a texture value corre- 
sponding to its stored (u, v) value. For periodic patterns 
(checkerboards, bricks, etc.) it is only necessary to transmit 
a small table defining the unit pattern (see figure 13). 

F i g .  14: SOld Well s wi th  t r an spa ren t  co lumns  (sim- 
ulation). 64 transparent polygons out of a total of 357. 
Estimated time: 13.8 msec. 

Transparency effects can also be produced with sub- 
pixel mask successive refinement, where transparent poly- 
gons are ignored on particular passes over the database. For 
example, transparent polygons can be ignored every other 
pass or every third pass, thereby yielding different degrees 
of transparency. 

3.3 A N T I - A L I A S I N G  

We have been developing several anti-aliasing tech- 
niques for polygons. We have come to believe that the 
essential difference between various approaches is whether 
the visibility at the subpixel level is performed before or 
after the anti-aliasing computations. Our first approach, 
which aims at producing an image rapidly and ~improving" 
the image with each screen refresh, makes no assumptions 
about visibility determination before the Pxpl memories. 
The second approach, which takes more time, but produces 
a high quality anti-aliased image initially, assumes visibility 
ordering has already been done. 

Fig .  13: B r i c k e d  SOld Well ~ (simulation). 66 textured 
polygons out of a total of 357. Estimated time: 14.3 msec. 

M e t h o d  1: Successive Ref inement .  Each pixel (z, y), is 
subdivided into a grid of subpixels so that each subpixel has 
an address of the form (z+zoffset, y+yoffset). We generate 
the image several times (16, perhaps), each time offsetting 
the image slightly by some (zoffset, yoffset) in such a way 
that the sample points within a pixel's area form a reason- 
able distribution. (The shift is easily achieved by adding 
A-  zoffset + B - yoHset to the C coefficient of each broad- 
cast triple.) Two sets of color buffers are maintained, one 
to store the color generated by the IMest image generation 
offset and the other to store a running average as we move 
around the subpixel grid. 
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The extra cost of the algorithm over standard sub- 
plxel asuper-samplin~ is the color blending between each 
pass over the graphic database. This is less than 1000 
clock cycles (I00 microseconds) per pass. This particular 
super-sampling successive refinement technique, however, 
supports dynamically interactive applications. The initial 
images appear similar to common anti-aliased images, and 
significant refinement is produced within a few additional 
sampling passes. 

Method 2: Subpl.xel Coverage Mask. The polygons 
are sorted from front to back, perhaps by first transforming 
the polygon list into a BSP tree [Fuchs 1983]. Each pixel 
is subdivided into a number of subpixels and one bit of the 
pixel memory is reserved for each such subpixel. During the 
scan conversion step of polygon processing, the coefficients 
defining each edge are normalized to yield the distance from 
the center of the pixel to the edge. The coverage mask and 
area contribution of an edge can be passed from a precom- 
puted table [Carpenter 1984] in the controller indexed by 
this distance and A, the coefficient of z. (Note that only 
one row of the table needs to be passed for any edge.) The 
number of ones in the mask is used to compute a color 
contribution which is added to the color buffers. When 
the number of ones in the coverage mask stored at each 
pixel reaches the total number of subpixels, the pixel is dis- 
abled. Since polygons are processed in front to back order, 
"leakage" of color from hidden polygons is avoided. This 
approach is somewhat similar to the one used in the Evans 
and Sutherland CT-5 real*time image generation system 
often used for flight training [Schumacker 1980]. 

4. C O N C L U S I O N S  

We have highlighted in this paper the aspects of Pixel- 
planes that give it computing power and efficiency--the 
parallel linear expression evaluator embodied in the tree of 
one-bit adders. We have illustrated this capability by de- 
scribing a variety of algorithms (shadows, spheres, image 
enhancement) that appear to run efficiently in this ma- 
chine. Pictures from the Pixel-planes simulators indicate 
that hlgh-quallty images can be generated rapidly enough 
for dynamic, often real-time, interaction. The images from 
the working small prototype (see figure 4) are simpler than 
the images from the simulators due to the small number of 
custom chips presently available. We expect Pixel-planes 
4, with considerably increased speed and resolution, to 
start working by June 1985. We expect that a full-scale 
(500-1000 line) display system can be built with less than 
500 Pxpl memory chips in currently available (1.5micron 
CMOS) technology. We also hope that the algorithm devel- 
opments, especially those based on simplifying algorithms 
into linear form, will be useful for those developing graphics 
algorithms on other parallel machines. 
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