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Abstract 

We describe a method for inferring constraints that are 
desirable for a given (rough) drawing and then modifying 
the drawing to satisfy the constraints wherever possible. 
The method has been implemented as part of an online 
graphics editor running under the UNIX'~ operating sys- 
tem and it has undergone modifications in response to 
user input. Although the framework we discuss is gen- 
eral, the current implementation is polygon-oriented. The 
relations examined are: approximate equality of the slope 
or length of sides, collinearity of sides, and vertical and 
horizontal alignment of points. 

CR Categories and Subject Descriptors: 1.3.5 [Computer 
Graphies]: Computational Geometry and Object 
Modeling--geometric algorithms, languages, and sys- 
tems; 1.4.3 [Image Processing]: Enhancement--geometric 
correction; 1.4.5 [Pattern Recognition]: Clustering-- 
algorithms and similarity measures. 

1. Introduction 

Illustrators often need to create drawings that con- 
tain many parallel line segments, right angles, aligned 
rectangles, and that are in other ways "neat." This has 
led to the development of graphics editors and languages 
that permit users to specify an illustration by constraining 
the relative locations of picture elements like points and 
lines rather than by giving them explicitly and absolutely 
[1-3]. These tools grow more cumbersome to use as the 
complexity of a drawing increases. It would be nice if 
one had a procedure whereby a sloppily drawn figure 
could automatically be redrawn more neatly. 

One could view interactive editors in which one can 
snap to rectilinear grid points as implementing a simple 
kind of beautification. Drawing with a grid has some seri- 
ous limitations; for example, once a resolution is selected 
refinement is difficult, and there is a very coarse quanti- 
zation on the slopes of lines allowed in the drawing. In 
addition, the idea of "snapping" offers little help in creat- 
ing computer representations of drawings from paper ori- 
ginals by digitization [4-6], which is necessary in order to 
integrate electronic and paper graphics. Another 
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potential application of beautification is in the extraction 
of solid object descriptions from digitized images (range 
or light data). Edge extraction algorithms produce the 
equivalent of a line drawing which is rough because of 
noise in the image [7]. The process for converting that set 
of lines into a set which is consistent with a projection of 
the edges of a solid requires transformations that are 
either identical or similar to those used in beautification. 
Beautification stands in contrast to specialized kinds of 
picture transformations. An example of the latter is com- 
mon in integrated-circuit editors that implement layout, 
compaction, and routing algorithms [8,9]. 

In this paper we discuss how we approached the 
design of a beautification procedure, our experience in its 
implementation, and how the reactions of users have led 
us to modify our approach. Section 2 presents what we 
have come to understand to be the heart of the beautifi- 
cation problem, and the requirements that a beautifica- 
tion procedure must meet. Sections 3-5 present a solution 
to the problem as we-pose it in Section 2. We imple- 
mented our solution as part of the PED graphics editor 
[ 10], which runs under the UNIX operating system on the 
AT&T Teletype 5620 dot-mapped display terminal [1 !]; 
PED users may invoke the beautification procedure at 
any time, and the result is displayed in real time. Feed- 
back from these users has been very valuable to our 
understanding of the problem and this paper reflects what 
we have learned from public use of a part of our solution. 

2. Fundamental Problems and Outline of the Beautifica- 
tion Scheme 

Our approach to automatic beautification requires 
the solution of two problems. First, we need to infer from 
the initial sketch appropriate constraints to impose on the 
beautified version. Second, we need to change the initial 
sketch to satisfy those constraints. To reduce the vague- 
ness of these descriptions so that an algorithmic attempt 
at solution is at least possible, we shall restrict the prob- 
lem in a number of ways. 

First, we limit our goal to images that can be 
defined in terms of points. This restriction covers most 
line drawings. We can express the problem mathemati- 
cally as follows. Let the points of a drawing--vertices of 
polygons, centers of circles, etc.--be (xl ,Yl) ,  "" ", 
(x, ,y,) ,  and let X be the vector of coordinates with 
X2i-l - xi and X2i - Yi for 1 ~<i~<n. Suppose the initial 
value of X is X °. It is tempting to define beautification 
as choosing a set of constraints F k such that 

Fk(X °) ~< 6, k - l , 2 ,  ' - -  , (i) 

then finding a vector X e such that 
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F k(X s)  = 0 ,  k = l , 2 , - - '  , (2) 

and 

I Ix"-x°l l® < ,, (3) 

where I1"11- denotes the maximum-coordinate-norm. 

