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Abstract 

A number of techniques are presented for making conic splines 
more effective for 2D computer graphics. We give a brief account 
of the theory of conic splines oriented to computer graphics. We 
make Pitteway's algorithm exact, and repair an "al ias ing" problem 
that has plagued the algorithm since its introduction in 1967. The 
curvature-matching problem for conics is solved by way of a sim- 
ple formula for curvature at an endpoint which permits curvature to 
be matched exactly at non-inflectior points and more closely than 
was previously realized possible at poims of inflection. A formula 
for minimum-curvature-variation of conic splines is given. These 
techniques provide additional support for Pavlidis' position [6] that 
conics can often be very effective as splines. 

This work was motivated by, and provides much of the foundation 
for, an implementation of conic splines at Sun Microsystems as 
part of Sun's Pixrect graphics package, the lowest layer of Sun's 
graphics support. 

1. Introduction 

1.1, Rationale for Conic Splines 

It may be of interest to understand how we arrived at both the 
techniques and the conclusions of this paper. We set out a year 
ago to develop an outline font system. We eonsidered many fami- 
lies of curves [5,11], but rejected most of these as either computa- 
tionally impractical or unsuited for splines. It appeared that the 
most suitable curve technology from a user standpoint was cubic 
splines. We soon found however that incremental algorithms for 
plotting (e.g. Pitteway's algorithm for conics [7]) were 
significantly faster than the recursive subdivision algorithms for 
parametric curves (e.g. the various algorithms discussed by Catmull 
[2]). The former had excellent velocity control (constant relation 
between number of pixels plotted and amount of work done), no 
context switching, and a trivial stopping condition. The latter had 
simple implementations, both in hardware and high level program- 
ming languages, along with good ways to organize the arithmetic. 
However they had poor velocity control (even with an optimal 
stopping condition for the recursion one can only come to within at 
best a factor of two of the ideal velocity), expensive context 
switching (for every single step there is a context switch entailing 
much pushing and popping of data on a stack, aggravated by trying 
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to program cleanly by using recursion), and an awkward stopping 
condition (there is a complex tradeoff between cost of stopping 
condition and quality of velocity control). 

It was natural therefore to want to combine the user convenience of 
splines with the performance of incremental methods. Since 
splines were defined for parametric curves whereas incremental 
plotting was for algebraic curves it was clear that some combina- 
tion of these classes was called for. 

As degree increases the complexity of both exact implicitization 
and of exact and antialiased Bresenlaam-Pitteway style tracking 
increases very rapidly. We feel particularly intimidated by the 
prospect of duplicating the performance-oriented techniques of this 
paper for rational or even polynomial cubics.) Hence one does not 
casually increase degree from two to three without good reason. 

At higher degrees higher orders of continuity become possible. 
Two important properties of polynomial cubics are the possibility 
of C~-continuity between adjoining cubics (as easily achieved 
using-B-splines), and zero curvature at inflection points. C 3- 
continuity is however only possible between adjoining cubics triw- 
ally, namely when the two cubics are adjoining segments of a com- 
mon cubic. 

We developed an easy method of achieving C2-continuity between 
conics. We also worked out how to approximate very closely zero 
curvature at inflection points. Hence for degree of continuity 
cubics and conics appear to have essentially the same capabilities. 

The one thing cubics have that conics do not is an additional 
degree of freedom. Six degrees of  freedom are encompassed in the 
basic endpoint-and-tangent conditions. For conics the seventh 
degree of freedom is sharpness or bulge. Cubics have bulge along 
with an additional degree of freedom that might be called skew, 
allowing their interior to be pushed in a direction parallel to the 
line between the endpoints, one way to get inflection points in 
cubics. (The other is that cubics can bulge further than conics, 
producing first inflection poims, then a cusp, then a loop.) It 
appeared to us that on those occasions calling for this control one 
could get its effect quite satisfactorily vi~ a single subdivision, so 
its loss was not an unmitigated disaster. More pragmatically, we 
doubted whether many users would be comfortable visualizing 
skew as a concept independent of the endpoint tangents; even 
bulge is somewhat obscure in that regard. 

These considerations made rational quadratics look reasonable simi- 
lar to polynomial cubits in practice. The very much greater com- 
plexity of dealing with implicit cubics for tracking led us to adopt 
conics as a useful curve form for high-performance graphics. We 
are not alone in advocating conics as a useful curve form; Pavlidis 
[6] is also an enthusiastic proponent of the virtues of conics. 
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1.2. Conics and Cubies in Graphics Standards 
Recent efforts to integrate our conic package into Sun's  standard 
graphics packages have led us to ponder the proper way to intro- 
duce curves into graphics standards. We feel sufficiently strongly 
about our conclusions as to warrant including a brief summary of  
them in this forum. 

Curves are not provided at all in such graphics standards as CORE 
or GKS, other than as unspecified nonstandard extensions. CGI 
(formerly VDI) has circles and ellipses, but n o  splines of  any type 
(polynomial or rational) or degree (beyond 1). Furthermore those 
circles and ellipses can be used as region boundaries only in the 
most parochial ways, namely as pies (radius-arc-radius) and chords 
(chord-arc), rather than the far more general and useful approach of  
generalizing polygons to piecewise-elliptical region boundaries. 
Not one of  these standards has useful compound region boundaries 
for curves of  degree higher than one. 

Without some nonlinear spline capability all o f  these standards are 
very difficult to use for curve-oriented work o f  the kind arising in 
say outline font design. 

The reasons given above for conic splines, together with the obser- 
vation that CGI has conics (ellipses) but not cubies, suggests that it 
is not unreasonable to begin the introduction of  splines to such 
standards with conic splines. We therefore advocate extending the 
existing line capabilities o f  graphics standards to include conic 
splines. This would constitute a simply described yet very useful 
extension to those standards. 

Given the reluctance of  some of  the graphics standardizing bodies 
to introduce even quadratic curves into graphics standards, it would 
seem appropriate to increase curve degree in graphics reasonably 
cautiously. To go from linear to cubic curves in one step is akin to 
going from crawling to running without learning to walk. 

Before turning our attention to the theory of  conic splines let us 
mention some of  the more notable works on conics relevant to 
computer graphics. For general information on conics an excellent 
text is Salmon's  classic [13]. A scholarly account o f  both the sub- 
ject and its many contributors is given by Coolidge [ 4]. A 
comprehensive though at times dense text on projective geometry is 
Todd [10]; it is the source of  most o f  our ideas about conics. Gen- 
eral implicitization methods, based on classical techniques, for both 
polynomial and rational curves can be found in Sederberg's  thesis 
[8]; our methods below are more narrowly focused on conics per 
se, with an emphasis on performance. An early but excellent work 
on coping with rational quadratic and cubic curves in the context o f  
computational geometry is Forrest 's thesis [3]. 

