
SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

Techniques for Conic Splines

Vaughan Pratt
S u n M i c r o s y s t e m s Inc.

Abstract

A number of techniques are presented for making conic splines
more effective for 2D computer graphics. We give a brief account
of the theory of conic splines oriented to computer graphics. We
make Pitteway's algorithm exact, and repair an "al ias ing" problem
that has plagued the algorithm since its introduction in 1967. The
curvature-matching problem for conics is solved by way of a sim-
ple formula for curvature at an endpoint which permits curvature to
be matched exactly at non-inflectior points and more closely than
was previously realized possible at poims of inflection. A formula
for minimum-curvature-variation of conic splines is given. These
techniques provide additional support for Pavlidis' position [6] that
conics can often be very effective as splines.

This work was motivated by, and provides much of the foundation
for, an implementation of conic splines at Sun Microsystems as
part of Sun's Pixrect graphics package, the lowest layer of Sun's
graphics support.

1. Introduction

1.1, Rationale for Conic Splines

It may be of interest to understand how we arrived at both the
techniques and the conclusions of this paper. We set out a year
ago to develop an outline font system. We eonsidered many fami-
lies of curves [5,11], but rejected most of these as either computa-
tionally impractical or unsuited for splines. It appeared that the
most suitable curve technology from a user standpoint was cubic
splines. We soon found however that incremental algorithms for
plotting (e.g. Pitteway's algorithm for conics [7]) were
significantly faster than the recursive subdivision algorithms for
parametric curves (e.g. the various algorithms discussed by Catmull
[2]). The former had excellent velocity control (constant relation
between number of pixels plotted and amount of work done), no
context switching, and a trivial stopping condition. The latter had
simple implementations, both in hardware and high level program-
ming languages, along with good ways to organize the arithmetic.
However they had poor velocity control (even with an optimal
stopping condition for the recursion one can only come to within at
best a factor of two of the ideal velocity), expensive context
switching (for every single step there is a context switch entailing
much pushing and popping of data on a stack, aggravated by trying

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish., requires a fee and/or specific permission.

© 1985 ACM 0-89791-166-0/85/007/0151 $00.75

to program cleanly by using recursion), and an awkward stopping
condition (there is a complex tradeoff between cost of stopping
condition and quality of velocity control).

It was natural therefore to want to combine the user convenience of
splines with the performance of incremental methods. Since
splines were defined for parametric curves whereas incremental
plotting was for algebraic curves it was clear that some combina-
tion of these classes was called for.

As degree increases the complexity of both exact implicitization
and of exact and antialiased Bresenlaam-Pitteway style tracking
increases very rapidly. We feel particularly intimidated by the
prospect of duplicating the performance-oriented techniques of this
paper for rational or even polynomial cubics.) Hence one does not
casually increase degree from two to three without good reason.

At higher degrees higher orders of continuity become possible.
Two important properties of polynomial cubics are the possibility
of C~-continuity between adjoining cubics (as easily achieved
using-B-splines), and zero curvature at inflection points. C 3-
continuity is however only possible between adjoining cubics triw-
ally, namely when the two cubics are adjoining segments of a com-
mon cubic.

We developed an easy method of achieving C2-continuity between
conics. We also worked out how to approximate very closely zero
curvature at inflection points. Hence for degree of continuity
cubics and conics appear to have essentially the same capabilities.

The one thing cubics have that conics do not is an additional
degree of freedom. Six degrees of freedom are encompassed in the
basic endpoint-and-tangent conditions. For conics the seventh
degree of freedom is sharpness or bulge. Cubics have bulge along
with an additional degree of freedom that might be called skew,
allowing their interior to be pushed in a direction parallel to the
line between the endpoints, one way to get inflection points in
cubics. (The other is that cubics can bulge further than conics,
producing first inflection poims, then a cusp, then a loop.) It
appeared to us that on those occasions calling for this control one
could get its effect quite satisfactorily vi~ a single subdivision, so
its loss was not an unmitigated disaster. More pragmatically, we
doubted whether many users would be comfortable visualizing
skew as a concept independent of the endpoint tangents; even
bulge is somewhat obscure in that regard.

These considerations made rational quadratics look reasonable simi-
lar to polynomial cubits in practice. The very much greater com-
plexity of dealing with implicit cubics for tracking led us to adopt
conics as a useful curve form for high-performance graphics. We
are not alone in advocating conics as a useful curve form; Pavlidis
[6] is also an enthusiastic proponent of the virtues of conics.

151

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325225&domain=pdf&date_stamp=1985-07-01

@ S I G G R A P H '85

1.2. Conics and Cubies in Graphics Standards
Recent efforts to integrate our conic package into Sun's standard
graphics packages have led us to ponder the proper way to intro-
duce curves into graphics standards. We feel sufficiently strongly
about our conclusions as to warrant including a brief summary of
them in this forum.

Curves are not provided at all in such graphics standards as CORE
or GKS, other than as unspecified nonstandard extensions. CGI
(formerly VDI) has circles and ellipses, but n o splines of any type
(polynomial or rational) or degree (beyond 1). Furthermore those
circles and ellipses can be used as region boundaries only in the
most parochial ways, namely as pies (radius-arc-radius) and chords
(chord-arc), rather than the far more general and useful approach of
generalizing polygons to piecewise-elliptical region boundaries.
Not one of these standards has useful compound region boundaries
for curves of degree higher than one.

Without some nonlinear spline capability all o f these standards are
very difficult to use for curve-oriented work o f the kind arising in
say outline font design.

The reasons given above for conic splines, together with the obser-
vation that CGI has conics (ellipses) but not cubies, suggests that it
is not unreasonable to begin the introduction of splines to such
standards with conic splines. We therefore advocate extending the
existing line capabilities o f graphics standards to include conic
splines. This would constitute a simply described yet very useful
extension to those standards.

Given the reluctance of some of the graphics standardizing bodies
to introduce even quadratic curves into graphics standards, it would
seem appropriate to increase curve degree in graphics reasonably
cautiously. To go from linear to cubic curves in one step is akin to
going from crawling to running without learning to walk.

Before turning our attention to the theory of conic splines let us
mention some of the more notable works on conics relevant to
computer graphics. For general information on conics an excellent
text is Salmon's classic [13]. A scholarly account o f both the sub-
ject and its many contributors is given by Coolidge [4]. A
comprehensive though at times dense text on projective geometry is
Todd [10]; it is the source of most o f our ideas about conics. Gen-
eral implicitization methods, based on classical techniques, for both
polynomial and rational curves can be found in Sederberg's thesis
[8]; our methods below are more narrowly focused on conics per
se, with an emphasis on performance. An early but excellent work
on coping with rational quadratic and cubic curves in the context o f
computational geometry is Forrest 's thesis [3].

