
SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985

AN AUTOMATIC BEAUTIFIER FOR DRAWINGS AND ILLUSTRATIONS

Theo Pavlidis
Christopher J. Van Wyk

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract

We describe a method for inferring constraints that are
desirable for a given (rough) drawing and then modifying
the drawing to satisfy the constraints wherever possible.
The method has been implemented as part of an online
graphics editor running under the UNIX'~ operating sys-
tem and it has undergone modifications in response to
user input. Although the framework we discuss is gen-
eral, the current implementation is polygon-oriented. The
relations examined are: approximate equality of the slope
or length of sides, collinearity of sides, and vertical and
horizontal alignment of points.

CR Categories and Subject Descriptors: 1.3.5 [Computer
Graphies]: Computational Geometry and Object
Modeling--geometric algorithms, languages, and sys-
tems; 1.4.3 [Image Processing]: Enhancement--geometric
correction; 1.4.5 [Pattern Recognition]: Clustering--
algorithms and similarity measures.

1. Introduction

Illustrators often need to create drawings that con-
tain many parallel line segments, right angles, aligned
rectangles, and that are in other ways "neat." This has
led to the development of graphics editors and languages
that permit users to specify an illustration by constraining
the relative locations of picture elements like points and
lines rather than by giving them explicitly and absolutely
[1-3]. These tools grow more cumbersome to use as the
complexity of a drawing increases. It would be nice if
one had a procedure whereby a sloppily drawn figure
could automatically be redrawn more neatly.

One could view interactive editors in which one can
snap to rectilinear grid points as implementing a simple
kind of beautification. Drawing with a grid has some seri-
ous limitations; for example, once a resolution is selected
refinement is difficult, and there is a very coarse quanti-
zation on the slopes of lines allowed in the drawing. In
addition, the idea of "snapping" offers little help in creat-
ing computer representations of drawings from paper ori-
ginals by digitization [4-6], which is necessary in order to
integrate electronic and paper graphics. Another

t UNIX is a Trademark of AT&T Bell Laboratories.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific per-
mission.

© 1985 ACM 0-89791-166-0/85/007/0225 $00.75

potential application of beautification is in the extraction
of solid object descriptions from digitized images (range
or light data). Edge extraction algorithms produce the
equivalent of a line drawing which is rough because of
noise in the image [7]. The process for converting that set
of lines into a set which is consistent with a projection of
the edges of a solid requires transformations that are
either identical or similar to those used in beautification.
Beautification stands in contrast to specialized kinds of
picture transformations. An example of the latter is com-
mon in integrated-circuit editors that implement layout,
compaction, and routing algorithms [8,9].

In this paper we discuss how we approached the
design of a beautification procedure, our experience in its
implementation, and how the reactions of users have led
us to modify our approach. Section 2 presents what we
have come to understand to be the heart of the beautifi-
cation problem, and the requirements that a beautifica-
tion procedure must meet. Sections 3-5 present a solution
to the problem as we-pose it in Section 2. We imple-
mented our solution as part of the PED graphics editor
[10], which runs under the UNIX operating system on the
AT&T Teletype 5620 dot-mapped display terminal [1 !];
PED users may invoke the beautification procedure at
any time, and the result is displayed in real time. Feed-
back from these users has been very valuable to our
understanding of the problem and this paper reflects what
we have learned from public use of a part of our solution.

2. Fundamental Problems and Outline of the Beautifica-
tion Scheme

Our approach to automatic beautification requires
the solution of two problems. First, we need to infer from
the initial sketch appropriate constraints to impose on the
beautified version. Second, we need to change the initial
sketch to satisfy those constraints. To reduce the vague-
ness of these descriptions so that an algorithmic attempt
at solution is at least possible, we shall restrict the prob-
lem in a number of ways.