2. Principles of Conic Splines 

A conic spline is a conic defined by three points A,B,C in the view 
plane. It passes through A and C and has tangents AB and CB 
respectively at those points. The family of  conics satisfying these 
conditions, which we call the ABC family, is illustrated in Figure 1. 

/k C 

Figure  1. The family of  ABC conics 

This family may be indexed in a variety of  ways. Some authors 
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use the scalar ratio W D / W B  where W is the midpoint o f  A C  and D 
is the intersection of  the conic with WB. Another method is simply 
to provide D directly, or for that matter to give any point on the 
conic besides A and C. We have found the scalar S, for sharp- 
ness, to be useful. S measures the departure of  the conic from a 
parabola. For S = 1 we have the parabola itself, S < 1 (the flatter 
curves) yields ellipses, S > 1 (the sharper curves) hyperbolas. 
Pavlidis [6] uses a scalar K, representable in terms of  our S as 
K=I/4S 2. Another parameter we have found useful is what we call 
variation, which measures the departure o f  the conic from the 
ellipse of  minimum eccentricity; variation is directly proportional to 
sharpness, but with the constant of  proportionality a function o f  the 
shape o f  triangle. Some authors have proposed to use eccentricity 
itself as the index; unfortunately this index is ambiguous since 
eccentricity attains a minimum for some positive S. 

The most useful property of  conic splines for applying Pit teway's  
algorithm is its implicit or algebraic form. If  we take the vertices 
of  the triangle as our basis, with corresponding coordinate variables 
a,b,c, then the equation is (as in (3.13) of  [6]) 

b 2 -  4S2ac = 0 (2.1) 

This is actually the equation not just of  the conic but o f  the whole 
surface consisting of  the lines of  sight from the observer O (oblig- 
ingly seated at the origin) to points on the conic. This surface is a 
c o n e .  

Since ABC will not in general be the coordinate system in which 
the rendering is to be done, a change of  basis from ABC to XYZ 
is needed. This is accomplished by making the following substitu- 
tions for a,b,c (cf. (3.10) of  [6]). 

~x x B XcI IXA x XcI IXA x n x I 
I I I I I I 

a = ~  YB Ycl b = LYA Y YC c = ~YA YB Yl (2.2) 
/ I I I I 
Iz z B Zc[ Iz A z ZCI Iz A z B z[ 

Each of  these substitutions is a linear expression in x,y,z, whence 
making those substitutions in equation (2.1) turns it into a quadratic 
equation in x,y,z, which we express as 

txx 2 + 2~xy + Ty2+2qSxz + 2eyz + ~z 2 = 0. (2.3) 

Furthermore if  the XYZ coordinates o f  A,B,C are integers and S 2 is 
a rational then the coefficients in (2.3) will all be integers, with the 
coefficients o f  the " m i x e d "  terms xy,yz,zx being even, whence the 
2's.  Since A,B,C all lie on the view plane z = 1, we have 
ZA = 2B = 2C = 1. 

Finally we intersect the cone with the view plane z = 1 simply by 
setting z to 1 in the equation for the cone to yield 

cxx 2 + 2~xy + ~y2 + 28x + 2ey + ~ = 0. (2.4) 

This could have been done earlier in (2.2) just by having the whole 
bottom row be all l ' s ;  leaving z in until the end shows that the l ' s  
arise through intersecting the view plane z = 1 with the cone. 

The practically-minded reader may now skip to the next section. 
The purpose of  the remainder of  this section is to provide addi- 
tional insight into conic splines. 

First let us derive (2.1) directly from the definition of  a conic as 
the intersectio~ o f  a cone with a plane. Since this is a 3D con- 
struction we do this in a 3D vector space with origin the point O. 
The view plane resides in this space and contains A,B,C which 
therefore uniquely determine the view plane (unless A,B,C are col- 
linear), and may also be taken as a basis for the space (unless 
O,A,B,C are coplanar). 

So let U = (A-C)/2 ,  V = SB, W = (A+C)/2 (which may be seen to 
form a basis provided ABC form a basis and S is nonzero) with 
associated coordinates u,v,w and associated substitutions u = a-c ,  

2 2 2 v = b/S, and w = a+c. The  surface u +v = w is evidently a circu- 
lar cone (with respect to the U V W  basis) containing A and C (the 



SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985 

points (1,0,1) and (-1,0,1)) and having OAV and OCV, attd hence 
OAB and OCB, as tangent planes at A and C respectively. We 
then derive (2.1) by making the above substitutions for u,v,w in 
this equation. This is nicely illustrated by Figure 2, which also 
shows two other important points D and E at W:t:V (note that A 
and C are at W±U). 

Figure 2. The AVC cone, AVC parabola, and ABC conic 

Substitution (2.2) may be derived in terms of areal coordinates. A 
closely related notion is that of barycentric coordinates in which a 
point P may be specified on a plane by giving its coordinates as a 
weighted sum P = aA+bB+cC of three points A,B,C in the plane 
with a+b+c = I (normalized weights). The concept of areal coor- 
dinates is the idea that the coordinates a,b,c may be specified as 
the areas of the triangles PBC, PCA, and PAB respectively, or to fit 
(2.2), twice these areas. Areal coordinates are related to barycen- 
tric coordinates by a common ratio amounting to twice the area of 
the ABC triangle, given by 

FCA xB xcl 

IlYA YB YC (2.5) 
I1 1 11 

Substituting P (denoted by omitting the subscript) for each of A, B, 
or C in this determinant, yields the determinant for the correspond- 
ing coordinate a, b, or c. The resulting weights are not normal- 
ized. They could be normalized by dividing by twice the area of 
ABC, but since (2.1) is homogeneous this is unnecessary. Most 
importantly, in the unnormalized form imeger XYZ coordinates of 
ABC yield integer coefficients in (2.3), 

When z 's  are used in place of l ' s  these areal coordinates become 
volumetric coordinates for a point moving in all 3 dimensions, the 
volumes being those of tetrahedra having O as the additional vertex 
(besides the three appearing in the determinant). 

(Our original SIGGRAPH submission derived the equivalent of 
(2.2) by dropping the common denominator (twice the area of 
ABC) from Crarner's rule as used to obtain the transformation 
from XYZ coordinates to ABC coordinates as the inverse of the 
ABC-to-XYZ tranformation, which is in effect what one has when 
given the XYZ coordinates of A,B,C arranged as a matrix. A 
pointer from T. Pavlidis, one of the referees, to the determinant 
form of his equation 3.10 of [6] converted us from Cramer's rule 
to the formally equivalent but more appealing account of this in 
terms of areal coordinates.) 

Parametr ic  Representat ions 

A parametric representation of a curve is an expression for a point 
in terms of an independent parameter t. We easily obtain a 
parametric representation of a conic from a parametric representa- 
tion of a point (x,y,z) on the cone, via the standard projection 
(x,y,z) ~ (xlz,y/z). This is fortunate since parametric representa- 
tions of the cone are simpler than of the conic, due to the 
projection's being omitted. This constitutes a major motivation for 
applying projective geometry and homogeneous coordinates to con- 
ics. 