For example, consider the simple constraint that 
points line up vertically. Suppose x3 and Xs differ by 
less than 6; then we would look for a solution that satis- 
fies the equation 

X3 --  X8 m 0 . 

Formally, there is only one relation, F~, in this ease 
expressed as the scalar product of X with a vector V 
whose components are all zero, except for V 5 - 1 and 
V j s  - - ! .  

This formulation of the beautification problem 
assures that all points stay near their original positions. 
It offers no insight as to the choice of F t  (indeed, 
F~ (X) - X - X  ° is an obvious choice that  is appropriate in 
some cases), but given a suitable Fk, it reduces the 
second part of the beautification problem to mathemati-  
cal programming (linear programming in case all con- 
straint equations are linear). 

The example of Figure l shows a pitfall in this 
approach. The original drawing contains several lines 
that are nearly vertical. If, as above, we choose {Fk} to 
be the constraint that nearly equal x-coordinates should 
be made equal, then we can obtain a solution that satis- 
fies {F k} and moves all points by only a small amount. 
However, the result of this beautification may be unsatis- 
factory because three of the line segments have been 
moved on top of each other. This suggests the desirabil- 
ity of imposing negative constraints, which say that pic- 
ture entities should not satisfy a relation, in addition to 
positive constraints that enforce relationships among enti- 
ties.~ For this example, one possible negative constraint 
is that distinct points that are close in both x and y coor- 
dinates should not be constrained to be equal. Note that 
using tighter bounds on the size of allowed movement 
during the beautification does not resolve this problem: 
The endpoints of the three rightmost lines may be moved 
by much larger amounts than those of the three leftmost 
lines and we will still achieve good results. 

Formally, we should add a set of nonequalities to 
the system of Eqs. (2) and (3): 

Gk(X s) # 0 ,  k - 1 , 2 , " "  . (4) 

Notice that even if {Fk} and {Gk} are linear, the system 
of (2-4) cannot be solved by linear programming. 
Another reason for not using mathematical  or linear pro- 
gramming to solve the constraint systems is that they 
offer little guidance in choosing a large satisfiable subset 
of a system than cannot be completely satisfied; such sys- 
tems arise frequently in beautification. 

So far we have not addressed the computational 
feasibility of finding the constraint relations {Fk} and 
{Gt}, and of solving the resulting system of equations, 
inequalities, and nonequalities. The search for relations 
among the points or entities of a drawing may become 
very expensive because of combinatorial growth. This has 

't This is one of the principal changes to the beautifier whose necxl 
was made apparent by users' experience. 
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led us to impose another limitation on our approach: In 
our search for approximately satisfied constraints {Fk} 
among objects, we consider only relations that can be 
mapped into a single scalar number. 

For the above examples, the constraint is vertical 
alignment of points, which can be expressed as the equal- 
ity of x-coordinates. As another example, parallelism 
among line segments can be expressed as the equality of 
angles with the horizontal. For each class of such con- 
straint relations we sort the objects according to the value 
of their scalars and seek objects that are appropriately 
related in the sorted list. ("Appropriately related" usu- 
ally, but not always, means "approximately equal.") This 
ensures that the search for relations among N objects can 
be performed in time O(NlogN) rather than O(N2) .  
The class of constraint relations that can be mapped, into 
scalars is surprisingly rich. As an unusual example, con- 
sider symmetries along a vertical axis: these can be found 
by sorting line segments according to angle with the hor- 
izontal, then finding pairs of sides whose angles sum to ~r. 

Many of the relations that cannot be found in this 
way can be discovered and satisfied directly by simpler, 
but less general, techniques. For example, finding a 
smooth curve approximating a roughly drawn curve can 
be expressed as a spline approximation problem ([12], 
Ch. 12), which can be solved explicitly for the set of 
points. As another example, consider the termination of 
curves on other curves as shown in Figure 2. To find pic- 
ture elements that are thus related requires pairwise 
examination of objects, an operation of at least quadratic 
complexity. However, we need consider only objects that 
are geometrically close to each other, so we can presort 
the objects by neighborhood or bounding box to find such 
constraints in small expected time. 