First, we limit our goal to images that can be
defined in terms of points. This restriction covers most
line drawings. We can express the problem mathemati-
cally as follows. Let the points of a drawing--vertices of
polygons, centers of circles, etc.--be (xl ,Yl) , "" ",
(x, ,y,) , and let X be the vector of coordinates with
X2i-l - xi and X2i - Yi for 1 ~<i~<n. Suppose the initial
value of X is X °. It is tempting to define beautification
as choosing a set of constraints F k such that

Fk(X °) ~< 6, k - l , 2 , ' - - , (i)

then finding a vector X e such that

225

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325165.325240&domain=pdf&date_stamp=1985-07-01

F k(X s) = 0 , k = l , 2 , - - ' , (2)

and

I Ix"-x°l l® < ,, (3)

where I1"11- denotes the maximum-coordinate-norm.

For example, consider the simple constraint that
points line up vertically. Suppose x3 and Xs differ by
less than 6; then we would look for a solution that satis-
fies the equation

X3 -- X8 m 0 .

Formally, there is only one relation, F~, in this ease
expressed as the scalar product of X with a vector V
whose components are all zero, except for V 5 - 1 and
V j s - - ! .

This formulation of the beautification problem
assures that all points stay near their original positions.
It offers no insight as to the choice of F t (indeed,
F~ (X) - X - X ° is an obvious choice that is appropriate in
some cases), but given a suitable Fk, it reduces the
second part of the beautification problem to mathemati-
cal programming (linear programming in case all con-
straint equations are linear).

The example of Figure l shows a pitfall in this
approach. The original drawing contains several lines
that are nearly vertical. If, as above, we choose {Fk} to
be the constraint that nearly equal x-coordinates should
be made equal, then we can obtain a solution that satis-
fies {F k} and moves all points by only a small amount.
However, the result of this beautification may be unsatis-
factory because three of the line segments have been
moved on top of each other. This suggests the desirabil-
ity of imposing negative constraints, which say that pic-
ture entities should not satisfy a relation, in addition to
positive constraints that enforce relationships among enti-
ties.~ For this example, one possible negative constraint
is that distinct points that are close in both x and y coor-
dinates should not be constrained to be equal. Note that
using tighter bounds on the size of allowed movement
during the beautification does not resolve this problem:
The endpoints of the three rightmost lines may be moved
by much larger amounts than those of the three leftmost
lines and we will still achieve good results.

Formally, we should add a set of nonequalities to
the system of Eqs. (2) and (3):

Gk(X s) # 0 , k - 1 , 2 , " " . (4)

Notice that even if {Fk} and {Gk} are linear, the system
of (2-4) cannot be solved by linear programming.
Another reason for not using mathematical or linear pro-
gramming to solve the constraint systems is that they
offer little guidance in choosing a large satisfiable subset
of a system than cannot be completely satisfied; such sys-
tems arise frequently in beautification.

So far we have not addressed the computational
feasibility of finding the constraint relations {Fk} and
{Gt}, and of solving the resulting system of equations,
inequalities, and nonequalities. The search for relations
among the points or entities of a drawing may become
very expensive because of combinatorial growth. This has

't This is one of the principal changes to the beautifier whose necxl
was made apparent by users' experience.

226

S I G G R A P H '85

led us to impose another limitation on our approach: In
our search for approximately satisfied constraints {Fk}
among objects, we consider only relations that can be
mapped into a single scalar number.

For the above examples, the constraint is vertical
alignment of points, which can be expressed as the equal-
ity of x-coordinates. As another example, parallelism
among line segments can be expressed as the equality of
angles with the horizontal. For each class of such con-
straint relations we sort the objects according to the value
of their scalars and seek objects that are appropriately
related in the sorted list. ("Appropriately related" usu-
ally, but not always, means "approximately equal.") This
ensures that the search for relations among N objects can
be performed in time O(NlogN) rather than O(N2) .
The class of constraint relations that can be mapped, into
scalars is surprisingly rich. As an unusual example, con-
sider symmetries along a vertical axis: these can be found
by sorting line segments according to angle with the hor-
izontal, then finding pairs of sides whose angles sum to ~r.