There are several worthwhile parametric representations of the 
cone. They are all most easily introduced via UVW coordinates. 
First, u and v themselves immediatelyr_~_Lo~ide a fine pair of 
independent parameters, making w = ±~lu'+v ~ the one dependent 
variable. The cone is then the parametrically defined surface 
u U + v V + ~ W .  The points A,C,D,E on the cone are given by 
the respective parameter values (1,0), (-1,0), (0,1), and (0,-1). 
This parametrization is readily transformed into other coordinate 
systems such as ABC and XYZ by making the appropriate substi- 
tutions for UVW in uU+vV+~u2+v2W, e.g. U = ( A - C ) / 2 ,  
V = SB, W = (A+C)/2 to get to ABC coordinates. 

Another parametrization makes u and v dependent on polar coordi- 
nates r and 0 as u = rcos(0), v = rsin(0), yielding the form 
rcos(O)U+rsin(O)V+rW for the cone, with A,C,D,E all at r = 1 and 
having 0 respectively 0, ~, ~d2, and 3~2.  The substitutions for 
UVW to transform this parametrization into other coordinates are 
as before. This parametrization is useful in relating conic splines 
to uniform motion around the circle from which the conic spline 
has been projected. It replaces the square root in the uv parametri- 
zation by trig functions, if  that is an advantage. 

The parametrization that is most pop.ular for splines is the st 
parametrization, obtainable via sq-it = "  u g l y .  Squaring both sides 
yields a = s2-t ~, v = 2st, so w = sZ+t 2. While this parametric form 
of the conic is not particularly attractive in UVW coordinates, 
transforming 2 it to ABC coordinates yields the very appealing 
sZA+2stSB+t C, that is, a = s 2, b = 2Sst, c = f .  Observe that 
a+b/S+c = (s+t) ~. The AVC plane is a+b/S+c = 1, whence it may 
also be specified as s+t = ±1. If we therefore substitute 1- t  for s 

2 2 in the cone we obtain ( l - t )  A+2(I -0 tSB+t  C, immediately recog- 
nizable as the Bezier parabola with vertices A,SB,C. Other con- 
stant values of s+t yield planes parallel to this, with s+t = 0 yield- 
ing the plane tangem to the cone at E. 

2.1. Tangent  Planes  

One application of the st parametric form is to tangent planes to 
the cone. The partial derivatives of the parametric form of the 
cone s2A+2stSB+t2C with respect to s and t are 2sA+2StB and 
2SsB+2tC respectively. The plane tangent to the cone at (s,0 is 
then the plane containing the three points O, sA+StB and SsB+tC, 
the 2 's  being of no consequence. 

Tangent planes to the cone provide a straightforward way of 
finding tangents to the conic. Suppose we wish to locate the two 
points on a conic having a given slope. Let P be any point other 
than 0 on a line through O, parallel to the view surface, and hav- 
ing the given slope. Then the intersection of the view surface, the 
cone, and one of the two planes tangent to the cone and containing 
P, will be one of the two points where the conic has that slope. 

If A,B,C,P are all represented in XYZ coordinates, we may 
express the coplanarity of the three points sA+StB, SsB+tC, and P 
as the vanishing of the determinant whose columns are the XYZ 
coordinates of those three points. 

~xp sxA+tSx B sSxn+tXc[ 
I I 
ItYP sYA +tSys sSys+tYc 

lze SZA+tSz B sSzB+tzcI 

(2.6) 

The determinant reduces to a homogeneous quadratic in s and t, 
whose roots constitute the two lines of tangency in the cone. The 
two points of tangeney on the conic may then be obtained by set- 
ting s+t = 1. 

For the points of horizontal tangeney, P = X-- (1 ,0 ,0)  in XYZ 
coordinates. In this case the determinant reduces to 
S(yA--yB)s2+(yA--Yc)St+S(ya--yc)t 2. For vertical tangents use x 
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coordinates in place of y; for any other angle take the appropriate 
linear combination of these two forms for horizontal and vertical 
tangents. 

2.2. Conic Determined by Additional Points 

A common problem is to find the sharpness of the ABC conic con- 
taining an additional point F, with A,B,C,F all lying in the view 
plane. The solution is to substitute the XY coordinates of F for x 
and y in (2.4) and solve the resulting linear equation in S. 

A related problem is to find an implicit form for the conic contain- 
ing five distinct points A,B,C,D,E. Again there is an immediate 
solution: 

2 2 x xy y x y 1 

lx,,~ XAYA Y~. XA YA 1 

Ix~ 11 = 0 
xcYc Y~ Xc Yc 

~ XDYD Y~ XD YD I 

12 2 I 
XE xEYE YE xE YE 1 

(2.7) 

The determinant is a quadratic in x and y, so the equation is that of 
a conic. When (x,y)= A the first two rows are identical, so the 
determinant vanishes, so A is a solution. Similarly B,C,D,E are 
solutions. Hence the conic defined by this equation contains those 
five points. 

When the five points are all lattice points the resulting equation 
will have integer coefficients, which may be computed exactly 
using only addition and multiplication. Hence we have a method 
of computing exactly an implicit form of the desired conic, as well 
as a short proof that any conic containing five distinct lattice points 
has an implicit form with integer coefficients. 

This method is simple to implement, but is not particularly fast, 
since it involves computing six 5:,<5 determinants, a size better han- 
dled by triangulation than by. brute force. Furthermore the magni- 

• 2 2 tudes of the coefficients of x ,  xy, and y grow as the sixth power 
of the magnitudes of the coordinates, those of x and y the seventh 
power, and the constant the eighth power. Hence to capitalize on 
the full precision of the method requires multiple precision arith- 
metic for all but the smallest conics. In practice 32-bit floating 
point, i.e. shedding precision at the low end, should provide a 
satisfactorily accurate approximation to the desired conic. 

2.3. Conversion to Normal  Form 

It will be noticed that having A and C on the plane plays no 
significant role. Any parabola projects to a conic whether or not 
its endpoints coincide with those of the conic. Having A and C on 
the plane merely constitutes a normal form representation (though 
one that simplifies some calculations later). 

On occasion we encounter points not in normal form, most often as 
the result of subdividing a conic by subdividing its underlying par- 
abola. We then need to restore them to normal form 

To put three arbitrary points A,B,C into normal form, first rescale 
the space by replacing all three points A,B,C by pA,pB,pC where 
p = 1/-XlzAz o to drive zAz c to 1. Then multiply A by z c and divide 
C by z c to yield the desired normal form. It is readily checked 
that neither operation on these points alters the surface defined by 
b2--4ac = 0 in the corresponding bases. 

Note that the only impact of these two operations on the ABC axes 

1 5 4  

has been to scale them; their points of intersection with z=l remain 
unchanged. 