We describe in the next section a clustering scheme 
that creates relations from the sorted lists. From these 
relations we create a set of constraint equations and ine- 
qualities; the constraint relations used in our current 
implementation are described in Section 4. Section 6 
shows how we solve the constraint system using a simple 
incremental procedure; an important advantage of the 
approach described there is that it can be used to suggest 
which constraints should be dropped when the whole con- 
straint set {Fk} cannot be satisfied. 

3 .  T h e  C l u s t e r i n g  S c h e m e  

The clustering strategy is described here as a gen- 
eral operation. It may be helpful to think of the concrete 
example of clustering line segments according to the 
angle they form with the horizontal so that nearly parallel 
segments can be found and made para l le l  

Suppose the n elements to be clustered have been 
sorted by the appropriate scalar value; let the elements in 
this order have scalar values v i, l~<i~<n. A clustering of 
the n elements by the scalars v~ into k clusters is an 
increasing subsequence ij, l~<j~<k. Setting ik+ l - - n + l  
to take care of the boundary condition, we say that the 
elements of the jth cluster have scalar values v~ through 
vii.,_ ~. Figure 3a shows an example arrangement of ele- 
ments. While a human observer may readily see two 
clusters as in Figure 3c, detecting them automatically is 
difficult. 

In general, the goal of clustering is to minimize a 
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measure of variation of values of individual elements from 
certain "central" values ([13], pp. 217 - 252). If Vj is 
the central value for the jth cluster, then we may wish to 
minimize 

E - maxlmax Iv i -  V/[, i~ ~<i ~<ij+l-I  ], for l~<j~<k. (5) 
j i 

This expression can always be made zero if we select as 
many clusters as data points, so many statistical tech- 
niques for clustering seek to minimize E when an upper 
bound on k is given as well. Unfortunately, no a priori 
assumption about the number of clusters is reasonable for 
drawings. In addition, most statistical techniques try 
hard to assign each object to a nontrivial cluster, an 
unrealistic expectation for drawings. One alternative to a 
fixed upper bound on k would be to minimize the number 
of clusters subject to an upper bound on the width, 
l vii._ 1 -v ia l ,  of any cluster. But this can also lead to 
unexpected results as in Figure 3b: a person sees a central 
cluster and two outlying singleton clusters, but it is possi- 
ble to divide the elements into just two clusters and still 
satisfy the bound on maximum cluster width. This exam- 
pie has led us to augment the strategy of clustering sub- 
ject to a maximum cluster width with the following rule: 
Select a small  constant 6 (a fraction o f  the max imum 
cluster width) and group together all points that form 
sequences such that the difference in values o f  adjacent 
elements is less than 6. (This scheme can be modified 
trivially to find relations that do not require approximate 
equality of values, but some other numerical relation. 
For example, to search for segments that are nearly per- 

• endicular to each other we need only replace everywhere 
v , , . . _ ,  - v,, I by I vij.,_l - vi I - ~r/21.) We offer some sta- 

tistical justification for relying on the adjacent pair 
differences. 

Assume that two random processes are involved in 
the creation of a drawing. One is the selection of a 
desired value for an element; the second is the realization 
of this value.t Fundamental to the idea of beautification 
is the assumption that the range of possible desired values 
is much larger than the range of deviations around a 
desired value. An even stronger assumption is needed to 
justify the above strategy: The variation among intended 
values is much larger than the variation among approxi- 
mations to the same intended value. It would be nice if 
we had statistical models for drawings so that we could 
test the validity of these assumptions. In their absence 
we present some results from probability theory related to 
the observed pairwise distances among objects. 

Parzen ([14], pp. 322-323) gives the following 
expression for the density of x, the observed maximum 
range as a fraction of the total range for n samples drawn 
from a uniform distribution 

f (x) - n (n -1 )xn -2 (1  - x). 

The expected value of x is easily computed to be 
( n - 1 ) / ( n  + 1), so the average distance between samples is 
l / ( n + l ) .  Feller ([15], Section VIII.5) treats unlimited 
sequences of Bernoulli trials and shows that the 

t While the creation of any given drawing is (hopcfuily) a detcr- 
ministie process, one could collect statistics over a large number of 
drawings and thus compute probability density functions for various 
parameters of drawings. These would also be parameters to our 
beautification process; they would not affect the underlying model. 

maximum r a n ~  n samples tends with probability 1 to 
the limit x/ciogiogn, where c is a constant proportional to 
the variance of the distribution. This bound grows very 
slowly with n, so the average distance between adjacent 
samples is proportional to l/n. 

