
Algorithms for Translating View Updates to Database Updates
for Views Involving Selections, Projections, and Joins

Arthur M. Keller
Stanford University
(Extended Abstract)

ABSTRACT. We consider the problem of updating data-
bases through views composed of selections? projections.
and joins of a series of Boyce-Codd Normal Form re-
lations. This involves translating updates expressed
against the view to updates expressed against the data-
base. We; present five criteria that these translations
must satisfy. For each type of view update (insert.
delete, replace). we provide a list of templates for trans-
lation into database updates that satisfy the five crite-
ria. We show that there cannot be any other transla-
tions that satisfy the five criteria.

KEYWORDS. Relational databases? database theory.
view update.

CR CATEG~!RIES. H.2.1. H.l.l, E.4.

1 Introduction

The problem of updating databases through views is an
important practical problem that has attracted much
interest [Bancilhon 79, 81. Carlson 79, Davidson 81,
Dayal 78, 79, 82, Furtado 79, Kaplan 81, Keller 82,
84, Masunaga 831. The user specifies queries to be
executed against the database view; these queries are
translated to queries against the underlying database
through query modification [Stonebraker 751. However,
in current practice, updates must be specified against
the underlying dat,aba.se rather than against the view,
because the problem of updating relational databases
through views is inherently ambiguous.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

fz

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

:n
-

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

2

This work was supported in part by contract N3482-G-0250 (the
Knowledge Base Management Systems Project, Prof. Gio Wieder-
hold, Principal Investigator) from the Defense Advanced Research
Projects Agency and by contract AFOSR-8CL0212 (Universal Re-
lations, Prof. Jeff Ullman, Principal Investigator) from the Air
Force Office of Scientific Research, both of the United States De-
partment of Defense. The views and conclusions contained in
this document are those of the authors and should not be inter-
preted as representative of the official policies of DARPA or the
US Government.

Author’s address: Computer Science Department, Stanford Uni-
versity, Stanford, CA 94305-2085.

01985 ACM O-89791-153-9/85/003/0154 $00.75

Since the view is only an uninstantiated window
onto the database, any updates specified against the
database view must be translated into updates against
the underlying database. The updated database state
then induces a new view state. and it is desirable that
the new view stat,e correspond to performing the user-
specified updat.e directly on the original view state as far
as possible. This is described by the following diagram.

The user specifies update Ll against the view of the
database, V(DB). The view update translatdr T sup-
plies the database update T(U), which results in LIB’
when applied to the database. The new view state is
V(DB’). This translation has no side effects in the
view if V(DB’) = U(V(DB)), that is, if the view has
changed precisely in accordance with the user’s request.
There are update translators that do not have side ef-
fects in the view for views that involve only selections
and projections. There are some updates for views in-
volving joins that cannot be translated without side ef-
fects in the view. Therefore, in this paper, only views
that involve joins may have update translators with side
effects in the view.

Given a view definition, the question of choosing
a view update translator arises. This requires under-
standing the ways in which individual view update re-
quests may be satisfied by database updates. Any par-
ticular view updat.e request may result in a view state
that does not correspond to any database state. Such a
view update request may not be translated without re-
laxing the constraint precluding view side effects.* Oth-
erwise, the update request is rejected by the view up-
date translator. If we are lucky, there will be precisely
one w3y to perform the database update that results in
the desired view update. Since the view is many-to-one.
the new view state may correspond to many database
states. Of these database states, we would like to choose

* In certain cases, we have shown that it is quite reasonable
to relax this constraint in a limited manner [Keller 821.

I’ .,

I:!

”),
,,

154

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325405.325423&domain=pdf&date_stamp=1985-03-25

one that is “as close as possible” under some measure
to the original database state. That is. we would like to
minimize the effect of the view update on the database.

2 View Update Translation

We need to define a few terms to explain the process
of translation of view updates int.o dat,abase updates
[Ullman 82. Maier 831. A domain is a (finite) set. A re-
lation schema is an ordered (or tagged) set of domains
and a set of constraints that tuples in the relation must
satisfy. A functional dependency or key dependency is
an example of such a constraint. A tuple is an ordered
(or tagged) set of values. each one from its respective
domain. The extension of a relation is the set of tuples
in the relation. A database schema is a set of relation
schemata indexed by relation name. A database exten-
sion is a set of relation extensions? one for each relation
in the database schema.

A database view definition is a mapping whose do-
main is the set of all relation extensions for a given
database schema. The range of a database view defi-
nition is also a set of relation extensions for a schema
specific to the view definition. The mapping from the
domain database to each relation in the range of the
view is defined by a type of database query. The view
extension is the extension of the database which is the
range of the view for a particular extension of the data-
base which is the domain of the view.