2. Principles of Conic Splines

A conic spline is a conic defined by three points A,B,C in the view
plane. It passes through A and C and has tangents AB and CB
respectively at those points. The family of conics satisfying these
conditions, which we call the ABC family, is illustrated in Figure 1.

/k C

Figure 1. The family of ABC conics

This family may be indexed in a variety of ways. Some authors

152

use the scalar ratio W D / W B where W is the midpoint o f A C and D
is the intersection of the conic with WB. Another method is simply
to provide D directly, or for that matter to give any point on the
conic besides A and C. We have found the scalar S, for sharp-
ness, to be useful. S measures the departure of the conic from a
parabola. For S = 1 we have the parabola itself, S < 1 (the flatter
curves) yields ellipses, S > 1 (the sharper curves) hyperbolas.
Pavlidis [6] uses a scalar K, representable in terms of our S as
K=I/4S 2. Another parameter we have found useful is what we call
variation, which measures the departure o f the conic from the
ellipse of minimum eccentricity; variation is directly proportional to
sharpness, but with the constant of proportionality a function o f the
shape o f triangle. Some authors have proposed to use eccentricity
itself as the index; unfortunately this index is ambiguous since
eccentricity attains a minimum for some positive S.

The most useful property of conic splines for applying Pit teway's
algorithm is its implicit or algebraic form. If we take the vertices
of the triangle as our basis, with corresponding coordinate variables
a,b,c, then the equation is (as in (3.13) of [6])

b 2 - 4S2ac = 0 (2.1)

This is actually the equation not just of the conic but o f the whole
surface consisting of the lines of sight from the observer O (oblig-
ingly seated at the origin) to points on the conic. This surface is a
c o n e .

Since ABC will not in general be the coordinate system in which
the rendering is to be done, a change of basis from ABC to XYZ
is needed. This is accomplished by making the following substitu-
tions for a,b,c (cf. (3.10) of [6]).

~x x B XcI IXA x XcI IXA x n x I
I I I I I I

a = ~ YB Ycl b = LYA Y YC c = ~YA YB Yl (2.2)
/ I I I I
Iz z B Zc[Iz A z ZCI Iz A z B z[

Each of these substitutions is a linear expression in x,y,z, whence
making those substitutions in equation (2.1) turns it into a quadratic
equation in x,y,z, which we express as

txx 2 + 2~xy + Ty2+2qSxz + 2eyz + ~z 2 = 0. (2.3)

Furthermore if the XYZ coordinates o f A,B,C are integers and S 2 is
a rational then the coefficients in (2.3) will all be integers, with the
coefficients o f the " m i x e d " terms xy,yz,zx being even, whence the
2's. Since A,B,C all lie on the view plane z = 1, we have
ZA = 2B = 2C = 1.

Finally we intersect the cone with the view plane z = 1 simply by
setting z to 1 in the equation for the cone to yield

cxx 2 + 2~xy + ~y2 + 28x + 2ey + ~ = 0. (2.4)

This could have been done earlier in (2.2) just by having the whole
bottom row be all l ' s ; leaving z in until the end shows that the l ' s
arise through intersecting the view plane z = 1 with the cone.

The practically-minded reader may now skip to the next section.
The purpose of the remainder of this section is to provide addi-
tional insight into conic splines.

First let us derive (2.1) directly from the definition of a conic as
the intersectio~ o f a cone with a plane. Since this is a 3D con-
struction we do this in a 3D vector space with origin the point O.
The view plane resides in this space and contains A,B,C which
therefore uniquely determine the view plane (unless A,B,C are col-
linear), and may also be taken as a basis for the space (unless
O,A,B,C are coplanar).

So let U = (A-C)/2 , V = SB, W = (A+C)/2 (which may be seen to
form a basis provided ABC form a basis and S is nonzero) with
associated coordinates u,v,w and associated substitutions u = a-c ,

2 2 2 v = b/S, and w = a+c. The surface u +v = w is evidently a circu-
lar cone (with respect to the U V W basis) containing A and C (the

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

points (1,0,1) and (-1,0,1)) and having OAV and OCV, attd hence
OAB and OCB, as tangent planes at A and C respectively. We
then derive (2.1) by making the above substitutions for u,v,w in
this equation. This is nicely illustrated by Figure 2, which also
shows two other important points D and E at W:t:V (note that A
and C are at W±U).

Figure 2. The AVC cone, AVC parabola, and ABC conic

Substitution (2.2) may be derived in terms of areal coordinates. A
closely related notion is that of barycentric coordinates in which a
point P may be specified on a plane by giving its coordinates as a
weighted sum P = aA+bB+cC of three points A,B,C in the plane
with a+b+c = I (normalized weights). The concept of areal coor-
dinates is the idea that the coordinates a,b,c may be specified as
the areas of the triangles PBC, PCA, and PAB respectively, or to fit
(2.2), twice these areas. Areal coordinates are related to barycen-
tric coordinates by a common ratio amounting to twice the area of
the ABC triangle, given by

FCA xB xcl

IlYA YB YC (2.5)
I1 1 11

Substituting P (denoted by omitting the subscript) for each of A, B,
or C in this determinant, yields the determinant for the correspond-
ing coordinate a, b, or c. The resulting weights are not normal-
ized. They could be normalized by dividing by twice the area of
ABC, but since (2.1) is homogeneous this is unnecessary. Most
importantly, in the unnormalized form imeger XYZ coordinates of
ABC yield integer coefficients in (2.3),

When z 's are used in place of l ' s these areal coordinates become
volumetric coordinates for a point moving in all 3 dimensions, the
volumes being those of tetrahedra having O as the additional vertex
(besides the three appearing in the determinant).

(Our original SIGGRAPH submission derived the equivalent of
(2.2) by dropping the common denominator (twice the area of
ABC) from Crarner's rule as used to obtain the transformation
from XYZ coordinates to ABC coordinates as the inverse of the
ABC-to-XYZ tranformation, which is in effect what one has when
given the XYZ coordinates of A,B,C arranged as a matrix. A
pointer from T. Pavlidis, one of the referees, to the determinant
form of his equation 3.10 of [6] converted us from Cramer's rule
to the formally equivalent but more appealing account of this in
terms of areal coordinates.)

Parametr ic Representat ions

A parametric representation of a curve is an expression for a point
in terms of an independent parameter t. We easily obtain a
parametric representation of a conic from a parametric representa-
tion of a point (x,y,z) on the cone, via the standard projection
(x,y,z) ~ (xlz,y/z). This is fortunate since parametric representa-
tions of the cone are simpler than of the conic, due to the
projection's being omitted. This constitutes a major motivation for
applying projective geometry and homogeneous coordinates to con-
ics.