What these results tell us is that if we draw sam- 
ples from two distributions, one having a much bigger 
range than the other, we may end up with similar pair- 
wise distance distributions, if we draw more samples from 
the distribution with the larger range. In our ease, let dl  
be the expected pairwise distance between adjacent sam- 
ples when they are approximations to the same value and 
d2 when they are not. Since the number of samples 
approximating a single value (e.g. all lines at nearly the 
same angle) is likely to be much smaller than the total 
(all lines in the drawing), this would compensate for the 
fact that the error range is much smaller than the total 
range. Therefore the values of d I and d2 could be quite 
close! On the other hand, if the distribution of desired 
values is far from uniform, the values of d I and d2 will 
differ significantly. This is often the case in many techn- 
ical drawings where there are few chosen orientations 
(usually including vertical and horizontal). Therefore we 
chose 6 empirically so that when the distance between 
adjacent pairs is less than 6 it is reasonable to claim that 
they are approximations to the same intended value. 

The lack of reliable statistical models for drawing 
generation makes it imperative to verify empirically any 
solutions that are based on statistics. Therefore the 
implementation of our method--in our ease, as part of an 
online drawing editor--was an essential part of the 
design. 

The discussion above focussed on the formation of 
groups of elements; now we discuss how these groups are 
processed to form clusters. Figure 4 shows that elements 
that are pairwise close should not necessarily be clustered 
together. Therefore we compare the width of each group 
with two other constants 6| and 62. (The maximum 
expected cluster width is between 6 t and 62.) 

• If the width is less than /h, we place all of its 
members into a single cluster. 

• If the width is greater than ~2, we assume we have 
a "chaining" situation like that of Figure 4, and 
the group is dissolved: none of its members is 
clustered. Since we assume that the small differ- 
ences are intentional, we also impose negative con- 
straints as discussed below to insure that the solver 
leaves the chained elements alone. 

• If the width is between ~1 and 62 , the group is 
modified either by removing one of the end ele- 
ments, or splitting it into two groups (if the 
greatest pairwise distance is in the middle of the 
group); the resulting group or groups become clus- 
ters. 

Finally, we consider negative constraints. Recall 
that these arise when elements that wind up in the same 
cluster should not be constrained to satisfy the cluster 
value because doing so causes entities of the picture to 
collapse. In principle we could discover desirable nega- 
tive constraints by clustering within each cluster accord- 
ing to another criterion. However, for simplieity (and for 
more flexibility in the selection of negative constraints) 
we consider all possible pairs of cluster elements; since 
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each cluster has few elements (usually at most 10) the 
computation cost is not excessive. To express a negative 
relation between cluster elements, we remove them from 
the cluster, and tag them to prevent undue modification 
by the solver. Figure 5 shows an example where this 
approach is essential. If we are clustering by angle with 
the horizontal, sides AB,  CD, DE, and FG are likely to 
cluster together. While it is permissible to make both A B  
and FG vertical, making CD and D E  vertical causes them 
to collapse together. So these sides have their slopes 
frozen at their initial value before the solver is allowed to 
make any modifications to the picture. 

4. Constraint Possibilities among Lines and Points 

Our current implementation uses the following con- 
straint relations among points, or lines, or points and 
lines. With each positive constraint we list the 
corresponding negative constraint. For brevity we use the 
term side for line segment. 

I. A set of sides should lie at the same angle to the 
horizontal, unless they intersect. We modify this 
relation further so that clusters at  angles near a 
preferred value (currently a multiple of ~r/4) are 
adjusted to have exactly that value. 

2. A set of sides with similar slopes should be col- 
linear, unless their projections perpendicular to the 
common slope intersect. 

3. A set of sides should have the same length. 

4. A set of points should be horizontally [vertically] 
aligned, unless they are also vertically [horizon- 
tally] aligned. 

Figures 6 and 7 each show an original drawing and 
the same drawing adjusted after the above constraint 
relations have been found and enforced. 