The operations on databases and views are dele-
tion: insertion, and replacement. A deletion is the re-
moval of a single tuple from a relation. An insertion is
the addition of a single tuple into a relation. A replace-
ment is the combination of a deletion and an insertion
into the same relation performed as a single atomic ac-
tion that does not require an intermediate consistent
state between the deletion and insertion steps. An up-
date is a deletion, an insertion, or a replacement.

A database update may be directly applied against
the database, provided it satisfies the constraints on the
database. A view update is merely an update that is
described against the view, but it must be translated
into a sequence of database updates in order for it to
be executed. There may be several candidate sequences
of database updates corresponding to one view update.
We call these sequences of database updates the trans-
lations of the view update request.

We say that a translation is valid if it performs the
view update as requested. For updates through select
and project views, we will require that the new view
extension be precisely the result of performing the view
update on the old view extension, were the view to be
an ordinary relation. For updates through views that

include joins, it may not be possible to perform the view
update without additional changes to the view [Keller
821. These view side effects are as a result of functional
dependencies that require that changes in the view tu-
pies requested are consistent with the remainder of the
database.

Requiring that a translation be valid is not suffi-
cient for our purposes-it is only a first step. We define
5 additional criteria (in Section 3) we require the trans-
lations to satisfy. We use the criteria to obtain only the
simplest (or minimal) view update translations.

A view update translator is a mapping from view
update requests into translations of these view update
requests. A translator takes the user’s view update
requests and translate them into database update re-
quests, which will then be processed by the database
system. Thus? a view update translation facility is a
useful adjunct to a database system which has a view
definition facility. The lack of a view update transla-
tion facility means that users must specifying updates
directly against the database rather than through views.

We shall provide several (classes of) view update
translators. We do not claim that these are the only
view update translators possible. Rather, we show that.
for each view update request, these view update trans-
lators generate all possible translations of that view up-
date request int,o sequences of database update requests
that satisfy our 5 criteria.

The translators we define are generators of the
complete set of view update translators that generate
translations that satisfy our 5 criteria. So that the view
update translator may choose among these alternatives
at view update time, we propose that the database ad-
minstrator (DBA) provide additional semantics during
view definition time. These additional semantics permit
the view update facility to choose one of these transla-
tors. The derivation of these semantics from the “busi-
ness model” [Keller SSa] is beyond the scope of this
paper.

3 Criteria for View Update Translation

A translation of a particular view update request is
characterized by three sets consisting of the insertions.
deletions, and replacements applied to the underlying
database. The insertions and deletions are each de-
scribed by a set containing the affected tuples. The
replacements are described by a set of ordered pairs of
old and new tuples. These sets all contain the exact
tuples, specifying all attributes. We will consider two
translations equivalent if they have the same effect on
the database. In practice, the equivalence can result

155

from converting a pair of an insertion and a deletion
into a replacement. or from swapping the replacement
tuples from a pair of replace operations. Formally, let
the set of removed tuples be the union of the set of
deleted tuples and the set of replaced tuples: similarly,
the set of added tuples is the union of the set of in-
serted tuples and the set of replacement tuples. Then
two translations are equivalent if their respective added
and removed sets are equal. Recall that the transla-
tions are valid when the implement the request exactly
(without view side effects).

All of the candidate update translations are to sat-
isfy the following 5 criteria (in addition to being valid).

1. “NO database side effects.” The only database
tuples affected have keys that match their respective
values in the tuples mentioned in the view update re-
quest. (This is part of the rectangle rule [Dayal 78.
79. 821). Note that this requires the key of each rela-
tion affected to appear in the view. In particular. this
means that if the key of a tuple changes. the old and
new keys must appear in the respective positions of the
view update request.

2. “Only ‘one step’ changes.” Each database tuple
is affected by at most one step of the translation for any
single view update request. Specifically, a translation
cannot replace an inserted tuple, or delete a replaced
tuple. or replace a tuple twice in succession. (This rule
implies that there is no ordering imposed on the indi-
vidual database updates that translate a view update.)

3. “Minimal change: no unnecessary changes.”
There is no valid translation that implements the re-
quest by performing only a proper subset of the data-
base requests. (Note that we are concerned with the set
of database operations; a deletion is not simpler than
a replacement that replaces the same tuple since the
replacement is a single request.)