We may now easily apply this to the problem of subdividing the 
conic. Subdivide the corresponding Bezier parabola 
(1-t)2A+2(1-OtSB+t2C in the usual way. This yields two parabo- 
las. These may each be projected back to two halves of our conic 
by the above conversion to normal form. 

3. Curvature 

We distinguish two curvature issues, external and internal. Exter- 
nal curvature deals with the curvature at endpoints. It affects cur- 
vature matching between curves. Internal curvature deals with cur- 
vature along a single conic. It affects the amount by which curva- 
ture varies around the conic. 

3.1. External (Endpoint) Curvature 

It is often important to be able to match up curve segments not 
only in slope but in curvature. For cubics and up, B-splines make 
this very easy - curvature matching is obtained automatically as a 
byproduct of the representation. This method can be seen to be 
generalizable to parametric rational curves if we regard both the 
curves and their control points as the perspective projection of 
polynomial B-sptines. 

This method does not start working until degree three since parabo- 
las (polynomial quadratics) cannot be curvature-matched, in the fol- 
lowing sense. Given a sequence of n+l  points with slopes 
specified at those points, there does not in general exist a 
corresponding sequence of n parabolas (parametric quadratics) con- 
necting those points and having the specified slopes there, such that 
curvature varies continuously around the curve (C2-continuity). In 
fact these constraints uniquely determine those parabolas, making 
this limitation obvious. 

It follows that the approach of projecting a C2-continuous 
polynomial curve to yield a C2-continuous rational curve fails for 
quadratics because of the unavailability of appropriate polynomial 
curves to project. Hence piecewise-conic curves cannot be made 
C2-continuous by this method. 

Nevertheless Cg-continuity of piecewise-conic curves, with 
specified locatioff and slope of junctions, can always be achieved 
by adjusting only sharpness. As the sharpness S of a conic goes 
from zero to infinity the curvature at both endpoints can be seen to 
go from infinity to zero. For n conics connecting n+l  given 
point-slope pairs, there remain n degrees of freedom, namely the 
sharpnesses of those conics. We may adjust in turn the sharpness 
of each conic but the first to match the curvature of its predecessor. 
This consumes n-I degrees of freedom to achieve Cg-continuity , 
leaving the sharpness of the first curve (now linked to ~ e  n-1 other 
sharpnesses) as the remaining degree of freedom for the whole 
curve. 

For this approach it suffices to have a formula for curvature at end- 
points. Writing A for the area of  the triangle ABC and a,b,c for the 
lengths of the sides BC, CA,AB respectively, the curvature K at A 
measured in XY coordinates is given by the formula 

A 
K = (3.1) 

$2c 3 

We may derive this as follows. Rotate and translate the XY coor- 
dinate system (preserving curvature) to put the origin at A and the 
X axis on AB. Now take the parametric form of the conic, which 
will be two rational quadratics in t, one for each of x and y, 
namely 

2(1-t  )tSxB + t2Xc t2y c 
x - , y - (3.2) 

l+2(S-1)(1-t) t  l+2(S-1)(1-t) t  

Differentiate these expressions with respect to t and evaluate the 
resulting derivatives at t=.02 to obtain .~= 2Sx n, 3~ = 0, and 

= 2y o The usual formula .r = yr  relating tangential velocity .x, 
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radial acceleration ),', and radius r when ) =  0 leads us to 
K = yc/2S~x2 B where K is curvature, the reciprocal of the radius r. 
Finally we use A = XBYcl2 to obtain (3.1). 

Besides its application to exact matching, the formula yields much 
insight into nonmatching, at oplx~site ends of the same conic as 
well as at junctions. 

Let us consider first opposite ends of the same conic. We shall 
show how to build a "curvature transformer." 

By symmetry the curvature at C must be A/SXa 3. Hence the ratio 
of the curvature at A to that at C must be the cube of a/c, a quan- 
tity independent of everything but the lengths of AB and BC. Thus 
to build a "curvature transformer" consisting of an ABC conic m 
connect two points A and C at which the curvatures are in the ratio 
of 8 to 1 in a Cg-continuous way, with the smaller curvature at A, 
a necessary and-sufficient condition (not including other require- 
ments such as Cl-Continuity ) is that AB be twice as long as BC. 

Now let us consider junctions, and address the problem of 
C2-co.ntinuity at inflection points. Points of zero curvature are 
nonexistent in conics other than lines. Hence piecewise-eonie 
curves cannot be C?TCOntinuous at inflection points. This is a 
major reason for prefrrring cubics to conics. 

The above formula for curvature however gives us some idea of 
how closely zero curvature at a point of inflection can be approxi- 
mated. Whether conic or cubic, a major use o f  splines is to 
approximate curves, to within acceptable visual or numerical limits. 
Hence we are not breaking any rules when we ask whether a good 
approximation is possible. 

Whatever the prevailing curvature is at some distance removed 
from a point of inflection, a curvature transformer can be used to 
connect points on either side of an inflection in such a way that the 
curvature at the inflection is very small by comparison to the pre- 
vailing curvature. This can be done with a quite reasonable choice 
of ratio of sides; by the time the ratio reaches 3 to 1 the curvature 
at the inflection will be 1/27 the prevailing value. 

This argument, together with its application to examples we have 
seen with outline fonts defined by conics, has convinced us that 
this ability to approximate a zero-curvature point of inflection so 
closely disposes almost entirely of the objection that conies lack 
such points. In support of this we ask the reader to inspect the fol- 
lowing characters from a conic representation of Times Roman 
(Figure 3) to decide whether the points of inflection exhibit any 
objectionable or even detectable curvature discontinuity. The 
attached spline skeletons show the locations of the ABC control 
points (though not the sharpnesses). 

Figure 3. Conic-spline Characters With Points of Inflection 

3.2. Internal (Variational) Curvature 

We are interested in this section in the smoothness of curves. A 
plausible measure of  smoothness is degree of variation of curvature 
around the curve. Extremely sharp or fiat conics are obviously 
unreasonable candidates for "reasonably smooth" curves. At the 

elliptical extreme (low sharpness) the total curvature of the curve 
(the angle between its endpoint tangents) is concentrated at the 
endpoints, whereas at the hyperbolic extreme it is concentrated in 
the middle. Such extremes are far from "reasonably smooth." 

One might settle for S = 1, a parabola, as a somewhat arbitrary but 
convenient intermediate value. Unfortunately, for curves with total 
curvature approaching 180 degrees (angle ABC approaching zero), 
a parabola suffers from the same problem as an extreme hyperbola, 
concentrating the curvature in the middle. Furthermore, when 
AB = BC (isosceles triangle) there is an obvious candidate for the 
conic of least curvature variation, namely the circle, which has no 
curvature variation and is easy to represent, manipulate, plot, and 
understand, and, only partly for these reasons, is in much demand. 

