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ABsrRAcr 

We present here an improved algorithm to fmd a 
key of a relation R(A) on the attributes A The algorithm 
requires O(lKI.IIF/[) time, where IKI is the size of the key 
obtained and 1141 is the length of the input specification 
for the functional dependencies F. The previously 
known algorithms require O(lA/.llfil) time, which can be 
an order of magnitude larger if IKI is small compared to 
l-4 

1. INTRODUCTION 

The relational model of data introduced by Codd 
[5] visualizes the data organized as a table or a (univer- 
sal) relation. The rows of the table correspond to the 
facts about the universe of discourse which is being 
modeled. The columns of the table correspond to the 
attributes in terms of which the facts are described. An 
important concept in specifying a database is the notion 
of functional dependency (fd). Fd’s are used to define 
the database semantics and other constraints that a da- 
tabase must satisfy. The presence of the fd’s imply cer- 
tain potential anomalies (inconsistencies) in the rela- 
tional representation of data when one or more attri- 
butes of a row are updated, or new rows are inserted, 
etc. [6]. This problem is resolved by the normalization 
procedure in which the original relation is replaced by a 
set of “smaller” relations, each using only a subset of 
the full set of columns of R [6]. The database design 
problem consists of creating a set of normalized rela- 
tions which is equivalent to the original universal rela- 
tion. Bernstein [4] gives an algorithm for computing a 
normalized set of relations in 3rd normal form. The al- 
gorithm is subsequently refined in [3]. Ling and others 
[7] gives an improved notion of a 3rd normal form rela- 
tion which removes certain potentially undesirable pro- 
perties of the relations derived by Bernstein’s method. 

One of the basic steps in the normalization pro- 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

O1985 ACM O-89791-153-9/85/003/0189 $00.75 

cess is the construction of a key for the relation from 
the given functional dependencies. We present here an 
efficient algorithm for computing a key. Our algorithm 
is a more direct construction compared to the algo- 
rithm given in [6]. The latter starts with the whole attri- 
bute set A, and the attributes that are non-essential are 
eliminated one at a time. until the remaining attributes 
are all essential and form a key. In our method, one at- 
tribute which can be added to the present subkey in 
each step, and the process continues until a key is 
formed. This method is superior when the keys of the 
relation are small compared to the size iA/ of the full at- 
tribute set, which is often the case. In other cases, the 
performance of the our algorithm is same as that in [a]. 

2. DEFINITIONS 

Let R = R(A) be a relation on the attributes A For 
subsets X, Y s A. we say that X functionally determines 
Y. or equivalently, there is a fi-mctional dependency (fd) 
from X to Y. if for any two tuples (rows) t and t’ of R, we 
have t[Y] = t’[Y] whenever t[X] = t’[X]. Here t[X] 
denotes the sub-tuple of values of t in the columns X. 
The functional dependemy means two rows with the 
same X-values must have the same Y-values. This pro- 
perty must hold at all times as the relation is modified 
by adding new rows, or modifying values in the existing 
rows. (Deletion of a row cannot destroy functional 
dependency; this is not the case for multi-valued depen- 
dencies. The multivalued dependencies do not affect 
the key.) The fd from X to Y is denoted by X --) Y: we 
refer to X and Y respectively as the left and the right 
side of the fd. The following properties (l)-(3) of fd’s are 
easily verified and are known as Armstrong’s inference 
rules [2]. The property (1) allows one to reduce the 
right side of an fd, and by property (2) one can enlarge 
the right side. Note that if Y = t Y,, Ys. . . . . Y, ], then X + 
Y is simply an abbreviation for the set of fd’s IX + 5, 1 
< i 5 k]. One can view (l)-(3) as rules that can be used 
to derive all functional dependencies that are implied 
by a given set of fd’s. 

(1) X -, x’ for all X’ S X . (Projection) 

(2)IfX+YandX+Z,thenX+YWZ (Union) 

(3)IfX+YandY+Z,thenX+Z (Transitivity) 

In view of the rule (1). one can rewrite (2) as [X -) 
Y and X + Z] if and only if [X --) Y u Z]. It is possible to 
have two subsets of A which functionally determine each 
other and yet no single attribute in one set determines 
any Pttribute in the other set. For example, let I = 
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Income, E = Expenditure, and N = Net-income; then any 
two of the attributes 11, E, Nj functionally determine the 
other but no single attribute determines any other 
attribute. 

11, Ej -) N (N = I - E) 
1 I. Nj -) E (E = I - N) 
[E. Nj --) I (I = E + N). 