4. “Minimal change: replacements cannot be sim-
plified.” Consider two (alternative) database replace-
ment requests where both specify replacing the same
tuple. A database replacement that does not involve
changing the key is simpler than one where the key
changes. A database replacement that changes a proper
subset of the attributes changed by another database re-
placement is simpler. Comparing the attributes of the
replaced tuple with those of the replacement tuple, a re-
placement request that makes some changes is simpler
than one that makes those same changes in addition to
others.

5. “Minimal change: no delete-insert pairs.” We
do not allow candidate translations to include both dele-
tions and insertions on any one relation, as they may
be converted into replacements, which we consider sim-

pier. Thus candidate translations may contain either
deletions or insertions for any relation. but not both. in
addition to replacements. A translation may. however.
contain an insertion into one relation and a deletion
from another relation.

Let us consider the implications of these five crite-
ria. Criterion 1 requires that any change to the data-
base affect only tuples that are relevant to the view
update. This requirement is not as stringent as main-
taining a constant complement [Bancilhon 811. Both
requirements are intended to eliminate unintended ef-
fects on other users. The constant complement method
takes a fixed notion of some other user and prevents
any actions through our view from affecting the other
user. which is contrary to the purpose of a shared data-
base and precludes some reasonable updates or update
translators.

Criterion 2 eliminates two types of anomalies. \Ye
do not want a tuple to be replaced by two separate
tuples: it would have disappeared after the first of these
replacements. We also do not want a tuple to undergo
multiple separate changes, as these could be combined
into a single change. For example. we do not want a
tuple to be replaced only to be deleted in its new form.
Rather, the original tuple should be deleted.

Criteria 3, 4, and 5 require that the updates be
minimal. This takes three forms: we do not do any
unnecessary operations, the operations we do perform
are the simplest ones possible, and we never do in two
steps what can be done in one. The only operation we
can simplify is a replacement operation, and it is sim-
plified by not changing the key. or by changing fewer
attributes. We consider a one-st.ep replacement oper-
ation simpler than a two-step deletion-insertion pair.
This allows us to get at the essence of the changes nec-
essary.

The purpose of our five criteria are to permit all
possible changes, but only in their simplest forms. If
changing a particular attribute value is sufficient! we
want to consider that in preference to changing that
attribute in addition to others. It is certainly possible
to translate a view update request by performing ad-
dit,ional changes to the database, but there are endless
possibilities for such elaboration. If we are to achieve
our goal of characterizing the possibilities. we must re-
strict ourselves to the simplest ones! which capture the
essence of the changes in the more elaborate transla-
tions.

‘Based on the definitions of added and removed sets
above. one translation is at least as simple as another if
its added and removed sets are subsets of those of the
other translation.

THEOREM. For given view updat,e request. for every
valid translation. there is (at least one) translation at
least as simple that satisfies the 5 criteria.*

THEOREM. The five criteria are independent.

4 Views Consisting of Selections and Projec-
tions

We will first consider views consisting of selections and
projections of a single Boyce-Codd Normal Form re-
lation. We will then consider the composition of join
views and selection and projection views.

We shall deal with select and project views on a
single relation with a single key dependency. Let R be
t.he set of attributes in the relation R. and let K be the
set of attributes in the key. We shall assume that the
functional dependency K -+ R is the only consistency
constraint on R. Observe that since the relation may
only have a key constraint. the database has already
undergone normalization.

Let us first consider the selection condition. The
selection condition is a conjunction of terms of the form
A E s (or equivalently. A $! e), where s (and e) is a set
of constants in the domain of A. (Note that s U e is
equal to the domain of A.) We call the values in ‘s
selecting dues. and the values in e excluding values.
For non-selecting attributes the set of selecting values
is the entire domain and the set of excluding values is
the empty set. We call the attributes appearing in the
selection condition selecting attributes. If the selection
condition is “true” (i.e., an empty conjunction), the set
of selecting attributes is empty. the sets of selecting
values are the entire domains, and the sets of excluding
values are empty. This type of selection condition allows
attributes to be treated independently in view updates.

We call the attributes appearing in the view the
projected attributes, while those not appearing in the
view are projected out. We require that all the at-
tributes of the key must appear in the view (none may
be projected out). Any or all of the selecting attributes
may be projected out: except for those in the key. This
means that the key of the database is the key of the
view.

4- 1 Example

Let us consider the relation EMP which contains each
employee’s number, name, location, and whether the
employee is a member of the company baseball team.
The company has two locations: New York and San
Francisco. Baseball team members must be employees.

* The proofs of the theorems in this paper are contained in
the dissertation [Keller 85b].