Many of the relations that cannot be found in this
way can be discovered and satisfied directly by simpler,
but less general, techniques. For example, finding a
smooth curve approximating a roughly drawn curve can
be expressed as a spline approximation problem ([12],
Ch. 12), which can be solved explicitly for the set of
points. As another example, consider the termination of
curves on other curves as shown in Figure 2. To find pic-
ture elements that are thus related requires pairwise
examination of objects, an operation of at least quadratic
complexity. However, we need consider only objects that
are geometrically close to each other, so we can presort
the objects by neighborhood or bounding box to find such
constraints in small expected time.

We describe in the next section a clustering scheme
that creates relations from the sorted lists. From these
relations we create a set of constraint equations and ine-
qualities; the constraint relations used in our current
implementation are described in Section 4. Section 6
shows how we solve the constraint system using a simple
incremental procedure; an important advantage of the
approach described there is that it can be used to suggest
which constraints should be dropped when the whole con-
straint set {Fk} cannot be satisfied.

3 . T h e C l u s t e r i n g S c h e m e

The clustering strategy is described here as a gen-
eral operation. It may be helpful to think of the concrete
example of clustering line segments according to the
angle they form with the horizontal so that nearly parallel
segments can be found and made para l le l

Suppose the n elements to be clustered have been
sorted by the appropriate scalar value; let the elements in
this order have scalar values v i, l~<i~<n. A clustering of
the n elements by the scalars v~ into k clusters is an
increasing subsequence ij, l~<j~<k. Setting ik+ l - - n + l
to take care of the boundary condition, we say that the
elements of the jth cluster have scalar values v~ through
vii.,_ ~. Figure 3a shows an example arrangement of ele-
ments. While a human observer may readily see two
clusters as in Figure 3c, detecting them automatically is
difficult.

In general, the goal of clustering is to minimize a

SAN FRANCISCO JULY 22-26 Volume 19, Number 3, 1985
• II I I I I I I

measure of variation of values of individual elements from
certain "central" values ([13], pp. 217 - 252). If Vj is
the central value for the jth cluster, then we may wish to
minimize

E - maxlmax Iv i - V/[, i~ ~<i ~<ij+l-I], for l~<j~<k. (5)
j i

This expression can always be made zero if we select as
many clusters as data points, so many statistical tech-
niques for clustering seek to minimize E when an upper
bound on k is given as well. Unfortunately, no a priori
assumption about the number of clusters is reasonable for
drawings. In addition, most statistical techniques try
hard to assign each object to a nontrivial cluster, an
unrealistic expectation for drawings. One alternative to a
fixed upper bound on k would be to minimize the number
of clusters subject to an upper bound on the width,
l vii._ 1 -v ia l , of any cluster. But this can also lead to
unexpected results as in Figure 3b: a person sees a central
cluster and two outlying singleton clusters, but it is possi-
ble to divide the elements into just two clusters and still
satisfy the bound on maximum cluster width. This exam-
pie has led us to augment the strategy of clustering sub-
ject to a maximum cluster width with the following rule:
Select a small constant 6 (a fraction o f the max imum
cluster width) and group together all points that form
sequences such that the difference in values o f adjacent
elements is less than 6. (This scheme can be modified
trivially to find relations that do not require approximate
equality of values, but some other numerical relation.
For example, to search for segments that are nearly per-

• endicular to each other we need only replace everywhere
v , , . . _ , - v,, I by I vij.,_l - vi I - ~r/21.) We offer some sta-

tistical justification for relying on the adjacent pair
differences.

Assume that two random processes are involved in
the creation of a drawing. One is the selection of a
desired value for an element; the second is the realization
of this value.t Fundamental to the idea of beautification
is the assumption that the range of possible desired values
is much larger than the range of deviations around a
desired value. An even stronger assumption is needed to
justify the above strategy: The variation among intended
values is much larger than the variation among approxi-
mations to the same intended value. It would be nice if
we had statistical models for drawings so that we could
test the validity of these assumptions. In their absence
we present some results from probability theory related to
the observed pairwise distances among objects.

Parzen ([14], pp. 322-323) gives the following
expression for the density of x, the observed maximum
range as a fraction of the total range for n samples drawn
from a uniform distribution

f (x) - n (n -1)xn -2 (1 - x).