In an fd X -) Y, smaller the left side, more is the 
semantic information contained in that fd. If x’ -) Y and 
x’ s X. then from (1) and (3) we get X + Y. Thus X’ + Y 
has more information than X -) Y. Similarly, a larger 
right side means more semantic information. This leads 
to the following definition. An fd X -t Y is said to be jut2 
if Y is not functionally dependent on any proper subset 
of X: in that case we write X I* Y [7]. (Note that X I* Y 
does not say that for every attribute & in Y, X + & is 
full.) A subset X of the attributes is said to be a key if X 
I-) A, i.e., X must determine all attributes and no subset 
of X must suffice for this purpose. A subkey is a subset 
of a key, i.e., a set of attributes that can be extended to 
a key. Note that if X, Y are two keys, then X I-) Y and Y 
I-) X. Two subsets X, Y satisfying the mutual full func- 
tional dependency are sometimes said to be equiwdent. 
For the I-E-N example above, the keys 11, Ej, {I, Nj, and 
tE. N] are mutually equivalent. An attribute set X is 
called a superkey if it contains a key, or equivalently, X 
AA. 

3. ALGORITHMS FOR COMPUTING A KEY 

We give below an efficient method for finding a key 
for an arbitrary set of fd’s F. We assume that each fd 
has the reduced form X --t Y, where X and Y are disjoint: 
otherwise, we replace X + Y by X -L Y-X. The algorithm 
first finds a subkey Ks which is contained in every key. 
Ks consists of the attributes which do not belong to the 
right side of any fd. The subkey Ko is then extended by 
adding more attributes until it becomes a key. The 
algorithm proceeds in two basic phases. An expansion 
phase extends the current subkey K (initially, K = Ks) to 
a superkey K’, and this is then followed by a reduction 
phase in which a subkey x”, K C K” s K’. is obtained. The 
cycle is repeated now with K” in place of K. etc. until no 
further expansion is possible, at which point K is a key. 
Let spun(X) denote the set of all attributes that are 
functionally dependent on X directly or transitively (i.e., 
can be obtained via one or more applications of the rule 
(3)): by convention, span(X) includes the attributes X 
themselves. The expansion phase of the subkey K con- 
sists of choosing a sequence of attributes ai, as, . . . . ak 
such that 

(i) each ai+1 is outside the span of the previous 
elements, q+i L span(K u la,, a2, . . . . o+j). 

(ii) span(K U la*, a2. . . . . ak]) = A 

The following Lemma, which is easily proved, is the basis 
of our algorithm. 

Lemma 1. If K is a subkey and (ai, us, . . . . uk) are 
chosen as above, then K U {ah] is a subkey. 

Proof. By (ii), K U Iai, as, . . . . ak] contains a key K’ 
3 K. However, K” is not contained in K u tan as, ~.., 
ub-il, because its span does not contain ak in particular. 
Thus K” must contain K U &I. (In general, we cannot 
say that x” contains any other q, i I i Cr k-l. It is worth 
noting that if we scan the attributes A always in the 

same order, then each subsequent expansion phase will 
result in a subsequence of the previous expansion 
sequence, excluding the last term. Thus the 2nd expan- 
sion sequence is a subsequence of (ui, as, . . . . ak-J.) 
QED. 

EzampLe 1. Consider the following fd’s. 

AB -a c, W-A, EF-,BD, 
C -,E, D -,F 

The computation of successive spans and the attribute 
sequences (ai, ue, . ..) are shown below. The flnal key 
computed is ED using 2 expansion phases and 2 reduc- 
tion phases. Note that the attribute A which was con- 
structed in the superkey in the first expansion phase 
has been ultimately eliminated and is not in the final 
key. 

1. K = $, span(K) = $ 

a, = A, span(A) =A 
as = B, span(AI3) = ABCE 
as = D. span(ABD) = ABCDEF 

The attribute D is added to K. 

2. K = D, span(D) = DF 

a1 = A, span(DA) = ADF 
as = B. span(DAB) = ABCDEF 

The attribute B is added to K. 

3. K = BD, span(BD) = ABCDEF. 

To compare, the computation by the Lucchesi and 
Osborne’s algorithm for the above fd’s would be as 
shown below; the fmal key computed is EF. 

1. 

2. 

3. 

4. 

5. 

6. 

ABCDEF is a superkey; 
A is not essential because span(BCDEF) contains 
A. 

BCDEF is a superkey; 
B is not essential because span(CDEF) contains 
B. 

CDEF is a superkey; 
C is not essential because span(DEF) contains C. 

DEF is a superkey: 
D is not essential because span(EF) contains D. 