There are several worthwhile parametric representations of the
cone. They are all most easily introduced via UVW coordinates.
First, u and v themselves immediatelyr_~_Lo~ide a fine pair of
independent parameters, making w = ±~lu'+v ~ the one dependent
variable. The cone is then the parametrically defined surface
u U + v V + ~ W . The points A,C,D,E on the cone are given by
the respective parameter values (1,0), (-1,0), (0,1), and (0,-1).
This parametrization is readily transformed into other coordinate
systems such as ABC and XYZ by making the appropriate substi-
tutions for UVW in uU+vV+~u2+v2W, e.g. U = (A - C) / 2 ,
V = SB, W = (A+C)/2 to get to ABC coordinates.

Another parametrization makes u and v dependent on polar coordi-
nates r and 0 as u = rcos(0), v = rsin(0), yielding the form
rcos(O)U+rsin(O)V+rW for the cone, with A,C,D,E all at r = 1 and
having 0 respectively 0, ~, ~d2, and 3~2. The substitutions for
UVW to transform this parametrization into other coordinates are
as before. This parametrization is useful in relating conic splines
to uniform motion around the circle from which the conic spline
has been projected. It replaces the square root in the uv parametri-
zation by trig functions, if that is an advantage.

The parametrization that is most pop.ular for splines is the st
parametrization, obtainable via sq-it = " u g l y . Squaring both sides
yields a = s2-t ~, v = 2st, so w = sZ+t 2. While this parametric form
of the conic is not particularly attractive in UVW coordinates,
transforming 2 it to ABC coordinates yields the very appealing
sZA+2stSB+t C, that is, a = s 2, b = 2Sst, c = f . Observe that
a+b/S+c = (s+t) ~. The AVC plane is a+b/S+c = 1, whence it may
also be specified as s+t = ±1. If we therefore substitute 1- t for s

2 2 in the cone we obtain (l - t) A+2(I -0 tSB+t C, immediately recog-
nizable as the Bezier parabola with vertices A,SB,C. Other con-
stant values of s+t yield planes parallel to this, with s+t = 0 yield-
ing the plane tangem to the cone at E.

2.1. Tangent Planes

One application of the st parametric form is to tangent planes to
the cone. The partial derivatives of the parametric form of the
cone s2A+2stSB+t2C with respect to s and t are 2sA+2StB and
2SsB+2tC respectively. The plane tangent to the cone at (s,0 is
then the plane containing the three points O, sA+StB and SsB+tC,
the 2 's being of no consequence.

Tangent planes to the cone provide a straightforward way of
finding tangents to the conic. Suppose we wish to locate the two
points on a conic having a given slope. Let P be any point other
than 0 on a line through O, parallel to the view surface, and hav-
ing the given slope. Then the intersection of the view surface, the
cone, and one of the two planes tangent to the cone and containing
P, will be one of the two points where the conic has that slope.

If A,B,C,P are all represented in XYZ coordinates, we may
express the coplanarity of the three points sA+StB, SsB+tC, and P
as the vanishing of the determinant whose columns are the XYZ
coordinates of those three points.

~xp sxA+tSx B sSxn+tXc[
I I
ItYP sYA +tSys sSys+tYc

lze SZA+tSz B sSzB+tzcI

(2.6)

The determinant reduces to a homogeneous quadratic in s and t,
whose roots constitute the two lines of tangency in the cone. The
two points of tangeney on the conic may then be obtained by set-
ting s+t = 1.

For the points of horizontal tangeney, P = X-- (1 ,0 ,0) in XYZ
coordinates. In this case the determinant reduces to
S(yA--yB)s2+(yA--Yc)St+S(ya--yc)t 2. For vertical tangents use x

153

@ S I G G R A P H '85

coordinates in place of y; for any other angle take the appropriate
linear combination of these two forms for horizontal and vertical
tangents.

2.2. Conic Determined by Additional Points

A common problem is to find the sharpness of the ABC conic con-
taining an additional point F, with A,B,C,F all lying in the view
plane. The solution is to substitute the XY coordinates of F for x
and y in (2.4) and solve the resulting linear equation in S.

A related problem is to find an implicit form for the conic contain-
ing five distinct points A,B,C,D,E. Again there is an immediate
solution:

2 2 x xy y x y 1

lx,,~ XAYA Y~. XA YA 1

Ix~ 11 = 0
xcYc Y~ Xc Yc

~ XDYD Y~ XD YD I

12 2 I
XE xEYE YE xE YE 1

(2.7)

The determinant is a quadratic in x and y, so the equation is that of
a conic. When (x,y)= A the first two rows are identical, so the
determinant vanishes, so A is a solution. Similarly B,C,D,E are
solutions. Hence the conic defined by this equation contains those
five points.

When the five points are all lattice points the resulting equation
will have integer coefficients, which may be computed exactly
using only addition and multiplication. Hence we have a method
of computing exactly an implicit form of the desired conic, as well
as a short proof that any conic containing five distinct lattice points
has an implicit form with integer coefficients.

This method is simple to implement, but is not particularly fast,
since it involves computing six 5:,<5 determinants, a size better han-
dled by triangulation than by. brute force. Furthermore the magni-

• 2 2 tudes of the coefficients of x , xy, and y grow as the sixth power
of the magnitudes of the coordinates, those of x and y the seventh
power, and the constant the eighth power. Hence to capitalize on
the full precision of the method requires multiple precision arith-
metic for all but the smallest conics. In practice 32-bit floating
point, i.e. shedding precision at the low end, should provide a
satisfactorily accurate approximation to the desired conic.

2.3. Conversion to Normal Form

It will be noticed that having A and C on the plane plays no
significant role. Any parabola projects to a conic whether or not
its endpoints coincide with those of the conic. Having A and C on
the plane merely constitutes a normal form representation (though
one that simplifies some calculations later).

On occasion we encounter points not in normal form, most often as
the result of subdividing a conic by subdividing its underlying par-
abola. We then need to restore them to normal form

To put three arbitrary points A,B,C into normal form, first rescale
the space by replacing all three points A,B,C by pA,pB,pC where
p = 1/-XlzAz o to drive zAz c to 1. Then multiply A by z c and divide
C by z c to yield the desired normal form. It is readily checked
that neither operation on these points alters the surface defined by
b2--4ac = 0 in the corresponding bases.

Note that the only impact of these two operations on the ABC axes

1 5 4

has been to scale them; their points of intersection with z=l remain
unchanged.

We may now easily apply this to the problem of subdividing the
conic. Subdivide the corresponding Bezier parabola
(1-t)2A+2(1-OtSB+t2C in the usual way. This yields two parabo-
las. These may each be projected back to two halves of our conic
by the above conversion to normal form.

3. Curvature

We distinguish two curvature issues, external and internal. Exter-
nal curvature deals with the curvature at endpoints. It affects cur-
vature matching between curves. Internal curvature deals with cur-
vature along a single conic. It affects the amount by which curva-
ture varies around the conic.