The expected value of x is easily computed to be
(n - 1) / (n + 1), so the average distance between samples is
l / (n + l) . Feller ([15], Section VIII.5) treats unlimited
sequences of Bernoulli trials and shows that the

t While the creation of any given drawing is (hopcfuily) a detcr-
ministie process, one could collect statistics over a large number of
drawings and thus compute probability density functions for various
parameters of drawings. These would also be parameters to our
beautification process; they would not affect the underlying model.

maximum r a n ~ n samples tends with probability 1 to
the limit x/ciogiogn, where c is a constant proportional to
the variance of the distribution. This bound grows very
slowly with n, so the average distance between adjacent
samples is proportional to l/n.

What these results tell us is that if we draw sam-
ples from two distributions, one having a much bigger
range than the other, we may end up with similar pair-
wise distance distributions, if we draw more samples from
the distribution with the larger range. In our ease, let dl
be the expected pairwise distance between adjacent sam-
ples when they are approximations to the same value and
d2 when they are not. Since the number of samples
approximating a single value (e.g. all lines at nearly the
same angle) is likely to be much smaller than the total
(all lines in the drawing), this would compensate for the
fact that the error range is much smaller than the total
range. Therefore the values of d I and d2 could be quite
close! On the other hand, if the distribution of desired
values is far from uniform, the values of d I and d2 will
differ significantly. This is often the case in many techn-
ical drawings where there are few chosen orientations
(usually including vertical and horizontal). Therefore we
chose 6 empirically so that when the distance between
adjacent pairs is less than 6 it is reasonable to claim that
they are approximations to the same intended value.

The lack of reliable statistical models for drawing
generation makes it imperative to verify empirically any
solutions that are based on statistics. Therefore the
implementation of our method--in our ease, as part of an
online drawing editor--was an essential part of the
design.

The discussion above focussed on the formation of
groups of elements; now we discuss how these groups are
processed to form clusters. Figure 4 shows that elements
that are pairwise close should not necessarily be clustered
together. Therefore we compare the width of each group
with two other constants 6| and 62. (The maximum
expected cluster width is between 6 t and 62.)

• If the width is less than /h, we place all of its
members into a single cluster.

• If the width is greater than ~2, we assume we have
a "chaining" situation like that of Figure 4, and
the group is dissolved: none of its members is
clustered. Since we assume that the small differ-
ences are intentional, we also impose negative con-
straints as discussed below to insure that the solver
leaves the chained elements alone.

• If the width is between ~1 and 62 , the group is
modified either by removing one of the end ele-
ments, or splitting it into two groups (if the
greatest pairwise distance is in the middle of the
group); the resulting group or groups become clus-
ters.

Finally, we consider negative constraints. Recall
that these arise when elements that wind up in the same
cluster should not be constrained to satisfy the cluster
value because doing so causes entities of the picture to
collapse. In principle we could discover desirable nega-
tive constraints by clustering within each cluster accord-
ing to another criterion. However, for simplieity (and for
more flexibility in the selection of negative constraints)
we consider all possible pairs of cluster elements; since

227

@ S I G G R A P H '85

each cluster has few elements (usually at most 10) the
computation cost is not excessive. To express a negative
relation between cluster elements, we remove them from
the cluster, and tag them to prevent undue modification
by the solver. Figure 5 shows an example where this
approach is essential. If we are clustering by angle with
the horizontal, sides AB, CD, DE, and FG are likely to
cluster together. While it is permissible to make both A B
and FG vertical, making CD and D E vertical causes them
to collapse together. So these sides have their slopes
frozen at their initial value before the solver is allowed to
make any modifications to the picture.

4. Constraint Possibilities among Lines and Points

Our current implementation uses the following con-
straint relations among points, or lines, or points and
lines. With each positive constraint we list the
corresponding negative constraint. For brevity we use the
term side for line segment.