EF is a superkey; 
E is essential because span(F) does not contain 
E. 

EF is a superkey; 
F is essential because span(E) does not contain 
F. 

In general, our algorithm computes larger number 
of span’s than that by Lucchesi and Osborne’s algo- 
rithm. But as can be seen form Example 1, the attri- 
bute sets for which we compute span are mostly 
increasing and this allows significant optimization 
(Lemma Z), ultimately resulting in the superior perfor- 
mance. In Lucchesi and Osborne’s algorithm, the sets 
for which the span is computed are decreasing, and the 
smaller sets are not known until the discovery of non- 
essential elements. This requires each span to be com- 
puted essentially from scratch. 
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3.1. The Procedures INIT() and sm() 

We now present the procedures to compute Ko. 
the span(X) for an arbitrary attribute set X, and finally 
the procedure to compute a key. For the efficiency con- 
sideration, we begin by forming for each attribute x in A 
the list list(x) which consists of all fd’s whose left side 
contains x. We use an array size[], where for each fd f: X 
4 Y we have size[f] = IX/, the cardinality or the number 
of attributes in X. 

proc INIT(); [builds the list(x)‘s and computes Ko] 
begin 
for each fd i: X + Y do 

begin 
for each x in X do 

begin 
size[f] := size[f]+l: [initially, all size[] = 01 
add f to the list(x); 
end; 

fog each y in Y do tinitially, all count[] = 01 
count[y] := count[y]+l; 

end; 
Ko := empty set: 
fog each attribute y in A do 

if count[y] = 0 
then add y to Ka; 

end; iof INITj 

For the procedure SPAN(). we use an array 
mark[], where mark[x] = 1 indicates that the attribute 
x is marked. We sometimes write “mark x” to mean 
“mark[x] := 1.” Q is a queue of the attributes which are 
presently known to be in span(X) ‘but which have not 
been processed yet [l]. On termination of SPAN(X), the 
attributes that are marked constitute the set span(X). 
Initially alI attributes are unmarked. (The procedure 
SPAN is very similar to Algorithm 2 in [3].) 

proc SPAN(X); lcomputes span(X)] 
begin 
Q := empty queue; 
for each attribute x in X do 

begin 
add x to Q; 
mark x; imarking also prevents an x 

entering Q more than once] 
end; 

while Q not empty do 
begin 
x := head of Q; 
delete x from Q; 
fog each fd t: X + Y in list(x) do Ix is in span(X)] 

begin 
size[f] := size[f]-1; 
if size[f] = 0 
the2 for each y in the right side of f do 

if y is not marked 
then mark y and add it to Q; 

end; 
end; 

end; [of SPAN] 

Ezumple 2. The following example illustrates the 
algorithms INIT() and SPAN{). Assume that the fd’s are: 

AD -a B, AEI -) E, C+D 
B + c, AC + F 

The list(x) contains those fd’s for which the column of x 
in the diagram below contains .a dot (*) in the 

corresponding row. The value of each size[f] is shown on 
the right side and equals the number of dots in the row. 

count[y] 0 1 1 1 1 1 

ABCDEF size[ f] 
I I I I I I 

AD+B .-----------,-------- 2 
I I I I I. I 

B -,C ----.---------------- 1 
I I I I I I 

C +D --------.------------ 1 

AB+E 
IIIIII 2 
.---.---------------- 

I I I I I I 
AC + F .-------.------------ 2 

The life history of the queue Q in the call SPAN(A) is 

Q=A 
Q = empty 

The behavior of Q in the call SPAN(AB) is more interest- 
ing as shown below; span@@ = ABCDEF. 

Q = AB (head of Q on the left) 

i:;, 
Q = EDF 
Q = DF 
Q = F (B is already marked and not added to Q) 
Q = empty 

3.2.The ProcedureKEY() 

Let Ko be the attributes computed by INIT:), and S 
= span(Ko). Then it is not hard to see that each key of 
R(A) has the form K = X0 U K’, There K’ is a key of (A-S) 
for the reduced fd’s on A-S: 

replace each X + Y by X-S -) Y-S 

(Note that the reduced fd’s are valid only for the pur- 
pose of computing the key. We need to consider now 
only those reduced fd’s whose right side is non-empty; if 
X-S = #, then because S equals its own span we neces- 
sarily have Y-S = $.) The characteristic property of the 
reduced fd’s on A-S is that every attribute of A-S is on 
the left side of some fd and also on the right side of 
some fd. We focus below on computing a key of such a 
family of fd’s. To use it for the general case, simply 
compute Ko by the procedure INIT() first and then exe- 
cute SPAN(K0). This will set the initial values of mark[] 
and size[] properly (see lines 1 and 2 in the procedure 
below). We use the following observation in computing 
the various spans during each expansion phase from a 
subkey to a superkey. (The proof of the lemma is omit- 
ted: the lines 3-5 in procedure KEY are based on the 
lemma.) 