3.1. External (Endpoint) Curvature

It is often important to be able to match up curve segments not
only in slope but in curvature. For cubics and up, B-splines make
this very easy - curvature matching is obtained automatically as a
byproduct of the representation. This method can be seen to be
generalizable to parametric rational curves if we regard both the
curves and their control points as the perspective projection of
polynomial B-sptines.

This method does not start working until degree three since parabo-
las (polynomial quadratics) cannot be curvature-matched, in the fol-
lowing sense. Given a sequence of n+l points with slopes
specified at those points, there does not in general exist a
corresponding sequence of n parabolas (parametric quadratics) con-
necting those points and having the specified slopes there, such that
curvature varies continuously around the curve (C2-continuity). In
fact these constraints uniquely determine those parabolas, making
this limitation obvious.

It follows that the approach of projecting a C2-continuous
polynomial curve to yield a C2-continuous rational curve fails for
quadratics because of the unavailability of appropriate polynomial
curves to project. Hence piecewise-conic curves cannot be made
C2-continuous by this method.

Nevertheless Cg-continuity of piecewise-conic curves, with
specified locatioff and slope of junctions, can always be achieved
by adjusting only sharpness. As the sharpness S of a conic goes
from zero to infinity the curvature at both endpoints can be seen to
go from infinity to zero. For n conics connecting n+l given
point-slope pairs, there remain n degrees of freedom, namely the
sharpnesses of those conics. We may adjust in turn the sharpness
of each conic but the first to match the curvature of its predecessor.
This consumes n-I degrees of freedom to achieve Cg-continuity ,
leaving the sharpness of the first curve (now linked to ~ e n-1 other
sharpnesses) as the remaining degree of freedom for the whole
curve.

For this approach it suffices to have a formula for curvature at end-
points. Writing A for the area of the triangle ABC and a,b,c for the
lengths of the sides BC, CA,AB respectively, the curvature K at A
measured in XY coordinates is given by the formula

A
K = (3.1)

$2c 3

We may derive this as follows. Rotate and translate the XY coor-
dinate system (preserving curvature) to put the origin at A and the
X axis on AB. Now take the parametric form of the conic, which
will be two rational quadratics in t, one for each of x and y,
namely

2(1-t)tSxB + t2Xc t2y c
x - , y - (3.2)

l+2(S-1)(1-t) t l+2(S-1)(1-t) t

Differentiate these expressions with respect to t and evaluate the
resulting derivatives at t=.02 to obtain .~= 2Sx n, 3~ = 0, and

= 2y o The usual formula .r = yr relating tangential velocity .x,

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985
I

radial acceleration),', and radius r when) = 0 leads us to
K = yc/2S~x2 B where K is curvature, the reciprocal of the radius r.
Finally we use A = XBYcl2 to obtain (3.1).

Besides its application to exact matching, the formula yields much
insight into nonmatching, at oplx~site ends of the same conic as
well as at junctions.

Let us consider first opposite ends of the same conic. We shall
show how to build a "curvature transformer."

By symmetry the curvature at C must be A/SXa 3. Hence the ratio
of the curvature at A to that at C must be the cube of a/c, a quan-
tity independent of everything but the lengths of AB and BC. Thus
to build a "curvature transformer" consisting of an ABC conic m
connect two points A and C at which the curvatures are in the ratio
of 8 to 1 in a Cg-continuous way, with the smaller curvature at A,
a necessary and-sufficient condition (not including other require-
ments such as Cl-Continuity) is that AB be twice as long as BC.

Now let us consider junctions, and address the problem of
C2-co.ntinuity at inflection points. Points of zero curvature are
nonexistent in conics other than lines. Hence piecewise-eonie
curves cannot be C?TCOntinuous at inflection points. This is a
major reason for prefrrring cubics to conics.

The above formula for curvature however gives us some idea of
how closely zero curvature at a point of inflection can be approxi-
mated. Whether conic or cubic, a major use o f splines is to
approximate curves, to within acceptable visual or numerical limits.
Hence we are not breaking any rules when we ask whether a good
approximation is possible.

Whatever the prevailing curvature is at some distance removed
from a point of inflection, a curvature transformer can be used to
connect points on either side of an inflection in such a way that the
curvature at the inflection is very small by comparison to the pre-
vailing curvature. This can be done with a quite reasonable choice
of ratio of sides; by the time the ratio reaches 3 to 1 the curvature
at the inflection will be 1/27 the prevailing value.

This argument, together with its application to examples we have
seen with outline fonts defined by conics, has convinced us that
this ability to approximate a zero-curvature point of inflection so
closely disposes almost entirely of the objection that conies lack
such points. In support of this we ask the reader to inspect the fol-
lowing characters from a conic representation of Times Roman
(Figure 3) to decide whether the points of inflection exhibit any
objectionable or even detectable curvature discontinuity. The
attached spline skeletons show the locations of the ABC control
points (though not the sharpnesses).

Figure 3. Conic-spline Characters With Points of Inflection

3.2. Internal (Variational) Curvature

We are interested in this section in the smoothness of curves. A
plausible measure of smoothness is degree of variation of curvature
around the curve. Extremely sharp or fiat conics are obviously
unreasonable candidates for "reasonably smooth" curves. At the

elliptical extreme (low sharpness) the total curvature of the curve
(the angle between its endpoint tangents) is concentrated at the
endpoints, whereas at the hyperbolic extreme it is concentrated in
the middle. Such extremes are far from "reasonably smooth."

One might settle for S = 1, a parabola, as a somewhat arbitrary but
convenient intermediate value. Unfortunately, for curves with total
curvature approaching 180 degrees (angle ABC approaching zero),
a parabola suffers from the same problem as an extreme hyperbola,
concentrating the curvature in the middle. Furthermore, when
AB = BC (isosceles triangle) there is an obvious candidate for the
conic of least curvature variation, namely the circle, which has no
curvature variation and is easy to represent, manipulate, plot, and
understand, and, only partly for these reasons, is in much demand.

This is not to say that minimum variation is always what is
wanted. Font designers often want superellipses. If we measure
superellipticity in terms of the sharpness of a conic approximating
a quadrant of a letter's outline, a commonly preferred superellipti-
city is one lying somewhere between a circle and a parabola.

An obvious measure of curvature variation is ellipse eccentricity.
One problem with this measure is that it attains infinity at the para-
bola; this puts a discontinuity in the middle of a range that goes
from ellipses to hyperbolas. Another problem is that it is not the
easiest measure to calculate with.

The measure we introduce here relates the actual sharpness to the
sharpness that yields the ellipse of minimum eccentricity. If as
before we let a,b,c be the lengths of sides BC,CA,CB respectively,
this minimum-eccentricity sharpness is given by

b
S - (3.3)

This formula was arrived at after much conversation with
Macsyma, and we have been unable to construct a summary of the
rationale behind it.