I. A set of sides should lie at the same angle to the
horizontal, unless they intersect. We modify this
relation further so that clusters at angles near a
preferred value (currently a multiple of ~r/4) are
adjusted to have exactly that value.

2. A set of sides with similar slopes should be col-
linear, unless their projections perpendicular to the
common slope intersect.

3. A set of sides should have the same length.

4. A set of points should be horizontally [vertically]
aligned, unless they are also vertically [horizon-
tally] aligned.

Figures 6 and 7 each show an original drawing and
the same drawing adjusted after the above constraint
relations have been found and enforced.

Other relations that fit into this beautification
framework, but that we have not implemented, include:

1. A pair of adjacent sides should meet at the same
angle as another pair of adjacent sides.

2. A set of points or sides is horizontally or vertically
symmetric.

3. A point lies midway (or in general, some fixed
fraction of the way) between two other points.

Two examples of relations that do not fit into this
framework are:

1. Two curves are tangent.

2. A circle is inscribed in a polygon.

5. Creating the Equations

We describe here how constraint equations are
formed from the clusters. The most general equations
involve two sides; in the implementation, these are given
as explicit endpoints, but for what follows it is convenient
to write the endpoints of side i as (xi,Yi) and
(x i+Axi ,y~+Ayj) , and its preferred angle with the hor-
izontal as 0~.

Slopes: Clustering is performed according to the angle
each side makes with the horizontal. To keep nearly hor-
izontal lines together, angles are not taken in the usual
range [0,~') but in [-Tr/10,91r/10). Once the clusters are
formed, those whose values are close to a preferred

228

direction (currently, a multiple of ~r/4) have their values
set to exactly the preferred value and clusters that differ
by nearly ~r/2 have their values set so the difference is
exact. Then each side in each cluster has its preferred
angle set to the cluster value. Sides in dus te rs with more
than one member, and sides whose angles have been set
to a preferred value, are used to generate equations; there
will be one equation per cluster member.

Sides within slope clusters that intersect are in
danger of collapsing together if the cluster value is
imposed on them. The negative const ra int - - that this
should not happen-- is imposed by fixing the slopes of
such sides to their initial values. This allows the end-
points to move, but prevents complete collapse of the
sides.

If the preferred angle, 0~, is between r / 4 and 3~r/4,
we generate the equation Ax~=A.y~cot0~; otherwise we
generate the equation A y l ~ A x l t a n 0 I. This keeps all
coefficients less than or equal to one in absolute value,
and so improves the numerical stability of the solution
procedure.

Coilinearity: We seek collinear picture elements by clus-
tering within slope clusters, using as the significant scalar
the signed distance of each side from a fixed point. (We
fix this point at the center of gravity of the endpoints of
the sides in the original cluster, thus minimizing the max-
imum absolute value of the resulting numbers.) From a
cluster of k nearly collinear sides, we form k - I equa-
tions, each between two sides in the cluster. Because
each side also generates a slope equation, the collinearity
constraint can be written simply as one of the equations

Y i + l - - Y i -- (X i+ l - - xi) tanOi

or

x i + l - - x i - (Yi+l--yi)cotOi ;

again, the choice between them is made so that all coeffi-
cients have magnitude at most one.

Length Equality: We cluster sides by their length in the
initial drawing. From a cluster of k sides of nearly equal
length, we form k - 1 equations, each between two sides
in the cluster. The length of side i is

"x/Ax/2+AY/2 " J ~ x isecO i J -- I AyicscOi J "

We can remove the absolute value signs using the approx-
imate values of Axi and Ayi computed from the original
drawing. Thus there are four ways to write the length
equality constraint as a linear equation; we choose among
them as above.

Coordinate Coincidence: To find approximate vertical
alignment we need to compare points rather than sides.
To simplify implementation we treat points as sides of
zero length, and cluster by x coordinate using the side-
clustering routine. A cluster of k points with close x
coordinates generates k - I constraint equations. If two
points with close x coordinates also have close y coordi-
nates, the maximum they will be allowed to move is
reduced from the default to one third of the distance
between them. This makes it impossible for them to col-
lapse together. Horizontal alignment and non-alignment
is detected by a similar process on y coordinates.