The personnel manager, Susan. in New York has
the following view definition:

View P:
Select *
From EMP
Where Location=nNew York”

She requests the deletion of employee #I7 from her
view. A reasonable translation of this request is to
delete the employee record from the underlying data-
base. Thus, we have translated a view deletion into a
database deletion. If the employee was a member of the
baseball team: he has been removed from that also.

The baseball team manager, Frank, has the follow-
ing view definition:

View B:
Select *
From EMP
Where Baseball=HYes”

He requests deletion of employee #14 from his view. It
is unreasonable to delete the employee tuple from the
underlying database (unless you believe that baseball
is all-important). A reasonable translation of this view
deletion request is to replace the Baseball attribute of
the underlying database tuple with a “NO.” Thus. we
have translated a view deletion into a database replace-
ment .

One might argue that the Frank’s view deletion
request should have been a replacement. However! this
would mean requesting the replacement of a tuple in
the view with a view tuple that did not appear in the
view. Then Frank’s request would not be valid in the
view. as the replacement tuple could not possibly be a
view tuple. In addition, Frank would have t.o make a
distinction between deletion and replacement that he
could not discern by looking at the effects through his
view.

It is possible to translate the Susan’s request by
moving employee #17 to California. We doubt that the
California manager would be pleased by such an imple-
mentation. Rather, such a request should be issued by
someone authorized to access the entire relation (as a
replacement request): someone who can see the effects
of that request.

We see that a view deletion request is sometimes
translated into a database deletion request best and at
other times into a database replacement request. As
we shall see, similar alternatives arise for insertion and
replacement. We suggest that additional semantics be
used to choose among the various alternatives. but such
semantics are beyond the scope of this paper.

157

4-2 Translation of Update Requests

We will consider the general case of translating sin-
gle tuple update requests on a select and project view
into updates to the underlying database. We will deal
with single tuple insertions first. We will follow that
with single tuple deletions. Finally. we will deal with
single tuple replacements.

4-3 Translation of Insertion Requests

The request is to insert a single. fully-specified view
tuple. The new view tuple must be a valid view tuple-
it must satisfy the selection condition-and not conflict
with any existing view tuple. That is. there must not
already be a tuple in the view with the key of the view
tuple to, be inserted. The extend-insert algorithms are
subroutines of Algorithms classes I-1 and 1-2, which are
the algorithms that translate view insertions.

ALGORITHM CLASS EXTEND-INSERT: The new data-
base tuple is formed by taking the attributes from the
new view tuple as supplied. For remaining attributes.
the values are chosen arbitrarily from their respective
sets of selecting values (which is the .domain for non-
selecting attributes). Each combination of values rep-
resent.s a dintrent algorithm from this class. There is’
a unique extend-insert algorithm iff each attribute pro-
jected out (appearing in the database but not in the
view) has set of selecting values that is a singleton (has
only one element).

ALGORITHM CLASS I-l: If the new view tuple does
not conflict with (have the same key as) any existing
database tuple, then insert the tuple obtained by one
of the extend-insert algorithms. else reject the update
request. There is an algorithm in class I-l for each
extend-insert algorithm. ~

ALGORITHM CLASS I-2: If the new view tuple has a
key matching that of an existing database tuple, then
change the attributes in the database tuple to match
the new view tuple and change all attributes in the
database tuple with excluding values to arbitrary se-
lecting values. There is an algorithm in class I-2 for
every combination of one selecting value from zero or
more selecting attributes other than the key.

THEOREM. The set of update translations that satisfy
the 5 criteria for candidate update translations for indi-
vidual view insertions are precisely those in algorithm
classes I-l and I-2.

Let us consider when these translations may be
used. There may be several translations in algorithm

class I-1 that may be applicable at the same time (al-
though only one should be chosen). Similarly for algo-
rithm class I-2. However, the translations in algorithm
class I-l apply to a disjoint set of database states from
the translations in algorithm class I-2. In particular. a
dat,abase state has at least one valid translation from
algorithm class l-l or from algorithm class l-2 but not
both. Note that there are translators which are formed
by combinations of translations of algorithms in classes
I-l and I-2. including those which can translate all legal
view update requests.

4-4 Translation of Deletion Requests

The request is to delete a single. fully-specified view
tuple. The deleted view tuple must currently be in the
view.

ALGORITHM CLASS D- 1: Delete the database tuple
whose key matches that of the view tuple to be deleted.
There is only one algorithm in class D-l for each view
update request.