An equivalent criterion for minimum eccentricity told to us by Lyle
Ramshaw is when the line from the center of the ellipse to a corner
of the rectangle bounding the ellipse and aligned with the major
and minor axes also passes through the B vertex of the triangle.
We have not yet verified the equivalence of Ramshaw's nonmetri-
eal criterion with our metrical one. However we have found the
metrical one easy to apply.

F~r ~ right triangle, meaning here that ABC is a right angle,
a +c = b by Pythagoras, so S =0.7071... for the ellipse of
minimum eccentricity. From Ramshaw's criterion, this ellipse will
be one quadrant of an ellipse whose major and minor axes are
parallel to AB and BC (not necessarily respectively).

For an isosceles triangle, meaning here that a = c, there exists an
ABC conic which is a circular arc from A to C. Since its eccentri-
city is 0, it follows that the formula for minimum eccentricity must
yield the sharpness for a circle (which it does). In this case the
formula simplifies to b/2a, recognizable as the cosine of the angle
BCA (and of BAC).

We make use of this formula for minimum curvature variation to
provide an alternative measure of sharpness that we call variation.
It is the ratio of the actual sharpness to the sharpness of minimum
curvature variation. When the variation is 1 the curvature variation
is at a minimum over all conics in this triangle. Larger variation
means a shalper curve, smaller means flatter. Larger variations are
useful for drawing superelliptical figures, assuming that they are
partitioned into four quadrants at their four extrema.

A necessary and sufficient condition for a conic to be an arc of a
circle is for its triangle to be isosceles and its variation to be 1.

As one application for this concept, a simplified conic spline

155

@ S I G G R A P H '85

package could restrict itself to conic arcs of variation 1. Each arc
would be specified by three points. A connected sequence of arcs
would require only two points for each new arc. This package
would allow any circular arc to be drawn, corresponding to isos-
celes triangles, and offer a limited variety of elliptical arcs as well.
Our experience with fonts however indicates that variation 1 is
much too reslrictive for that application.

It should be noted thfit, even for conic splines that are segments of
ellipses, the eccentricity of the ellipse does not uniquely determine
sharpness, contrary to what has sometimes been stated in the litera-
ture. As sharpness increases from 0, eccentricity starts at infinity,
decreases until the ellipse of minimum eccentricity is reached, after
which the eccentricity increases again, returning to infinity when
the sharpness reaches unity. Hence any given eccentricity is asso-
ciated with two possible sharpnesses. In addition, an eccentricity
below the minimum is meaningless. This makes eccentricity an
unworkable substitute for sharpness. Variation on the other hand is
linearly related to sharpness for any given triangle and hence does
not have these problems.

4. Rendering

The problem is to visually approximate a two-dimensional figure
drawn in the real (Euclidean) plane with an image consisting of a
uniform and independent shading of each of the squares or pixels
of a grid. In this paper we shall treat only zero-aperture imaging,
in which the image is chosen to (best) match the figure at pixel
centers. Zero-aperture is more readily implemented and performs
better than larger apertures since it does not involve any area meas-
urement, but is inferior at rendering fine detail, where a unit aper-
ture (each image pixel matches the average of the corresponding
figure pixel) yields somewhat better results and dithering with an
aperture covering several pixels can produce a significantly better
image. One may of course have one's cake and eat it too by con-
strutting a sequence of images with increasing aperture sizes, so
that a crude image appears immediately using the techniques of this
paper and then as you watch is more carefully refined using other
techniques.

We shall fi~rtherrnore treat only the case of black and white figures
and images; in any such case where the image shades include all
the figure shades, the figure-image match at pixel centers is exact.

We assume an XY coordinate system with one lattice (integer)
point per pixel. (These are device coordinates; pixels need not
actually be upright, square, rectangular, or even congruent in physi-
cal coordinates.) We shall refer to increasing x as right and
increasing y as up. The exact location of the lattice points inside
the pixels may vary in half-pixel steps for each dimension with
each conic arc; this turns out to allow a representable conic to be
translated by half-pixel steps in the plane without making a mess
of the associated arithmetic.

We treat only figures having region boundaries that, in device coor-
dinates, are piecewise conic. These will also be conics in physical
coordinates if device and physical coordinates are projectively
related.

There are three stages in the way we discretize a conic segment:
subdivision, alignment, and tracking. Subdivision partitions the
conic into smaller conics of a size manageable by our algorithm,
the limiting size being in proportion to the number of bits in an
integer. We have already described how to subdivide conics in the
section on principles of conic splines. Alignment adjusts the points
A,B,C of each conic arc so that A-B and B - C have integer x and
y components, yielding a representable conic, which may thereafter
be translated in the plane by half-pixel increments. Tracking is the
Pitteway process.

156

4.1. Alignment

Our exact version of Pitteway's algorithm depends on having the
control points A,B,C separated by integer distances in each dimen-
sion and the square of the sharpness being a rational. We call con-
ics satisfying these conditions (including the size limitations)
representable. Alignment makes small adjustments to a conic to
make it representable.

A set of n reals may be adjusted to make all their differences
integral with an adjustment to each of at most (1-1/n)/2. (Reduce
the n reals modulo 1 to form a ring, i.e. arrange the fractional parts
of the n reals in a circle, find the biggest gap, of size at least l/n,
and move all points away from that gap by at most (1-1/n)/2 to
coincide.) Hence three reals a,b,c may be adjusted to make their
three differences all integer by adjusting each by at most 1/3. For
this case this can be accomplished by moving only two of the three
by at most 1/3 each, so in the worst case the average motion of the
three points becomes 2/9. It is incorrect however to conclude that
the expected value of the average motion is exactly 1/9, though it
should be somewhere in the neighborhood of 1/8.

Full quadrants provide a common special case admitting a better
treatment than the above. This is when one end is horizontal and
the other vertical. Adjust each endpoint along the normal at that
endpoint to the nearest half-pixel. Then adjust each endpoint along
the tangent at that endpoint to make A - C integer in x and y. Then
B may be chosen to make the tangents exactly horizontal and verti-
cal; it may be seen that B's adjustment tracks only the first adjust-
ment (along the normals), which is the smaller adjustment. This
method results in an expected movement of any point of the curve
of about 1/8 of a pixel.

Better effects are obtained at extrema when the extremum is near a
pixel boundary. This avoids both fiat spots and pimples, one of
which arises when the extremum occurs near a pixel center. To
arrange this requires a coarser adjustment to the conic. In our
experience it has usually proved more esthetically satisfying to set-
de for the larger distortion than to have flat spots or pimples.

4.2. Sharpness

The problem is to find the closest rational approximation to S 2 with
given bounds on the numerator and denominator. We use what
amounts to binary search in the Farey sequence. The Farey
sequence is an ordered list of reduced fractions, with bounded
numerator and denominator. It may be generated by starting with
just two fractions, 0/1 and 1/0, being the reduced forms of respec-
tively zero and infinity. The element intermediate between any two
elements a/b and c/d is defined to be (a+c)/(b+d). Thus the first
rational between 011 and 1/0 is 1/1. Next we get 1/2 between 0/1
and 1/1, and 2/1 between 1/1 and 1/0, then 1/3 between 0/1 and
1/2, and so on. It can be shown that only reduced fractions can be
produced in this way; for example 2/6 will never appear. (Hint:
for any adjacent pair a/b, c/d of fractions, ad-bc = 1.)