This is not to say that minimum variation is always what is 
wanted. Font designers often want superellipses. If we measure 
superellipticity in terms of the sharpness of a conic approximating 
a quadrant of a letter's outline, a commonly preferred superellipti- 
city is one lying somewhere between a circle and a parabola. 

An obvious measure of curvature variation is ellipse eccentricity. 
One problem with this measure is that it attains infinity at the para- 
bola; this puts a discontinuity in the middle of a range that goes 
from ellipses to hyperbolas. Another problem is that it is not the 
easiest measure to calculate with. 

The measure we introduce here relates the actual sharpness to the 
sharpness that yields the ellipse of minimum eccentricity. If as 
before we let a,b,c be the lengths of sides BC,CA,CB respectively, 
this minimum-eccentricity sharpness is given by 

b 
S - (3.3) 

This formula was arrived at after much conversation with 
Macsyma, and we have been unable to construct a summary of the 
rationale behind it. 

An equivalent criterion for minimum eccentricity told to us by Lyle 
Ramshaw is when the line from the center of the ellipse to a corner 
of the rectangle bounding the ellipse and aligned with the major 
and minor axes also passes through the B vertex of the triangle. 
We have not yet verified the equivalence of Ramshaw's nonmetri- 
eal criterion with our metrical one. However we have found the 
metrical one easy to apply. 

F~r ~ right triangle, meaning here that ABC is a right angle, 
a +c = b by Pythagoras, so S =0.7071... for the ellipse of 
minimum eccentricity. From Ramshaw's criterion, this ellipse will 
be one quadrant of an ellipse whose major and minor axes are 
parallel to AB and BC (not necessarily respectively). 

For an isosceles triangle, meaning here that a = c, there exists an 
ABC conic which is a circular arc from A to C. Since its eccentri- 
city is 0, it follows that the formula for minimum eccentricity must 
yield the sharpness for a circle (which it does). In this case the 
formula simplifies to b/2a, recognizable as the cosine of the angle 
BCA (and of BAC). 

We make use of this formula for minimum curvature variation to 
provide an alternative measure of sharpness that we call variation. 
It is the ratio of the actual sharpness to the sharpness of minimum 
curvature variation. When the variation is 1 the curvature variation 
is at a minimum over all conics in this triangle. Larger variation 
means a shalper curve, smaller means flatter. Larger variations are 
useful for drawing superelliptical figures, assuming that they are 
partitioned into four quadrants at their four extrema. 

A necessary and sufficient condition for a conic to be an arc of a 
circle is for its triangle to be isosceles and its variation to be 1. 

As one application for this concept, a simplified conic spline 
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package could restrict itself to conic arcs of variation 1. Each arc 
would be specified by three points. A connected sequence of arcs 
would require only two points for each new arc. This package 
would allow any circular arc to be drawn, corresponding to isos- 
celes triangles, and offer a limited variety of elliptical arcs as well. 
Our experience with fonts however indicates that variation 1 is 
much too reslrictive for that application. 

It should be noted thfit, even for conic splines that are segments of 
ellipses, the eccentricity of the ellipse does not uniquely determine 
sharpness, contrary to what has sometimes been stated in the litera- 
ture. As sharpness increases from 0, eccentricity starts at infinity, 
decreases until the ellipse of minimum eccentricity is reached, after 
which the eccentricity increases again, returning to infinity when 
the sharpness reaches unity. Hence any given eccentricity is asso- 
ciated with two possible sharpnesses. In addition, an eccentricity 
below the minimum is meaningless. This makes eccentricity an 
unworkable substitute for sharpness. Variation on the other hand is 
linearly related to sharpness for any given triangle and hence does 
not have these problems. 

4. Rendering 

The problem is to visually approximate a two-dimensional figure 
drawn in the real (Euclidean) plane with an image consisting of a 
uniform and independent shading of each of the squares or pixels 
of a grid. In this paper we shall treat only zero-aperture imaging, 
in which the image is chosen to (best) match the figure at pixel 
centers. Zero-aperture is more readily implemented and performs 
better than larger apertures since it does not involve any area meas- 
urement, but is inferior at rendering fine detail, where a unit aper- 
ture (each image pixel matches the average of the corresponding 
figure pixel) yields somewhat better results and dithering with an 
aperture covering several pixels can produce a significantly better 
image. One may of course have one's cake and eat it too by con- 
strutting a sequence of images with increasing aperture sizes, so 
that a crude image appears immediately using the techniques of this 
paper and then as you watch is more carefully refined using other 
techniques. 

We shall fi~rtherrnore treat only the case of black and white figures 
and images; in any such case where the image shades include all 
the figure shades, the figure-image match at pixel centers is exact. 

We assume an XY coordinate system with one lattice (integer) 
point per pixel. (These are device coordinates; pixels need not 
actually be upright, square, rectangular, or even congruent in physi- 
cal coordinates.) We shall refer to increasing x as right and 
increasing y as up. The exact location of the lattice points inside 
the pixels may vary in half-pixel steps for each dimension with 
each conic arc; this turns out to allow a representable conic to be 
translated by half-pixel steps in the plane without making a mess 
of the associated arithmetic. 

We treat only figures having region boundaries that, in device coor- 
dinates, are piecewise conic. These will also be conics in physical 
coordinates if device and physical coordinates are projectively 
related. 

There are three stages in the way we discretize a conic segment: 
subdivision, alignment, and tracking. Subdivision partitions the 
conic into smaller conics of a size manageable by our algorithm, 
the limiting size being in proportion to the number of bits in an 
integer. We have already described how to subdivide conics in the 
section on principles of conic splines. Alignment adjusts the points 
A,B,C of each conic arc so that A-B and B - C  have integer x and 
y components, yielding a representable conic, which may thereafter 
be translated in the plane by half-pixel increments. Tracking is the 
Pitteway process. 
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4.1. Alignment 

Our exact version of Pitteway's algorithm depends on having the 
control points A,B,C separated by integer distances in each dimen- 
sion and the square of  the sharpness being a rational. We call con- 
ics satisfying these conditions (including the size limitations) 
representable. Alignment makes small adjustments to a conic to 
make it representable. 

A set of n reals may be adjusted to make all their differences 
integral with an adjustment to each of at most (1-1/n)/2. (Reduce 
the n reals modulo 1 to form a ring, i.e. arrange the fractional parts 
of the n reals in a circle, find the biggest gap, of size at least l/n, 
and move all points away from that gap by at most (1-1/n)/2 to 
coincide.) Hence three reals a,b,c may be adjusted to make their 
three differences all integer by adjusting each by at most 1/3. For 
this case this can be accomplished by moving only two of the three 
by at most 1/3 each, so in the worst case the average motion of the 
three points becomes 2/9. It is incorrect however to conclude that 
the expected value of the average motion is exactly 1/9, though it 
should be somewhere in the neighborhood of 1/8. 