ALGORITHM CLASS D-2: Replace the database tuple
whose key matches that of the view tuple to be deleted.
changing one non-key selecting attribute to an arbitrary
excluded value. There is an algorithm in class D-2 for
every non-key excluding value. Of course. there is no
algorithm in class D-2 if the selection condition is ?rue”
(i.e., there is no select clause) or if the set of selecting
attributes is a subset of the key.

THEOREM. The set of update translations that satisfy
the 5 criteria for candidate update translations for in-
dividual view deletions are precisely those in algorithm
classes D-l and D-2.

Let us consider when these translations may be
used. The single algorithm in class D-l is always appli-
cable. The algorithms in class D-2 are applicable when
they exist. One can consider algorithm class D-l to be
the inverse of algorithm class I-l, and algorithm class
D-2 to be the inverse of algorithm class I-2. We note
that these inverse are not perfect, which is why the in-
sertion and deletion of the same tuple (or vice versa) is
not necessary a no-op. Furthermore, there is no analog
for deletion of an translat.or that combines algorithms
from classes I-l and I-2.

4-5 Translation of Replacement Requests

The request is to replace a single, fully-specified view
tupIe with another. The replaced view tuple must cur-
rently be in the view, and the replacement view tuple
must currently not be in the view. Both tuples must

Algorithm class I-l
No conflict
for replacement
view tuple

Algorithm class 1-2
There is a
database tuple
whose key matches
the replacement
view tuple

Algorithm class D-l
Delete replaced
tuple

Algorithm class R-2

One replacement

Algorithm class R-4

Delete old view tuple
Replace new
view tuple

satisfy the selection condition. It must be possible to
do the replacement in the view; that is, if there is a tu-
ple in the original view whose key matches that of the
replacement tuple, it must be the replaced tuple.

ALGORITHM EXTEND-REPLACE: Replace the database
tuple changing the attributes appearing in the view to
match those in the new view tuple. When used in algo-
rithm classes R-l and R-2, this will mean clianging only
those attributes that change in the view tuple replace-
ment. This is similar to algorithm class I-2, except that
the replaced database tuple does appear in the view.
There is only one ext,end-replace algorithm.

ALGORITHM CLASS R- 1: If the key does not change
in the view tuple replacement, then perform algorithm
extend-replace changing only those attributes that
change in the view tuple replacement. Otherwise, re-
ject the update request.

Note that if the key does not change, there is no
possibility of a conflict with any tuple not appearing in
the view.

Algorithms R-2 through R-5 handle the case where
the key changes in the view update request, and are
summarized in the chart above.

ALGORITHM CLASS R-2: Perform algorithm extend-
replace if the key changes in the view tuple replacement
and there is no tuple in the database whose key matches
that of the replacement view tuple. Otherwise, reject
the update request.

Algorithm class R-2 will not allow changes to data-
base tuples not appearing in the view.

ALGORITHM CLASS R-3: If the key changes in the
view tuple replacement and there is a tuple in the data-
base whose key matches that of the replacement view
tuple, then perform an algorithm of class I-2 (on the

Algorithm class D-2
-Replace (in database)
replaced (view) tuple

Algorithm class R-3

Replace old view tuple
Insert new view tuple

Algorithm class R-5

Replace both old and
new view tuples

new view tuple) and delete the database tuple whose
key matches that of the replaced view tuple. Other-
wise: reject the update request.

Algorithm class R-3 changes a database tuple that
does not appear in the view (because otherwise the view
tuple replacement is not valid). If we consider the view
replacement as a view deletion and a view insertion.
then the dichotomy between Algorithm classes I-l and
I-2 parallels that between Algorithm classes R-2 and
R-3 (respectively).

Algorithm classes R-2 and R-3 assume that no tu-
ple remains in the database with a key matching that
of the replaced view tuple. However, it is possible to
replace (in the database) the replaced view tuple with
a tuple with a matching key that does not satisfy the
selection criteria. This parallels the dichotomy of Al-
gorithm classes D-l and D-2 for deletion. We obtain
two algorithm classes using the same conditions of Al-
gorithm classes R-2 and R-3, respectively.

ALGORITHM CLASS R-4: If the key changes in the
view tuple replacement and there is no tuple in the
database whose key matches that of the replacement
view tuple, perform an algorithm from class D-2 (for
the replaced view tuple) and an algorithm from class
I-l (for the replacement view tuple). (That is? the re-
placed view tuple will be changed to not appear in the
view and the replacement view tuple will be inserted.)
Otherwise, reject the update request.