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

6. Solving the Equations

Since it is likely that not all of the constraints pro-
duced by the clustering algorithm can be satisfied simul-
taneously, the first step towards solution is to assign a
penalty to each constraint so that more desirable con-
straints are satisfied first. We currently assign to each
equation a penalty equal to the maximum change in one
of its variables assuming that the others remain at their
original values; this represents a preference for equations
that require only a small change to the original coordi-
nates. Note in addition that the equations that freeze the
slopes of certain sides have penalty zero, so they will be
imposed (and satisfied) first. In general, such equations
can simply be assigned a negative penalty to insure that
the solver gives them high priority.

Next we process the equations in order of increas-
ing penalty using the algorithm of [16]. Briefly, each
coordinate variable is represented at all times as a linear
combination of coordinate variables; before any equation
has been processed each variable is simply equal to itself.
To process an equation we plug in the linear-combination
representation of each of its variables and perform arith-
metic simplification; if the resulting equation contains any
variables, then one is chosen to become dependent on the
other variables in the equation; this means that its
linear-combination representation will change to one that
involves the other variables. Before this change is made
final, however, we check to see if it causes the newly
dependent variable to move too far from its original posi-
tion; if that happens we ignore the equation.

This method is not guaranteed to find a solution to
the system of (1-3), even if one exists. But it usually
does find a solution to a large subsystem thereof, and it is
also fast, so it has worked well in practice.

7. Conclusion

The problem of beautifying pictures cannot be
solved completely: there will always be changes that
would be nice but that are not detected by an automatic
procedure. Therefore we have concentrated on a small
set of relations that appear to have wide applicability, and
on understanding how these relations can be detected and
imposed efficiently without causing untoward changes in
the picture being beautified.

Figures 8 to 10 illustrate the application of the pro-
cedure to a nontrivial drawing. They show the effective-
ness of the method and also that it is not always idempo-
tent. One question raised by some readers of drafts of
this paper (including the S I G G R A P H referees) is the
"rate of success" of beautification. This is an interesting
practical question because prospective users might want
to know the probability that their drawings will be beau-
tified properly. However, such statistics are not easy to
collect and not practically meaningful. Since the graph-
ics editor that calls the beautifier runs on a large number
of machines it would require a rather cumbersome
mechanism to collect statistics of, say, the number of
"undo" operations after each beautification. Even that
would not be enough because: (a) users might instead dis-
card the result and read in a backup copy of the original;
(b) the beautifier might make some desirable changes in
the drawing but not others, so there would be no follow-
ing overt user action canceling the beautification, even
though the results were not fully satisfactory. In extreme

cases where there is a spectacular failure we hear directly
from disgruntled users, and this is how we found out the
need for negative constrains. Most important, the success
of beautification depends a lot on how closely the drawing
fits the model. The current implementation does quite
well on "rect i l inear" drawings such as that shown in Fig-
ure 8. Thus the probability that a block diagram will be
beautified should be quite high, while the current version
of beautification is bound to fail on an illustration con-
taining a set of circles that are suptx~sed to be tangent to
each other.

Our experience shows that naive (or even sophisti-
cated) statistical methods are bound to produce unin-
tended and undesirable results in practice. We believe
that negative constraints are crucial to any beautification
procedure if it is to avoid these pitfalls.

Acknowledgements
We thank Brian Kernighan and Doug McIlroy for

many useful comments on a first draft of this paper.

References

[1] Sutherland, 1. E., "Sketchpad: A Man-machine
Graphical Communication System," in 1963 Spring
Joint Computer Conference. reprinted in Interactive
Computer Graphics, H. Freeman, ed., IEEE Com-
puter Soc., 1980, pp. 1-19.

[21 Van Wyk, C. J., "A High Level Language for
Specifying Pictures." A C M Transactions on Graph-
ics, 1(2) (1982), pp. 163-182.

[31 Nelson, G., "Juno," personal communication.