Full quadrants provide a common special case admitting a better 
treatment than the above. This is when one end is horizontal and 
the other vertical. Adjust each endpoint along the normal at that 
endpoint to the nearest half-pixel. Then adjust each endpoint along 
the tangent at that endpoint to make A - C  integer in x and y. Then 
B may be chosen to make the tangents exactly horizontal and verti- 
cal; it may be seen that B's  adjustment tracks only the first adjust- 
ment (along the normals), which is the smaller adjustment. This 
method results in an expected movement of any point of the curve 
of about 1/8 of a pixel. 

Better effects are obtained at extrema when the extremum is near a 
pixel boundary. This avoids both fiat spots and pimples, one of 
which arises when the extremum occurs near a pixel center. To 
arrange this requires a coarser adjustment to the conic. In our 
experience it has usually proved more esthetically satisfying to set- 
de for the larger distortion than to have flat spots or pimples. 

4.2. Sharpness  

The problem is to find the closest rational approximation to S 2 with 
given bounds on the numerator and denominator. We use what 
amounts to binary search in the Farey sequence. The Farey 
sequence is an ordered list of reduced fractions, with bounded 
numerator and denominator. It may be generated by starting with 
just two fractions, 0/1 and 1/0, being the reduced forms of respec- 
tively zero and infinity. The element intermediate between any two 
elements a/b and c/d is defined to be (a+c)/(b+d). Thus the first 
rational between 011 and 1/0 is 1/1. Next we get 1/2 between 0/1 
and 1/1, and 2/1 between 1/1 and 1/0, then 1/3 between 0/1 and 
1/2, and so on. It can be shown that only reduced fractions can be 
produced in this way; for example 2/6 will never appear. (Hint: 
for any adjacent pair a/b, c/d of fractions, ad-bc = 1.) 

To search the interval bounded by a/b and c/d, compare 
(a+b)/(c+d) with the number being approximated to see on which 
side of (a+b)/(c+d~ to continue the search. Note that it is only 
necessary to have around at any one time the two bounds on the 
interval and the new "midpoint ,"  that is, the Farey sequence can 
be computed " o n  the fly." 

By careful arrangement one may avoid all arithmetic save additions 
and comparisons in computing a rational approximation with this 
method. (Hint: maintain a copy of the three active denominators, 
each scaled by the number to be approximated, and compare it 
with the corresponding numerator.) 

Gaps between Farey fractions vary considerably. The gap between 
fractions with denominators b and d is llbd. In practice the worst 
gap is at S 2 = 1/2, where the nearest rationals are 12/25 and 13125, 
leading to a worst-case error of 1% in S 2 and hence a 0.5% error in 
S. 
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Errors in approximating sharpness have little effect on the end- 
points of the curve. They leave the position and tangent of each 
endpoint unchanged and affect only the curvature. In the interior 
they of course flatten or bulge the curve a little, without however 
upsetting the overall smoothness of the curve. Thus sharpness 
errors tend to be more tolerable than an error in B, which in turn is 
usually more tolerable than errors in A and C. 

The tradeoff between bounds on numerator and denominator and 
bounds on size of conic were made with the above considerations 
in mind. These tradeoffs can be changed as required. 

4.3. Bresenham-Pitteway Tracking 

The tracking considered in this section is at the heart of the line 
and conic algorithms described by Bresenham [1] and Pitteway [7] 
respectively. 

We take a quadrant of a curve to mean an open (i.e. not containing 
its endpoints) Cl-continuous curve segment whose slope is 
nowhere either horizontal or vertical. We let Bresenham-Pitteway 
tracking denote the process of following a quadrant of an implicitly 
defined curve F(x ,y )= 0 by sampling F at pixel centers in the 
neighborhood of the curve to determine on which side of the curve 
each pixel center falls. One tracks quadrants partly so that "s ide"  
is well-defined, partly to simplify the tracking process. 

The Bresenham-Pitteway process is the following trivial procedure, 
parametrized by the direction of tracking, expressed as a pair of 
procedures, one called hot  - either left() or right() - for moving in 
the horizontal direction, the other vert - either up() or down() - for 
vertical motion. (In practice track should be expanded as a macro, 
with all four combinations of these two procedures instantiated as 
inline code.) These two procedures are responsible for all conse- 
quences of motion, both moving the drawing device and updating 
the x,y coordinates and associated values. The predicate 
side(x,y,Q) tests which side of Q the point (x,y) is on, returning 
true if we are on the side where horO brings us closer to Q. 

track(proc hor, proc vert): 
while not done() do 

if side(x,y,Q) then hor 0 else vert 0 

Even before we fill in the details of done(), side(), horO, and 
vertO, this simple procedure raises a couple of not so simple prob- 
lems. First, although the set of horizontal and vertical moves it 
makes is closely related to the pixels required for zero-aperture 
rendering, the relationship needs to be tightened up further to cap- 
ture those pixels exactly. As partial evidence for this it should be 
noted that the procedure visits a different set of pixels depending 
on which direction it traverses the curve. Second, getting the exact 
starting and stopping conditions turns out to be a most exasperating 
exercise. We have not to date found a simpler treatment of these 
problems than the following. 

The exact pixels we want as the final product of tracking a qua- 
drant Q may be thought about as follows. We want those pixels 
either immediately to the left of, or to the right of, or above, or 
below Q, which we may denote L(Q), R(Q), A(Q), and B(Q) 
respectively. For example when we track the left boundary Q of a 
horizontally scanned region we want R(Q), which consists of the 
leftmost pixels of the scanned region. Similarly when we track the 
lower boundary of a vertically scanned region we want A(Q). 

A good way to understand such a sequence of pixels is in terms of 
dual pixels. A dual plxel is a unit square whose corners are pixel 
centers (and hence vice versa - the corners of a pixel are dual pixel 
centers). Equivalently a dual pixel is the translation of a pixel by 
one half in each dimension. Associated with each dual pixel d is 
its North-West pixel NW(d), and similarly for NE(d), SW(d), and 
SE(d). The inverse association, from pixels to dual pixels, uses the 

same names, so that SE(NW(d)) = d. 

(A detail unimportant in understanding the general idea, which 
should therefore be skipped on a first reading, is the treatment of 
ties, pixel centers actually on Q. Suppose tics are resolved by 
declaring them to be below and to the left of the curve. 
Corresponding to this, dual pixels are taken to include their left and 
bottom edges and bottom left corner, but Bot their top left or bot- 
tom right or top fight corners or top or right edges. In general 
each dual pixel includes just that comer which lies in the same 
direction from the dual pixel as that used to resolve ties.) 

The significance of dual pixels is that they provide a more straight- 
forward characterization of the discrete essence of Q than do pix- 
els. We define the discretization 8(Q) of quadrant Q to be the set 
of dual pixels intersecting Q. The sense in which 8(Q) captures Q 
is given by the following theorem. 