ALGORITHM CLASS R-5: If the key changes in the
view tuple replacement and there is a tuple in the data-
base whose key matches that of the replacement view
tupie, then perform an algorithm from class D-2 (for
the replaced view tuple) and an algorithm from class
I-2 (for the replacement view tuple). (That is. the re-
placed view tuple will be changed to not appear in the

view and the replacement view tuple will be obtained CXD II I X 1
by replacing some dat,abase tuple that did not appear
in the view.) Otherwise. reject the update request.

Algorithm class R-l is the only one possible when
the replacement does not change the key. When the
view replacement does change the key. we have two op-
tions for handling the replaced view tuple corresponding
to Algorithm classes D-l and D-2. and two situations
involving the replacement view tuple corresponding to
Algorithm classes I-l and 1-2. The four replacement
algorithm classes are described by the table.

AB [a 11 b

Reference Connection

the key for relation AB. In addition. we require that for
each value X in CXD. there is a corresponding tuple
in AB with a matching A value.

THEOREM. The set of update translations that satisfy
the five criteria for candidate update translations for
individual view replacements are precisely those that
are generated by Algorithm classes R-l, R-2, R-3. R-4,
and R-5.

5 Views Consisting of Selections, Projections,
and Joins

We will now consider views defined using joins as well
as selections and projections. We define a query to be
in Select-Project-Join Normal Form (or SPJNF) when
it does the selections first: the projections next. and the
joins last. Note in particular that this implies that the
join attributes must appear in the view.

We can obtain a query graph by constructing a
graph where each node corresponds to a relation in the
view and each edge corresponds to a join in the view
definition [Finkelstein 821. The edges have directions
as shown in the figure (in the many-to-one direction).
We shall require that the join views correspond to a
query graph that is a tree where all edges are directed
away from a single root and each node refers to a unique
relation.* Note that the key of the root is the key of
the entire view.

THEOREM. Any relational query where no projection
removes a join attribute and the selection conditions are
conjunctions of the form “attribute in set” can be con-
verted into an equivalent (results in the same answer)
relational query that is in SPJNF.

We will call the class of views in SPJNF where
the joins satisfy the two requirements of this section
(reference connection and rooted tree). the projections
do not remove any key, and the selection conditions
are conjunctions of the form A E s where s is a set of
constants in the domain for attribute A.

5-2 Updating Join Views

A view in SPJNF is the composition of a view con-
sisting of joins with some number of select and project
views (each on the individual relations), any of which
may be the identity. We shall show how to update
through the join view and then prove that composing
the views works as expected.

In this section. we consider the problem of updating
join views. Each relation of the join view corresponds
to an underlying relation of the database or a select
and project view of such a relation. Of course. the SP
view could be the identity view (i.e., no selection or
projection). Let us first consider how to delete a tuple
from the join view.

5-1 Requirements for Joins

ALGORITHM CLASS SP J-D: Delete the tuple from the
root relation (or SP view) only using one of the algo-
rithm of classes D-l or D-2.

There are two requirements for joins. First, each join
must be an extension join with an inclusion dependency.
Second, the combination of joins must have a particular
pattern.

Each join must be a reference connection. A refer-
ence connection (El-Masri 79, 80, Wiederhold 831 is the
combination of an extension join [Honeyman 801 and
an inclusion dependency [Casanova 821. In an exten-
sion join. the join attributes are the key of one of the
relations. In the figure, the join attributes are X in re-
lation CXD and A in relation AB. Notice that A is

THEOREM. Algorithm class SPJ-D is the only algo-
rithm that satisfies the five criteria that deletes a tuple
from join views of the type specified when the SP views
are identity views.

We next consider inserting a tuple into the join
view. This involves inserting the various projections of
the new join view tuple into the individual relations.

* We can relax this constraint to allow rooted DAGs if we
relax the five criteria somewhat.

160

1

ALGORITHM CLASS SP J-I: Take the projections of the
join view to the attributes listed in each SF view. On
each projection (or SP view) there are three cases:

CASE 1: The projection exists in the SP view in
the exact projected form. If this is the root SP view,
reject the update as it violates an FD in the view. Oth-
erwise. we need do nothing with this SP view.

CASE 2: The projection does not match the key of
any tuple in the SP view. Perform an SP view insertion
using the projection of the new join view tuple.

CASE 3: There is already a tuple in the SP view
with a key matching that of the projection, but the
other values do not match. Replace (in the SP view)
the existing SP view tuple by the projection of the new
join view tuple. We may reject the update request if we
do not wish to perform a replacement in the SP view.

If any of the SP view operations fail. the entire
view update request fails and is undone.