Lemma 2. If y is not in span(X) and the arrays 
mark[] and size[] are initialized to the values resulting 
from the call SPAN(X), then t.he array mark[] following 
the call SPAN(y) gives span(X U Iyj). 

We use two additional arrays svma&-k[] and svsize[] 
in the procedure KEY() to save the current values of 
mark[] and size[], respectively, before proceeding with 
the each expansion phase. We assume that the arrays 
mark[] and save[] used by SPAN{) are global and the 
successive application of SPAN0 uses the previous 
mark[] and size[] values. Also, we assume that all 
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unmarked attributes are connected in a doubly linked 
list U; this would allow efficient selection of an 
unmarked attribute and deletion of an attribute as it 
gets marked. Initially, every attribute in A is in U (or, 
more generally, if Ko is non-empty then U contains the 
attributes in A-span(Ka)). 

proc K!ZY(); [compute a key] 
begin 

1: call INIT(); 
2: call SPAN( Ko): 

svmark[] := mark[]; {copy the whole array] 
svsize[] := size[]; [copy the whole array{ 
tcompute the initial expansion list L = (ai. az, . . . . a*)] 
L := empty list; 
last.:= nil;’ Ilast points to the last item of Lj 
while U not empty do 

begin 
x := the Dust item of U; 
add x to the end of L and adjust the pointer last; 
delete x from U; 

3: call SPAN(x); {the array mark[] now 
gives span(L U txJ)l 

end; 
K := empty list; 
repeat 

if last # nil 
fhen begin Ireduction phase] 

x := the last item of L; 
delete x from L and adjust pointer last; 
add x to K; 
mark[] := svmark[]: 
sizer] := svsize[J; 
call SPAN(x); 

svmark[] := mark[]; 
svsize[] := size[]: 
last := nil: 

end; 
[compute the expansion list for the new subkey 

K u 1x1 as a sublist of Lj 
for each item y in L do 

if mark[y] = 0 [mark[] contains values set 
from lines 4 or 5j 

5: then call SPAN(y) 
else delete y from L and reset last if necessary; 

until last is nil; 
end; jof KEY{ 

4. TIME COMPLEXITY OF THE PROCRDURE KEY() 

Let us assume that each functional dependency X 
+ Y is represented as a list of elements in X followed by 
a separator like “+” and then followed by the elements 
in Y. We denote by 1/F/ the sum of the lengths of all 
these lists. Clearly, the sum of the lengths of list(x)‘s is 
proportional to 11F1. The procedure INIT() scans the list 
for each fd once, and the computation of Kc requires 
scanning the array count[] once. Therefore it requires 
O(\q + 1141) = O(llF[) time, assuming that 1lF1 is non- 
trivial. As for the procedure SPAN(X), X is scanned once 
and each list(x) is scanned at most once in the wb,jle- 
loop. It too then requires at most O(llFil) time. 

Now we analyze the procedure KElY(). All calls to 
SPAN in line 3 of the while-loop will together scan the 
list(x)‘s at most once because of our use of the global 
arrays mark[] and size[]. The time requirement for the 
while-loop is then O(llfil). The repeat-until loop is 
iterated IKl+l times, where K is the computed key. The 
total time for all copy operations between mark[] and 
svmark[], and those between size[] and svsize[] is 

O(lKI.IA!). The calls to SPAN in line 4 and those in line 5 
of the for-loop together will scan the list(x)‘s at most 
once in each iteration of repeat-until. The total time 
complexity of KEY{) is thus O(lK/.1lfi/), as desired. 

5. CONCLUSION 

We have given here an improved algorithm for 
computing a key of a relation R(A) from a given set of 
functional dependencies F. The algorithm is more 
efficient than the previously best known algorithm for 
the cases when the key size is small compared to the 
number of attributes iA/, which is often the case. In the 
other cases, our algorithm has the same efficiency as 
before. It is possible that the ideas similar to those 
given here can be used to improve the algorithm for 
computing all keys of R(A). The algorithm given here is 
easily generalized for computing a key which contains a 
given subkey K’ and/or contained in a given superkey 
K”. Our algorithm has, however, no impact on the prob- 
lem of determining if an attribute is prime (i.e., belongs 
to some key), which is known to be NP-complete [a]. 
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