Theorem. 
L(Q) = Nw(8(Q))nSW(8(Q)), R(Q) = NE(5(Q))nSE(5(Q)), 
A(Q) = NW(5(Q))~NE(8(Q)), B(Q) = Sw(8(Q))nSE(8(Q)). 

Proof. By symmetry it suffices to consider L(Q). Since Q is 
open, if Q intersects an edge of a dual pixel it must also extend 
beyond it. Now L ( Q ) ~  NW(~(Q))nSW(~Q)) because Q must 
intersect the fight-going edge coming from each pixel in L(Q), 
whence Q must intersect the dual pixels above and below that 
edge. Conversely, L ( Q ) ~  NW(5(Q))nSW(8(Q)) because given 
two adjacent vertically aligned dual pixels, Q must cut their com- 
mon edge, whence the left end of that edge must be a pixel center 
immediately to the left of Q. [] 

The significance of this theorem is that it demonstrates that 5(Q) 
contains all the information needed for whichever set of pixels, e.g. 
L(Q), we need for a particular tracking applications. Furthermore, 
given all four of these sets of pixels one may infer the position of 
any pixel center relative to Q, though not its exact distance from 
Q. Hence any position-based tracking method such as zero- 
aperture only needs to know ~Q). 

Bresenham-Pitteway tracking cannot be either a direct enumeration 
of the desired pixels (e.g. L(Q)) or of ~Q). Instead tracking fol- 
lows a greedy tour of Q, defined as follows. 

A tour is a sequence of pixels connected by length-1 rook moves, 
all horizontal moves being in the same direction and similarly for 
vertical moves. We say that a pixel is n-valent in Q when it inter- 
sects n elements of 5(Q). (We omit 'in Q' when it is provided by 
context.) A tour o f  Q is a maximal tour having all pixels of 
valency 2 or 3. (Quadrants have no 4-valent pixels.) 

Remark. All tours of Q have the same length, namely I~(Q)[-1. 

Remark. All tours of Q intersect Q equally often, namely one 
more than the number of trivalent pixets. (Exception: when 
I~5(Q)I = 1 there are no intersections.) 

A greedy tour of Q is one whose intersections with Q are as far as 
possible towards one end. There are therefore two greedy tours of 
Q, one for each end, which are the same tour if and only if 8(Q) is 
a pure diagonal (one having at most two divalent corners). 

The two key properties of greedy tours are that they are what 
Bresenham-Pitteway tracking yields, and the desired pixels (e.g. 
L(Q)) can be very easily extracted from them. The former pro- 
perty is best verified by the reader by inspection. L(Q) or R(Q) 
may be enumerated in order by taking those pixels the tracking 
algorithm is at just before making each vertical move, plus or 
minus one in the horizontal direction depending on the direction of 
travel and whether L or R is needed. Dually the pixels of A(Q) or 
B(Q) may be enumerated just before each horizontal move, plus or 
minus one vertically. Since the tracking process is all incremental 
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the plus-or-minus-one arithmetic need be performed only once, at 
the beginning. 

This perspective on tours now makes it easy to deal with the end- 
points. As may be easily verified by inspection, the first pixel 
enumerated by the immediately above procedure should be dis- 
carded, and an additional pixel at the other end should be obtained 
by allowing the procedure to continue for one more pixel output. 

4.4. The Numerical  Component  

The procedures up(), down(), le~O, and right(), and the predicate 
side(x,y,Q), are implemented as the numerical component of  
Pitteway's conic-tracking algorithm. The predicate tests the sign of  
F(x,y) at the current location (x,y), and also the sign of  a partial 
derivative of  F(x,y) when necessary. The four motion procedures 
keep the value of  F(x,y) up to date, which they do incrementally by 
also keeping up to date the values at the current location of  the 
partial differences 

Fx(x,y ) = F(x+ l,y)-F(x,y) Fy(x,y) = F(x,y+ l )-F(x,y) 

F=(x,y) = Fx(x+ 1 ,y)-Fx(x,y ) Fyy(x,y) = Fy(x,y+ l )--Fy(x,y) 

Fxy(X,y ) = Fx(x,y+ 1 ) -F  x(x,y) 

For each move up, down, left, or right, the updating procedure may 
be expressed as follows. (We use the convenient += and ~ nota- 
tion of  C; x += y denotes the operation of  adding y to x, and simi- 
larly for -= . )  

up(): F+=Fy; F~+=F~y; G + = F . ;  

dan(): Fy --= F~; F~ ~e~;  F --= Fy; 

right(): F 4.= Fx; F x 4-= Fxx; Fy +-- Fxy: 

left(): e y  - =  Fxy: F x --= r=;  F --= Fx; 

The initial values of  F and the partials at (x,y) (chosen to lie at a 
distance of  less than one pixel from the curve), may be computed 
from the following formulas, which are obtainable directly from the 
definitions. Note that these are partial differences, not partial 
derivatives, whence the extra ct in F x and T in Fy. 

F o~x 2 + 213xy + ~ 2  + 5x + ey + 
F 2otx + ot + 213y + 5 
F x 2'yy + 'y + 2~x + e 
F y 2tx 
F xx 213 

As shown earlier, when the control points are lattice points the 
Greek letters are all integers. To take best advantage of this the 
coordinate system may be chosen separately for each conic to make 
the control points lattice points. The sampled points will then in 
general not be lattice points. However if  they are half lattice 
points (2x and 2y are integers) then all the partial derivatives will 
be integers, a property we need for exact tracking. It does not 
matter that F is not an integer since we shall only make comparis- 
ons with F of  the form F<0 and F _> 0, so taking F to be the floor 
of  its true value will not affect the outcome of  such tests. 

Overflow may occur during the calculation of  F.  However the 
final value of  F should be close to 0 since the initial pixel is adja- 
cent to the curve. To be exact, its magnitude cannot exceed that o f  
F x or Fy, which must be arranged not to overflow, both for this 
reason and to make reliable increments. Hence all values lost by 
overflow will cancel, whence overflow may be ignored. 

Stopping Condition 

For the stopping condition for tracking, represented by the pro- 
cedure done(), it suffices to test either the y or x coordinate, 
depending on whether we are scanning horizontally (L(Q) or R(Q) 

pixels) or vertically (A(Q) or B(Q) pixels) respectively. The test is 
against a limit that is precomputed by inspection of  the endpoints. 
This test may be reduced to a single decrement-and-branch-on-zero 
instruction by performing it as a part o f  the pixel output process. 

Aliasing 

Pitteway's algorithm is a sampling process; it stays on the curve by 
sampling lattice points in the neighborhood of  the curve, never 
sampling more than a pixei away. As in any sampling process, the 
signal may contain frequencies high enough to confuse the sam- 
piing. In the case of  a conic this can happen when rendering a thin 
ellipse, where the opposite sides of  the ellipse are less than a pixel 
apart. In this case it is possible to cross both sides in one step and 
miss the region in between. When this happens Pitteway's algo- 
rithm goes in a vertical or horizontal line searching for the boun- 
dary until the stopping condition is met or overflow happens. 