To search the interval bounded by a/b and c/d, compare
(a+b)/(c+d) with the number being approximated to see on which
side of (a+b)/(c+d~ to continue the search. Note that it is only
necessary to have around at any one time the two bounds on the
interval and the new "midpoint ," that is, the Farey sequence can
be computed " o n the fly."

By careful arrangement one may avoid all arithmetic save additions
and comparisons in computing a rational approximation with this
method. (Hint: maintain a copy of the three active denominators,
each scaled by the number to be approximated, and compare it
with the corresponding numerator.)

Gaps between Farey fractions vary considerably. The gap between
fractions with denominators b and d is llbd. In practice the worst
gap is at S 2 = 1/2, where the nearest rationals are 12/25 and 13125,
leading to a worst-case error of 1% in S 2 and hence a 0.5% error in
S.

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

Errors in approximating sharpness have little effect on the end-
points of the curve. They leave the position and tangent of each
endpoint unchanged and affect only the curvature. In the interior
they of course flatten or bulge the curve a little, without however
upsetting the overall smoothness of the curve. Thus sharpness
errors tend to be more tolerable than an error in B, which in turn is
usually more tolerable than errors in A and C.

The tradeoff between bounds on numerator and denominator and
bounds on size of conic were made with the above considerations
in mind. These tradeoffs can be changed as required.

4.3. Bresenham-Pitteway Tracking

The tracking considered in this section is at the heart of the line
and conic algorithms described by Bresenham [1] and Pitteway [7]
respectively.

We take a quadrant of a curve to mean an open (i.e. not containing
its endpoints) Cl-continuous curve segment whose slope is
nowhere either horizontal or vertical. We let Bresenham-Pitteway
tracking denote the process of following a quadrant of an implicitly
defined curve F(x ,y)= 0 by sampling F at pixel centers in the
neighborhood of the curve to determine on which side of the curve
each pixel center falls. One tracks quadrants partly so that "s ide"
is well-defined, partly to simplify the tracking process.

The Bresenham-Pitteway process is the following trivial procedure,
parametrized by the direction of tracking, expressed as a pair of
procedures, one called hot - either left() or right() - for moving in
the horizontal direction, the other vert - either up() or down() - for
vertical motion. (In practice track should be expanded as a macro,
with all four combinations of these two procedures instantiated as
inline code.) These two procedures are responsible for all conse-
quences of motion, both moving the drawing device and updating
the x,y coordinates and associated values. The predicate
side(x,y,Q) tests which side of Q the point (x,y) is on, returning
true if we are on the side where horO brings us closer to Q.

track(proc hor, proc vert):
while not done() do

if side(x,y,Q) then hor 0 else vert 0

Even before we fill in the details of done(), side(), horO, and
vertO, this simple procedure raises a couple of not so simple prob-
lems. First, although the set of horizontal and vertical moves it
makes is closely related to the pixels required for zero-aperture
rendering, the relationship needs to be tightened up further to cap-
ture those pixels exactly. As partial evidence for this it should be
noted that the procedure visits a different set of pixels depending
on which direction it traverses the curve. Second, getting the exact
starting and stopping conditions turns out to be a most exasperating
exercise. We have not to date found a simpler treatment of these
problems than the following.

The exact pixels we want as the final product of tracking a qua-
drant Q may be thought about as follows. We want those pixels
either immediately to the left of, or to the right of, or above, or
below Q, which we may denote L(Q), R(Q), A(Q), and B(Q)
respectively. For example when we track the left boundary Q of a
horizontally scanned region we want R(Q), which consists of the
leftmost pixels of the scanned region. Similarly when we track the
lower boundary of a vertically scanned region we want A(Q).

A good way to understand such a sequence of pixels is in terms of
dual pixels. A dual plxel is a unit square whose corners are pixel
centers (and hence vice versa - the corners of a pixel are dual pixel
centers). Equivalently a dual pixel is the translation of a pixel by
one half in each dimension. Associated with each dual pixel d is
its North-West pixel NW(d), and similarly for NE(d), SW(d), and
SE(d). The inverse association, from pixels to dual pixels, uses the

same names, so that SE(NW(d)) = d.

(A detail unimportant in understanding the general idea, which
should therefore be skipped on a first reading, is the treatment of
ties, pixel centers actually on Q. Suppose tics are resolved by
declaring them to be below and to the left of the curve.
Corresponding to this, dual pixels are taken to include their left and
bottom edges and bottom left corner, but Bot their top left or bot-
tom right or top fight corners or top or right edges. In general
each dual pixel includes just that comer which lies in the same
direction from the dual pixel as that used to resolve ties.)

The significance of dual pixels is that they provide a more straight-
forward characterization of the discrete essence of Q than do pix-
els. We define the discretization 8(Q) of quadrant Q to be the set
of dual pixels intersecting Q. The sense in which 8(Q) captures Q
is given by the following theorem.

Theorem.
L(Q) = Nw(8(Q))nSW(8(Q)), R(Q) = NE(5(Q))nSE(5(Q)),
A(Q) = NW(5(Q))~NE(8(Q)), B(Q) = Sw(8(Q))nSE(8(Q)).

Proof. By symmetry it suffices to consider L(Q). Since Q is
open, if Q intersects an edge of a dual pixel it must also extend
beyond it. Now L (Q) ~ NW(~(Q))nSW(~Q)) because Q must
intersect the fight-going edge coming from each pixel in L(Q),
whence Q must intersect the dual pixels above and below that
edge. Conversely, L (Q) ~ NW(5(Q))nSW(8(Q)) because given
two adjacent vertically aligned dual pixels, Q must cut their com-
mon edge, whence the left end of that edge must be a pixel center
immediately to the left of Q. []

The significance of this theorem is that it demonstrates that 5(Q)
contains all the information needed for whichever set of pixels, e.g.
L(Q), we need for a particular tracking applications. Furthermore,
given all four of these sets of pixels one may infer the position of
any pixel center relative to Q, though not its exact distance from
Q. Hence any position-based tracking method such as zero-
aperture only needs to know ~Q).

Bresenham-Pitteway tracking cannot be either a direct enumeration
of the desired pixels (e.g. L(Q)) or of ~Q). Instead tracking fol-
lows a greedy tour of Q, defined as follows.

A tour is a sequence of pixels connected by length-1 rook moves,
all horizontal moves being in the same direction and similarly for
vertical moves. We say that a pixel is n-valent in Q when it inter-
sects n elements of 5(Q). (We omit 'in Q' when it is provided by
context.) A tour o f Q is a maximal tour having all pixels of
valency 2 or 3. (Quadrants have no 4-valent pixels.)