THEOREM. Algorithm class SPJ-I is the only algorithm
that satisfies the five criteria that inserts a tuple from
join views of the type specified when the SP views are
identity views.

We next consider replacing an individual tuple in
the join view.

ALGORITHM CLASS SP J-R: Perform a recursive (pre-
order [Knuth 731) search on query graph tree. (We shall
ignore the retracing steps that occur when leaf nodes are
reached.) We are initially in State R at root relation.

STATE R (replacing): Compare projection (to this
SP view) of old join view tuple with new join view tuple.

CASE R-l: Projections match exactly. Move to
next relation down. Go to State R.

CASE R-2: Projections differ but keys match.
Perform SP view replacement. Move to next relation
down. Go to State I.

CASE R-3: Projections differ and keys differ. This
can only happen in root. Perform SP view replacement.
Move to next relation down. Go to State I.

STATE I (inserting): Compare projection (to this
SP view) of old view tuple with new view tuple.

CASE I- 1: Keys match. Go to State R (staying in
this relation).

CASE I-2: Keys differ, new key not in SP view.
Insert tuple int,o SP view. Move to next relation down.
Go to State I.

CASE I-3: Keys differ, new projection in SP view.
Move to next relation down. Go to State I.

CASE I-4: Keys differ, new key in SP view but
conflicting data. Perform SP view replacement. Move
to next relation down. Go to State I.

THEOREM. Algorithm class SPJ-R is the only algo-
rithm that satisfies the five criteria that replaces a tuplc
from join views of the type specified when the SP views
are identity views.

5-3 Combining Joins Views with Select and
Project Views

We need to combine select and project view algorithms
with join view algorithms to get select. project! and join
view algorithms. Fortunately, the natural composition
works correctly.

For a given select. project, and join view. the set of
view update translations (translators) is the obtained
from Cartesian product of the sets of the view update
translations (translators) for each select and project
view. We use the one of the algorithms SPJ-D. SPJ-
I! and SPJ-R as appropriate. Each algorithm describes
how to use select and project view algorithms. This
notion is captured in the following theorems,

LEMMA. Let Ur and Uz be a set of view update re-
quests on the select and project views in sets l’r and
V-J respectively. where there is at most one view update
request on each view and each underlying relation is
referenced in only one of the views VI or Vz but not
both. Let Tr (2”s) contain one translation for each view
update request in Ur (UZ). Let the sets Z’r and T2
each collectively satisfy the five criteria for view update
translation. Then T = Tl U T2 collectively satisfies the
five criteria for the view update requests iY = 1ir U CT2
on the views V = VI u V2.

THEOREM. Algorithm class SPJ-D are the only algo-
rithms that satisfies the five criteria that deletes a tuple
from select, project, and join views of the type specified.

THEOREM. Algorithm class SPJ-I are the only algo-
rithms that satisfies the five criteria that inserts a tuple
from select, project, and join views of the type specified.

THEOREM. Algorithm class SPJ-R are the only algo-
rithms that satisfies the five criteria that replaces a tu-
ple from select, project, and join views of the type spec-
ified.

6 Conclusion

We have devised five criteria for acceptable view update
translations. We have enumerated a complete list of
translators that satisfy these five criteria for a large class
of select, project, and join views on Boyce-Codd Kormal
Form relations. Our techniques take into acc.ount the
possibility that an object the user has requested to be
deleted should actually be transformed into an object

161

the user does not know about, and the possibility that
an object the user wants inserted may refer to an exist-
ing object the user has just become aware of. Thus an
object can be deleted by “destroying” it or converting
it into another, unrecognizable object.

With a complete list of alternative translations, we
have circumscribed the search space for a translator for
view updates (into database updates). Additional se-
mantics are needed to choose the desired translator.
Collecting. coding. and using such additional semantics
are beyond the scope of this paper.

We handle a large class of select. project. and join
views on Boyce-Codd Normal Form relations. That is.
there is a single consistency constraint on each relation:
a key dependency (or functional dependency). The se-
lection condition is the (possibly empty) conjunction of
terms, each of the form attribute E set. The projection
may remove any attributes mentioned in the selection
condition, except that the key of the relation must ap-
pear in the view. The views are described in Select-
Project-Join Normal Form: which requires that all the
join attributes appear in the view, the joins are exten-
sion joins with inclusion dependencies, and the joins can
be represented as a tree in a directed query graph.

7 References

[Bancilhon 791 F. Bancilhon, “Supporting View
Updates in Relational Data Bases.” in Data Base
Architecture, Bracci and Nijssen, eds., North
Holland, June 1979.