The starting position and stopping condition define a band parallel 
to the scanning direction outside which nearby edges do not matter. 
If two edges of  the conic occur inside this band, they will be 
separated by the line consisting of the zeros of  the partial deriva- 
tive of  F with respect to the direction of  scanning, i.e. the line 
F~ t=  0 for horizontal " t . . scamung and F~ = 0 for vertical scanmng. 
Hence whenever there is doubt about whether two edges have been 
crossed at once, the doubt may be resolved by inspecting the par- 
tial derivative. This doubt arises just when we are on either side of  
both edges. This adds a test (of the sign of  the partial derivative) 
to the code for one of  the outcomes of  the side() predicate but not 
the other. By symmetry the side() predicate should hold half the 
time on average, diluting the expected cost o f  the test by a factor 
o f  two. 

This method may be considered a form of  antialiasing, in that it 
takes advantage of  the derivative not containing any high frequen- 
cies, unlike F itself. 

There is no need to keep a separate copy of  F x" up to date since 
F~' = F i - F J 2  , reducing the test F~t< 0 to the comparison 
F x < F~/2. Fx~/2 should be kept in a register (a machine- 
dependent performance consideration), but unlike F x' it needs no 
updating. Since the test o f  the derivative is only done half the 
time, this is better than having to update a separate copy of  the 
derivative itself at every step. 

The appropriate sign of  Fx', corresponding to which edge we are 
tracking, is determined at the outset by evaluating F x" at each of  A 
and C; since not both A and C can be at horizontal extrema, at 
least one of  them will yield a nonzero value for F, ' ,  which then 
yields the desired sign. An easy test for whether F x" is zero at A is 
whether YA = YB. With this test it suffices to evaluate F x' at only 
one of  A or C. 

It is important to realize that the correctness of  this method 
depends on the stopping condition for the basic loop, which deter- 
mines the band within which the tracking takes place. The claim is 
that the algorithm can rely on the signs of  F and F x' (if scanning 
horizontally) to infer its current position relative to the curve pro- 
vided the current position has not gone past the y limit. Consider a 
very thin horizontal ellipse, for which F x = 0 is a vertical line 
through its center. One can cross the whole o f  this ellipse in one 
step moving vertically without detecting a sign change in either F 
or Fx'. However one cannot do so without also going past the y 
limit. 

4.5. Strokes 
A commonly occurring problematical region type is the stroke. 
This is a region having two essentially parallel (whether or not 
curved) boundaries only a few pixels apart, with single pixel 
separation being the most  critical. The problem is that i f  the two 
boundaries are rendered independently the sampling artifacts in 
each boundary may beat with each other to create even worse 
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arti~cts. 

A somewhat simple-minded solution that is independent of curve 
family is to partition strokes into shallow and steep components, 
throughout which the slope (of the medial axis) stays within 45 
degrees of horizontal or vertical respectively. Then for each such 
component adjust matching pairs of shallow or steep boundaries to 
make them respectively vertical or horizontal integer-distance trans- 
lations of each other. This eliminates all beating between the two 
boundaries. Steep (shallow) strokes then have the same number of 
pixels in every row (column). 

This adjustment will leave a gap at shallow-steep junctions, due in 
part to the ends of the adjoining strokes being at right angles and 
in part to the ends being moved to the appropriate halfpoints. The 
gap may be closed by connecting corresponding boundaries (outer 
to outer, inner to inner) with straight lines, providing tangent con- 
tinuity thought not curvature continuity. Also thickness is no 
longer uniform, decreasing at diagonal points to 70% of the thick- 
ness at extrema. As thickness increases the boundary interference 
problem becomes less objectionable while the gap closure and the 
thickness variation become more noticeable. Hence at some thick- 
ness, in the vicinity of 3 to 5 pixels, this treatment of strokes does 
more harm than good. 

Better effects than are possible with this simple-minded method 
may be had using the polygonal pens described in J. Hobby's 
thesis [12]. His treatment is equivalent to the above at a thickness 
of one pixel, but breaks thicker strokes up into smaller pieces each 
with its own treatment, with the two boundaries still being the 
same within each piece but with the corresponding points between 
those boundaries no longer always being parallel to an axis but 
rather being approximately normal to the curve. This work is 
remarkable for its extensive and effective use of elementary 
number theory. 

5. Precision and Performance Considerations 

The coefficients tx through T of the implicit equation of the conic 
range from quadratic to quartic polynomials in the XYZ coordi- 
nates of A,B,C. The coefficients ct, [I, and 'y are quadratic, 8 and e 
are cubic, and { is quartic. To fit the resulting large numbers into 
a 32-bit word, it is necessary to hold down the size of the coordi- 
nates of A,B,C. 

The origin is translated to the center of the rectangular hull of the 
triangle to minimize the magnitudes of these coordinates. 

For 32-bit arithmetic we limit this magnitude to 100, whence the 
triangle must fit in a square of 200 pixels on a side; larger triangles 
must have their conics subdivided. A proportionately larger trian- 
gle is possible with 64-bit arithmetic. 

This size is achievable if the numerator of the square of the sharp- 
ness is limited to 15 and the denominator to 25. For the values of 
sharpness so representable, the arithmetic is exact. More precision 
in sharpness may be had by reducing the limit on the size of the 
triangle. 

On the 68010 the inner loop of the exact Pitteway process, without 
the modification for aliasing, is a constant 7 instructions: three 
adds, compare, conditional branch, render, and decrement-and- 
branch (all arithmetic being exact, using 32-bit integers). With the 
antialiasing modification an additional comparison instruction and 
associated branch instruction are executed every second time 
around the loop on average, increasing the number to an average of 
8 instructions per step around the curve. The result is that the run- 
ning time for the curve-drawing phase of our algorithm is on the 
order of 10L microseconds where L is the length of the curve in 
pixels in the L 1 or Manhattan metric (number of length-1 rook 
moves). 

6. Proiotyping, Packaging and Integratlon 
A system based on the above algorithms was built at Sun three 
times. The first implementation, between February and May of 
1984, was done concurrently with working out the necessary 
theory. It performed well but suffered from a lack of perspective 
on our part at the time as to what functions were needed and how 
the interfaces should be structured. As a prototype it was invalu- 
able for testing the principles. A second implementation was car- 
ded out in June and July to improve both the interfaces and some 
of the algorithms. This could be called the packaging phase. The 
system was then used extensively for a number of months as a 
component of an outline font design system, incorporating a spline 
interpolating package for digitized point data, and an outline font 
editor. A third implementation, still under way, constitutes the 
integration phase, to allow the system to fit in smoothly with Sun's 
version of the graphics universe: CORE and GKS on top of CGI 
on top of Pixrect (Sun's internal bitmap standard). 
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