Remark. All tours of Q have the same length, namely I~(Q)[-1.

Remark. All tours of Q intersect Q equally often, namely one
more than the number of trivalent pixets. (Exception: when
I~5(Q)I = 1 there are no intersections.)

A greedy tour of Q is one whose intersections with Q are as far as
possible towards one end. There are therefore two greedy tours of
Q, one for each end, which are the same tour if and only if 8(Q) is
a pure diagonal (one having at most two divalent corners).

The two key properties of greedy tours are that they are what
Bresenham-Pitteway tracking yields, and the desired pixels (e.g.
L(Q)) can be very easily extracted from them. The former pro-
perty is best verified by the reader by inspection. L(Q) or R(Q)
may be enumerated in order by taking those pixels the tracking
algorithm is at just before making each vertical move, plus or
minus one in the horizontal direction depending on the direction of
travel and whether L or R is needed. Dually the pixels of A(Q) or
B(Q) may be enumerated just before each horizontal move, plus or
minus one vertically. Since the tracking process is all incremental

157

S I G G R A P H '85

the plus-or-minus-one arithmetic need be performed only once, at
the beginning.

This perspective on tours now makes it easy to deal with the end-
points. As may be easily verified by inspection, the first pixel
enumerated by the immediately above procedure should be dis-
carded, and an additional pixel at the other end should be obtained
by allowing the procedure to continue for one more pixel output.

4.4. The Numerical Component

The procedures up(), down(), le~O, and right(), and the predicate
side(x,y,Q), are implemented as the numerical component of
Pitteway's conic-tracking algorithm. The predicate tests the sign of
F(x,y) at the current location (x,y), and also the sign of a partial
derivative of F(x,y) when necessary. The four motion procedures
keep the value of F(x,y) up to date, which they do incrementally by
also keeping up to date the values at the current location of the
partial differences

Fx(x,y) = F(x+ l,y)-F(x,y) Fy(x,y) = F(x,y+ l)-F(x,y)

F=(x,y) = Fx(x+ 1 ,y)-Fx(x,y) Fyy(x,y) = Fy(x,y+ l)--Fy(x,y)

Fxy(X,y) = Fx(x,y+ 1) -F x(x,y)

For each move up, down, left, or right, the updating procedure may
be expressed as follows. (We use the convenient += and ~ nota-
tion of C; x += y denotes the operation of adding y to x, and simi-
larly for -= .)

up(): F+=Fy; F~+=F~y; G + = F . ;

dan(): Fy --= F~; F~ ~e~; F --= Fy;

right(): F 4.= Fx; F x 4-= Fxx; Fy +-- Fxy:

left(): e y - = Fxy: F x --= r=; F --= Fx;

The initial values of F and the partials at (x,y) (chosen to lie at a
distance of less than one pixel from the curve), may be computed
from the following formulas, which are obtainable directly from the
definitions. Note that these are partial differences, not partial
derivatives, whence the extra ct in F x and T in Fy.

F o~x 2 + 213xy + ~ 2 + 5x + ey +
F 2otx + ot + 213y + 5
F x 2'yy + 'y + 2~x + e
F y 2tx
F xx 213

As shown earlier, when the control points are lattice points the
Greek letters are all integers. To take best advantage of this the
coordinate system may be chosen separately for each conic to make
the control points lattice points. The sampled points will then in
general not be lattice points. However if they are half lattice
points (2x and 2y are integers) then all the partial derivatives will
be integers, a property we need for exact tracking. It does not
matter that F is not an integer since we shall only make comparis-
ons with F of the form F<0 and F _> 0, so taking F to be the floor
of its true value will not affect the outcome of such tests.

Overflow may occur during the calculation of F. However the
final value of F should be close to 0 since the initial pixel is adja-
cent to the curve. To be exact, its magnitude cannot exceed that o f
F x or Fy, which must be arranged not to overflow, both for this
reason and to make reliable increments. Hence all values lost by
overflow will cancel, whence overflow may be ignored.

Stopping Condition

For the stopping condition for tracking, represented by the pro-
cedure done(), it suffices to test either the y or x coordinate,
depending on whether we are scanning horizontally (L(Q) or R(Q)

pixels) or vertically (A(Q) or B(Q) pixels) respectively. The test is
against a limit that is precomputed by inspection of the endpoints.
This test may be reduced to a single decrement-and-branch-on-zero
instruction by performing it as a part o f the pixel output process.

Aliasing

Pitteway's algorithm is a sampling process; it stays on the curve by
sampling lattice points in the neighborhood of the curve, never
sampling more than a pixei away. As in any sampling process, the
signal may contain frequencies high enough to confuse the sam-
piing. In the case of a conic this can happen when rendering a thin
ellipse, where the opposite sides of the ellipse are less than a pixel
apart. In this case it is possible to cross both sides in one step and
miss the region in between. When this happens Pitteway's algo-
rithm goes in a vertical or horizontal line searching for the boun-
dary until the stopping condition is met or overflow happens.

The starting position and stopping condition define a band parallel
to the scanning direction outside which nearby edges do not matter.
If two edges of the conic occur inside this band, they will be
separated by the line consisting of the zeros of the partial deriva-
tive of F with respect to the direction of scanning, i.e. the line
F~ t= 0 for horizontal " t . . scamung and F~ = 0 for vertical scanmng.
Hence whenever there is doubt about whether two edges have been
crossed at once, the doubt may be resolved by inspecting the par-
tial derivative. This doubt arises just when we are on either side of
both edges. This adds a test (of the sign of the partial derivative)
to the code for one of the outcomes of the side() predicate but not
the other. By symmetry the side() predicate should hold half the
time on average, diluting the expected cost o f the test by a factor
o f two.

This method may be considered a form of antialiasing, in that it
takes advantage of the derivative not containing any high frequen-
cies, unlike F itself.

There is no need to keep a separate copy of F x" up to date since
F~' = F i - F J 2 , reducing the test F~t< 0 to the comparison
F x < F~/2. Fx~/2 should be kept in a register (a machine-
dependent performance consideration), but unlike F x' it needs no
updating. Since the test o f the derivative is only done half the
time, this is better than having to update a separate copy of the
derivative itself at every step.

The appropriate sign of Fx', corresponding to which edge we are
tracking, is determined at the outset by evaluating F x" at each of A
and C; since not both A and C can be at horizontal extrema, at
least one of them will yield a nonzero value for F, ' , which then
yields the desired sign. An easy test for whether F x" is zero at A is
whether YA = YB. With this test it suffices to evaluate F x' at only
one of A or C.