]Bancilhon 811 F. Bancilhon and N. Spyratos.
“Update Semantics and Relational Views,” ACM
Bans. on Database Systems, 6:4, December 1981.

[Carlson 791 C. Robert Carlson and Adarsh K. Arora.
“The Updatability of Relational Views Based
on Functional Dependencies,” Third International
Computer Software and Applications Conference?
IEEE Computer Society, Chicago, IL, November
1979.

[Casanova 821 Marco Casanova, Ronald Fagin, and
Christos Papadimitriou, “Inclusion Dependencies
and Their Interaction with Functional Dependen-
cies,” Proc. of the ACM Symp. on Print. of
Database Systems, Los Angeles, March 1982.

[Davidson 811 Jim Davidson and S. Jerrold
Kaplan, “Natural Language Access to Databases:
Interpretation of Update Requests,” Proc. 7th Int.
Joint Conf. on Artificial Intelligence, Vancouver,
B.C., August 1981.

[Dayal 781 U. Dayal and P. A. Bernstein, “On the
Updatability of Relational Views,” Proc. Fourth

VLDB Conf.. IEEE Computer Society, Berlin.
West Germany, October 1978.

[Dayal 791 Umeshwar Dayal, Schema-Mapping
Problems in Database systems: Aiken Computation
Laboratory, Harvard University. TR-11-79, Ph.D. ’
dissertation, August 1979.

[Dayal 821 U. Dayal and P. A. Bernstein! “On
the Correct Translation of Update Operations
on Relational Views.” ACM Trans. on Database
Systems, 7:3, September 1982.

(El-Masri 791 Ramez El-Masri and Gio Wiederhold.
“Data Models Integration using the Structural
Model,” Proc. of the 1979 SIGMOD Conference.
ACM SIGMOD. Boston. June 1979.

(El-Masri 801 Ramez El-Masri, On the Design.
Use, and Integration of Data Models, Ph.D.
dissertation. Stanford University. 1980.

[Finkelstein 82) Sheldon Finkelstein. “Common
Expression Analysis in Database Applications.”
Proc. Int. Conf. on Management of Data. ACM
SIGMOD, Orlando. FL, June 1982.

[Furtado 791 A. L. Furtado, K. C. Sevcik, and C.
S. DOS Santos! “Permitting Updates Through
Views of Dat.a Bases,” Inform. Systems, 4:4.
Pergamon Press. Great Britain, 1979.

[Kaplan 811 S. Jerrold Kaplan and Jim Davidson. “In-
terpreting Natural Language Database Updates.”
Proc. 19th Annual Meeting of the Association for
Computational Linguistics, Stanford. California.
June 1981.

[Honeyman 80) Peter Honeyman? “Extension Joins.”
Proc. ht. Conf. on Very Large Data Bases.
Montreal, 1980.

[Knuth 731 Donald E. Knuth, The Art of
Computer Programming, Volume 1, Fundamental
Algorithms. Addison-Wesley, Reading. MA: second
edition, 1973.

]Keller 821 Arthur M. Keller, “Updates to Relational
Databases Through Views Involving Joins.” in
Improving Database Usability and Responsiveness.
Peter Scheuermann, ed., Academic Press. New
York, 1982.

[Keller 841 Arthur M. Keller and Jeffrey D. Ullman.
“On Complementary and Independent Mappings
on Databases,” 1984 ACM SIGMOD ht. Cod on
Management of Data, Boston. June 1984.

[Keller 85a] Arthur M. Keller, “Choosing a View
Update Translator by Dialog at View Definition
Time,” submitted for publication.

[Keller 85b] Arthur M. Keller, Updating Relational
Databases Through Views, Stanford University.
Comput,er Science Dept., Ph.D. dissertation. 1985.

162

[Maier 831 D. Maier, Theory of Relational Databases,
Comput,er Science Press. Rockville, MD. 1983.

[Masunaga 831 Y. Masunaga, “A Relational Database
View Update Translation Mechanism,” IBM. San
Jose Reserach Laboratory. Report RJ3742, 1983.

IStonebraker 751 Michael Stonebraker, “Implemen-
tation of Integrity Constraints and Views by
Query Modification.” Proc. of the 1975 SIGMOD
Conference, ACM SIGMOD, San Jose. June 1975.

[Ullman 82) Jeffrey D. Ullman. Principles of Database
Systems. Computer Science Press: Potomac. MD.
second edition. 1982.

[Wiederhold 831 Gio Wiederhold. Database Design!
McGraw-Hill. Second edition. 1983.

163