Other relations that fit into this beautification 
framework, but that  we have not implemented, include: 

1. A pair of adjacent sides should meet at the same 
angle as another pair of adjacent sides. 

2. A set of points or sides is horizontally or vertically 
symmetric. 

3. A point lies midway (or in general, some fixed 
fraction of the way) between two other points. 

Two examples of relations that do not fit into this 
framework are: 

1. Two curves are tangent. 

2. A circle is inscribed in a polygon. 

5. Creating the Equations 

We describe here how constraint equations are 
formed from the clusters. The most general equations 
involve two sides; in the implementation, these are given 
as explicit endpoints, but for what follows it is convenient 
to write the endpoints of side i as (xi,Yi) and 
(x i+Axi ,y~+Ayj) ,  and its preferred angle with the hor- 
izontal as 0~. 

Slopes: Clustering is performed according to the angle 
each side makes with the horizontal. To keep nearly hor- 
izontal lines together, angles are not taken in the usual 
range [0,~') but in [-Tr/10,91r/10). Once the clusters are 
formed, those whose values are close to a preferred 
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direction (currently, a multiple of ~r/4) have their values 
set to exactly the preferred value and clusters that differ 
by nearly ~r/2 have their values set so the difference is 
exact. Then each side in each cluster has its preferred 
angle set to the cluster value. Sides in dus te rs  with more 
than one member, and sides whose angles have been set 
to a preferred value, are used to generate equations; there 
will be one equation per cluster member. 

Sides within slope clusters that  intersect are in 
danger of collapsing together if the cluster value is 
imposed on them. The negative const ra int - - that  this 
should not happen-- is  imposed by fixing the slopes of 
such sides to their initial values. This allows the end- 
points to move, but prevents complete collapse of the 
sides. 

If  the preferred angle, 0~, is between r / 4  and 3~r/4, 
we generate the equation Ax~=A.y~cot0~; otherwise we 
generate the equation A y l ~ A x l t a n 0  I. This keeps all 
coefficients less than or equal to one in absolute value, 
and so improves the numerical stability of the solution 
procedure. 

Coilinearity: We seek collinear picture elements by clus- 
tering within slope clusters, using as the significant scalar 
the signed distance of each side from a fixed point. (We 
fix this point at the center of gravity of the endpoints of 
the sides in the original cluster, thus minimizing the max- 
imum absolute value of the resulting numbers.) From a 
cluster of k nearly collinear sides, we form k - I  equa- 
tions, each between two sides in the cluster. Because 
each side also generates a slope equation, the collinearity 
constraint can be written simply as one of the equations 

Y i + l - - Y i  -- (X i+ l - -  xi ) tanOi  

or 

x i + l - - x  i - (Yi+l--yi)cotOi ; 

again, the choice between them is made so that all coeffi- 
cients have magnitude at most one. 

Length Equality: We cluster sides by their length in the 
initial drawing. From a cluster of k sides of nearly equal 
length, we form k - 1  equations, each between two sides 
in the cluster. The length of side i is 

"x/Ax/2+AY/2 " J ~ x  isecO i J -- I AyicscOi J " 

We can remove the absolute value signs using the approx- 
imate values of Axi and Ayi computed from the original 
drawing. Thus there are four ways to write the length 
equality constraint as a linear equation; we choose among 
them as above. 

Coordinate Coincidence: To find approximate vertical 
alignment we need to compare points rather than sides. 
To simplify implementation we treat points as sides of 
zero length, and cluster by x coordinate using the side- 
clustering routine. A cluster of k points with close x 
coordinates generates k - I  constraint equations. If two 
points with close x coordinates also have close y coordi- 
nates, the maximum they will be allowed to move is 
reduced from the default to one third of the distance 
between them. This makes it impossible for them to col- 
lapse together. Horizontal alignment and non-alignment 
is detected by a similar process on y coordinates. 
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6. Solving the Equations 

Since it is likely that not all of the constraints pro- 
duced by the clustering algorithm can be satisfied simul- 
taneously, the first step towards solution is to assign a 
penalty to each constraint so that more desirable con- 
straints are satisfied first. We currently assign to each 
equation a penalty equal to the maximum change in one 
of its variables assuming that the others remain at their 
original values; this represents a preference for equations 
that require only a small change to the original coordi- 
nates. Note in addition that the equations that freeze the 
slopes of certain sides have penalty zero, so they will be 
imposed (and satisfied) first. In general, such equations 
can simply be assigned a negative penalty to insure that  
the solver gives them high priority. 