It is important to realize that the correctness of this method
depends on the stopping condition for the basic loop, which deter-
mines the band within which the tracking takes place. The claim is
that the algorithm can rely on the signs of F and F x' (if scanning
horizontally) to infer its current position relative to the curve pro-
vided the current position has not gone past the y limit. Consider a
very thin horizontal ellipse, for which F x = 0 is a vertical line
through its center. One can cross the whole o f this ellipse in one
step moving vertically without detecting a sign change in either F
or Fx'. However one cannot do so without also going past the y
limit.

4.5. Strokes
A commonly occurring problematical region type is the stroke.
This is a region having two essentially parallel (whether or not
curved) boundaries only a few pixels apart, with single pixel
separation being the most critical. The problem is that i f the two
boundaries are rendered independently the sampling artifacts in
each boundary may beat with each other to create even worse

158

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

arti~cts.

A somewhat simple-minded solution that is independent of curve
family is to partition strokes into shallow and steep components,
throughout which the slope (of the medial axis) stays within 45
degrees of horizontal or vertical respectively. Then for each such
component adjust matching pairs of shallow or steep boundaries to
make them respectively vertical or horizontal integer-distance trans-
lations of each other. This eliminates all beating between the two
boundaries. Steep (shallow) strokes then have the same number of
pixels in every row (column).

This adjustment will leave a gap at shallow-steep junctions, due in
part to the ends of the adjoining strokes being at right angles and
in part to the ends being moved to the appropriate halfpoints. The
gap may be closed by connecting corresponding boundaries (outer
to outer, inner to inner) with straight lines, providing tangent con-
tinuity thought not curvature continuity. Also thickness is no
longer uniform, decreasing at diagonal points to 70% of the thick-
ness at extrema. As thickness increases the boundary interference
problem becomes less objectionable while the gap closure and the
thickness variation become more noticeable. Hence at some thick-
ness, in the vicinity of 3 to 5 pixels, this treatment of strokes does
more harm than good.

Better effects than are possible with this simple-minded method
may be had using the polygonal pens described in J. Hobby's
thesis [12]. His treatment is equivalent to the above at a thickness
of one pixel, but breaks thicker strokes up into smaller pieces each
with its own treatment, with the two boundaries still being the
same within each piece but with the corresponding points between
those boundaries no longer always being parallel to an axis but
rather being approximately normal to the curve. This work is
remarkable for its extensive and effective use of elementary
number theory.

5. Precision and Performance Considerations

The coefficients tx through T of the implicit equation of the conic
range from quadratic to quartic polynomials in the XYZ coordi-
nates of A,B,C. The coefficients ct, [I, and 'y are quadratic, 8 and e
are cubic, and { is quartic. To fit the resulting large numbers into
a 32-bit word, it is necessary to hold down the size of the coordi-
nates of A,B,C.

The origin is translated to the center of the rectangular hull of the
triangle to minimize the magnitudes of these coordinates.

For 32-bit arithmetic we limit this magnitude to 100, whence the
triangle must fit in a square of 200 pixels on a side; larger triangles
must have their conics subdivided. A proportionately larger trian-
gle is possible with 64-bit arithmetic.

This size is achievable if the numerator of the square of the sharp-
ness is limited to 15 and the denominator to 25. For the values of
sharpness so representable, the arithmetic is exact. More precision
in sharpness may be had by reducing the limit on the size of the
triangle.

On the 68010 the inner loop of the exact Pitteway process, without
the modification for aliasing, is a constant 7 instructions: three
adds, compare, conditional branch, render, and decrement-and-
branch (all arithmetic being exact, using 32-bit integers). With the
antialiasing modification an additional comparison instruction and
associated branch instruction are executed every second time
around the loop on average, increasing the number to an average of
8 instructions per step around the curve. The result is that the run-
ning time for the curve-drawing phase of our algorithm is on the
order of 10L microseconds where L is the length of the curve in
pixels in the L 1 or Manhattan metric (number of length-1 rook
moves).

6. Proiotyping, Packaging and Integratlon
A system based on the above algorithms was built at Sun three
times. The first implementation, between February and May of
1984, was done concurrently with working out the necessary
theory. It performed well but suffered from a lack of perspective
on our part at the time as to what functions were needed and how
the interfaces should be structured. As a prototype it was invalu-
able for testing the principles. A second implementation was car-
ded out in June and July to improve both the interfaces and some
of the algorithms. This could be called the packaging phase. The
system was then used extensively for a number of months as a
component of an outline font design system, incorporating a spline
interpolating package for digitized point data, and an outline font
editor. A third implementation, still under way, constitutes the
integration phase, to allow the system to fit in smoothly with Sun's
version of the graphics universe: CORE and GKS on top of CGI
on top of Pixrect (Sun's internal bitmap standard).

Acknowledgments

Martin Brooks, Craig Taylor, Mike Shantz, Jerry Evans, Leo Gui-
bas, Lyle Ramshaw, John Hobby, Don Knuth, Chuck Bigelow, and
Kris Holmes formed a patient and sympathetic audience for many
discussions of this material. Martin Brooks provided the first of
the three implementations.

7. Bibliography

[1] Bresenham, J.E. Algorithm for computer control of a digital
plotter, IBM Systems Journal, Vol. 4, p.25, 1965

[2] Catmull, E., COmputer Display of Curved Surfaces, Proc.
IEEE Conf. on Computer Graphics, Pattern Recognition and Data
Structure, p . l l , May 1975.

[3] Forrest, A.R., Curves and Surfaces for Computer-Aided Design,
Ph.D. Thesis, Mathematical Laboratory and Engineering Dept.,
University of Cambridge, July 1968.

[4]. Coolidge, J.L, A History of the Conic Sections and Quadric
Surfaces, Oxford University Press, 1945.

[5] Lockwood, E.H., A Book of Curves, Cambridge University
Press, Cambridge, 1961.

[6] Pavlidis, T., Curve Fitting with Conic Splines, ACM Trans.on
Graphics, 2, 1, 1-31, January 1983.

[7] Pitteway, M.L.V., Algorithm for drawing ellipses or hyperbolae
with a digital plotter, Computer J., B10P, p282-289, 1967.

[8] Sederberg, T.W., Implicit and Parametric Curves and Sur-
faces for Computer Aided Geometric Design, Ph.D. Thesis,
School of Mech. Eng., Purdue U., August 1983.

[9] Tiller, W., Rational B-splines for Curve and Surface Represen-
tation, IEEE CG&A, 61-69, September 1983.

[10] Todd, J.A., Projective and Analytical Geometry, Pitman,
London, 1947.

[I1] Yates, R.C, Curves and Their Properties,, Classics in
Mathematics Education Series, National Council of Teachers of
Mathematics, 245pp., 1974.

[12] Hobby, J.D., Digitization of Brush Trajectories, Ph.D.
thesis, Stanford University, 1985.

[13] Salmon, G., A Treatise on Conic Sections, Longmans,
Green, & Co., 6th edition, London, 1879. Reprinted by Dover Pub-
lications Inc, NY.

159