[41 Pferd, W., and K. Ramachandran, "'Computer
Aided Automatic Digitizing of Engineering Draw-
ings," Proc. IEEE COMSAC, 1978, pp. 630-635.

[5] Harris, J. F., J. Kittler, B. Llewellyn, and G. Pres-
ton, "'A Modular System for Interpreting Binary
Pixel Representations of Line-Structured Data,"
Pattern Recognition Theory and Applications, Proc.
of N A T O Adv. Study Inst., Oxford, March-Apri l ,
1981, J. Kittler, K. S. Fu, and L. F. Pau, eds. D.
Reidel Publishing Co., 1982, pp. 311-351.

[61 Pavlidis, T., and Cherry, L. L., "Vector and Arc
Encoding of Graphics and Text," Proc. 1982 Intern.
Conference on Pattern Recognition, 1982, pp. 610-
613.

[7] Herman, M., "Generat ing Detailed Scene Descrip-
tions from Range Images," Proc. 1985 1EEE Inter-
national Conference on Robotics and Automation,
1985, pp. 426-431.

[8] Skinner, F. D., "The Interactive Wiring System,"
IEEE Computer Graphics and Applications 1(2)
(1981), pp. 38-51.

[91 Wallich, P., "A review of engineering worksta-
tions," IEEE Spectrum, 21(10) (1984), pp. 48-53.

[10] Pavlidis, T., "PED: A 'Distributed" Graphics Edi-
tor," Proc. Graphics Interface "84, 1984, pp. 75-79.

[11] Pike, R., "The Blit: A Multiplexed Graphics Termi-
nal," Bell System Technical Journal (Part 2),
63(8) (1984), pp. 1607-1631.

[12] Pavlidis, T., Algorithms for Graphics and Image
Processing, Computer Science Press, 1982.

229

O S I G G R A P H '85

[13] Duda, R. O. and P. E. Hart, Pattern Classification
and Scene Analysis, New York: J. Wiley, 1973.

[14] Parzen, E., Modern Probability Theory and Its
Applications, New York: J. Wiley, 1960.

[15] Feller, W., An Introduction to Probability Theory
and its Applications, Volume I. Third Edition.
New York: J. Wiley, 1968.

[16] Derman, E., and C. J. Van Wyk, "A Simple Equa-
tion Solver and its Application to Economic Model-
ing," Software Practice and Experience 14(12)
(1984), pp. 1169-1181

230

SAN FRANCISCO JULY 22-26 Volume 19, Number 3,1985

ORIGINAL BEAUTIFIED

Figure 1: An undesirable beautification.

ORIGINAL BEAUTIFIED

Figure 2: Beautification of curve terminations.

I IIIII II I I I111111 I I I
I 11111 II I IIIIIIIII I I

(a)

I II
cluster width

(b)

I illll i i i i l l l l l l l l i i
Ii IIII1,11 I I ,111111,1 I I

(c)

Figure 3: (a) Illustration of a clustering arrangement. The thin vertical lines denote elements. (b)
An arrangement where insisting on the minimum number of clusters yields a poor answer. (c) A
good clustering of the elements in (a).

231

S I G G R A P H '85

Figure 4: A drawing where clustering is inappropriate.

Ii c E

-i /
Original Beautified

without negative with negative
constraints constraints

Figure 5: A drawing in which small changes in the slopes of AB, BC, EF, FG, and GA do not alter
the gross shape, while a small change in the slope of CD or DE does.

I I I I
Original Beautified

Figure 6: Example of the results of the beautification algorithm.

232

SAN FRANCISCO JULY 22"26 Volume 19, Number 3, 1985

U
O r i g i n a l B e a u t i f i e d

Figure 7: Example of the results of the beautification algorithm. Notice that the use of negative
constraints leaves intact the sides that intersect.

>

f

I

- - >

Figure 8: Original drawing

233

@ S I G G R A P H '85

>

~" T
>

>

Figure 9: Drawing of Figure 8 after the First Application of the Beautifier

i >

T
>

>

>

>

Figure 10: Drawing of Figure 8 after the Second Application of the Beautifier

234