Next we process the equations in order of increas- 
ing penalty using the algorithm of [16]. Briefly, each 
coordinate variable is represented at all times as a linear 
combination of coordinate variables; before any equation 
has been processed each variable is simply equal to itself. 
To process an equation we plug in the linear-combination 
representation of each of its variables and perform arith- 
metic simplification; if the resulting equation contains any 
variables, then one is chosen to become dependent on the 
other variables in the equation; this means that its 
linear-combination representation will change to one that 
involves the other variables. Before this change is made 
final, however, we check to see if it causes the newly 
dependent variable to move too far from its original posi- 
tion; if that happens we ignore the equation. 

This method is not guaranteed to find a solution to 
the system of (1-3), even if one exists. But it usually 
does find a solution to a large subsystem thereof, and it is 
also fast, so it has worked well in practice. 

7. Conclusion 

The problem of beautifying pictures cannot be 
solved completely: there will always be changes that 
would be nice but that  are not detected by an automatic 
procedure. Therefore we have concentrated on a small 
set of relations that  appear to have wide applicability, and 
on understanding how these relations can be detected and 
imposed efficiently without causing untoward changes in 
the picture being beautified. 

Figures 8 to 10 illustrate the application of the pro- 
cedure to a nontrivial drawing. They show the effective- 
ness of the method and also that it is not always idempo- 
tent. One question raised by some readers of drafts of 
this paper (including the S I G G R A P H  referees) is the 
"rate  of success" of beautification. This is an interesting 
practical question because prospective users might want 
to know the probability that their drawings will be beau- 
tified properly. However, such statistics are not easy to 
collect and not practically meaningful. Since the graph- 
ics editor that calls the beautifier runs on a large number 
of machines it would require a rather cumbersome 
mechanism to collect statistics of, say, the number of 
"undo" operations after each beautification. Even that 
would not be enough because: (a) users might instead dis- 
card the result and read in a backup copy of the original; 
(b) the beautifier might make some desirable changes in 
the drawing but not others, so there would be no follow- 
ing overt user action canceling the beautification, even 
though the results were not fully satisfactory. In extreme 

cases where there is a spectacular failure we hear directly 
from disgruntled users, and this is how we found out the 
need for negative constrains. Most important, the success 
of beautification depends a lot on how closely the drawing 
fits the model. The current implementation does quite 
well on "rect i l inear" drawings such as that shown in Fig- 
ure 8. Thus the probability that a block diagram will be 
beautified should be quite high, while the current version 
of beautification is bound to fail on an illustration con- 
taining a set of circles that are suptx~sed to be tangent to 
each other. 

Our experience shows that naive (or even sophisti- 
cated) statistical methods are bound to produce unin- 
tended and undesirable results in practice. We believe 
that negative constraints are crucial to any beautification 
procedure if it is to avoid these pitfalls. 
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ORIGINAL BEAUTIFIED 

Figure 1: An undesirable beautification. 

ORIGINAL BEAUTIFIED 

Figure 2: Beautification of curve terminations. 
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(c) 

Figure 3: (a) Illustration of a clustering arrangement. The thin vertical lines denote elements. (b) 
An arrangement where insisting on the minimum number of clusters yields a poor answer. (c) A 
good clustering of the elements in (a). 
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Figure 4: A drawing where clustering is inappropriate. 
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without negative with negative 
constraints constraints 

Figure 5: A drawing in which small changes in the slopes of AB, BC, EF, FG, and GA do not alter 
the gross shape, while a small change in the slope of CD or DE does. 

I I I I 
Original  Beautified 

Figure 6: Example of the results of the beautification algorithm. 
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U 
O r i g i n a l  B e a u t i f i e d  

Figure 7: Example of the results of the beautification algorithm. Notice that the use of negative 
constraints leaves intact the sides that intersect. 
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Figure 8: Original drawing 
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Figure 9: Drawing of Figure 8 after the First Application of the Beautifier 

i > 

T 
> 

> 

> 

> 

Figure 10: Drawing of Figure 8 after the Second Application of the Beautifier 
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