
AN IMPROVED ALGORITHM FDR FINDING A KEY
OF A Rl%LATlON

Sukhamay Kundu

Computer Science Dept.
Louisiana State University

Baton Rouge, LA 70603, USA

ABsrRAcr

We present here an improved algorithm to fmd a
key of a relation R(A) on the attributes A The algorithm
requires O(lKI.IIF/[) time, where IKI is the size of the key
obtained and 1141 is the length of the input specification
for the functional dependencies F. The previously
known algorithms require O(lA/.llfil) time, which can be
an order of magnitude larger if IKI is small compared to
l-4

1. INTRODUCTION

The relational model of data introduced by Codd
[5] visualizes the data organized as a table or a (univer-
sal) relation. The rows of the table correspond to the
facts about the universe of discourse which is being
modeled. The columns of the table correspond to the
attributes in terms of which the facts are described. An
important concept in specifying a database is the notion
of functional dependency (fd). Fd’s are used to define
the database semantics and other constraints that a da-
tabase must satisfy. The presence of the fd’s imply cer-
tain potential anomalies (inconsistencies) in the rela-
tional representation of data when one or more attri-
butes of a row are updated, or new rows are inserted,
etc. [6]. This problem is resolved by the normalization
procedure in which the original relation is replaced by a
set of “smaller” relations, each using only a subset of
the full set of columns of R [6]. The database design
problem consists of creating a set of normalized rela-
tions which is equivalent to the original universal rela-
tion. Bernstein [4] gives an algorithm for computing a
normalized set of relations in 3rd normal form. The al-
gorithm is subsequently refined in [3]. Ling and others
[7] gives an improved notion of a 3rd normal form rela-
tion which removes certain potentially undesirable pro-
perties of the relations derived by Bernstein’s method.

One of the basic steps in the normalization pro-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

O1985 ACM O-89791-153-9/85/003/0189 $00.75

cess is the construction of a key for the relation from
the given functional dependencies. We present here an
efficient algorithm for computing a key. Our algorithm
is a more direct construction compared to the algo-
rithm given in [6]. The latter starts with the whole attri-
bute set A, and the attributes that are non-essential are
eliminated one at a time. until the remaining attributes
are all essential and form a key. In our method, one at-
tribute which can be added to the present subkey in
each step, and the process continues until a key is
formed. This method is superior when the keys of the
relation are small compared to the size iA/ of the full at-
tribute set, which is often the case. In other cases, the
performance of the our algorithm is same as that in [a].

2. DEFINITIONS

Let R = R(A) be a relation on the attributes A For
subsets X, Y s A. we say that X functionally determines
Y. or equivalently, there is a fi-mctional dependency (fd)
from X to Y. if for any two tuples (rows) t and t’ of R, we
have t[Y] = t’[Y] whenever t[X] = t’[X]. Here t[X]
denotes the sub-tuple of values of t in the columns X.
The functional dependemy means two rows with the
same X-values must have the same Y-values. This pro-
perty must hold at all times as the relation is modified
by adding new rows, or modifying values in the existing
rows. (Deletion of a row cannot destroy functional
dependency; this is not the case for multi-valued depen-
dencies. The multivalued dependencies do not affect
the key.) The fd from X to Y is denoted by X --) Y: we
refer to X and Y respectively as the left and the right
side of the fd. The following properties (l)-(3) of fd’s are
easily verified and are known as Armstrong’s inference
rules [2]. The property (1) allows one to reduce the
right side of an fd, and by property (2) one can enlarge
the right side. Note that if Y = t Y,, Ys. Y,], then X +
Y is simply an abbreviation for the set of fd’s IX + 5, 1
< i 5 k]. One can view (l)-(3) as rules that can be used
to derive all functional dependencies that are implied
by a given set of fd’s.

(1) X -, x’ for all X’ S X . (Projection)

(2)IfX+YandX+Z,thenX+YWZ (Union)

(3)IfX+YandY+Z,thenX+Z (Transitivity)

In view of the rule (1). one can rewrite (2) as [X -)
Y and X + Z] if and only if [X --) Y u Z]. It is possible to
have two subsets of A which functionally determine each
other and yet no single attribute in one set determines
any Pttribute in the other set. For example, let I =

189

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325405.325431&domain=pdf&date_stamp=1985-03-25

Income, E = Expenditure, and N = Net-income; then any
two of the attributes 11, E, Nj functionally determine the
other but no single attribute determines any other
attribute.

11, Ej -) N (N = I - E)
1 I. Nj -) E (E = I - N)
[E. Nj --) I (I = E + N).

In an fd X -) Y, smaller the left side, more is the
semantic information contained in that fd. If x’ -) Y and
x’ s X. then from (1) and (3) we get X + Y. Thus X’ + Y
has more information than X -) Y. Similarly, a larger
right side means more semantic information. This leads
to the following definition. An fd X -t Y is said to be jut2
if Y is not functionally dependent on any proper subset
of X: in that case we write X I* Y [7]. (Note that X I* Y
does not say that for every attribute & in Y, X + & is
full.) A subset X of the attributes is said to be a key if X
I-) A, i.e., X must determine all attributes and no subset
of X must suffice for this purpose. A subkey is a subset
of a key, i.e., a set of attributes that can be extended to
a key. Note that if X, Y are two keys, then X I-) Y and Y
I-) X. Two subsets X, Y satisfying the mutual full func-
tional dependency are sometimes said to be equiwdent.
For the I-E-N example above, the keys 11, Ej, {I, Nj, and
tE. N] are mutually equivalent. An attribute set X is
called a superkey if it contains a key, or equivalently, X
AA.

3. ALGORITHMS FOR COMPUTING A KEY

We give below an efficient method for finding a key
for an arbitrary set of fd’s F. We assume that each fd
has the reduced form X --t Y, where X and Y are disjoint:
otherwise, we replace X + Y by X -L Y-X. The algorithm
first finds a subkey Ks which is contained in every key.
Ks consists of the attributes which do not belong to the
right side of any fd. The subkey Ko is then extended by
adding more attributes until it becomes a key. The
algorithm proceeds in two basic phases. An expansion
phase extends the current subkey K (initially, K = Ks) to
a superkey K’, and this is then followed by a reduction
phase in which a subkey x”, K C K” s K’. is obtained. The
cycle is repeated now with K” in place of K. etc. until no
further expansion is possible, at which point K is a key.
Let spun(X) denote the set of all attributes that are
functionally dependent on X directly or transitively (i.e.,
can be obtained via one or more applications of the rule
(3)): by convention, span(X) includes the attributes X
themselves. The expansion phase of the subkey K con-
sists of choosing a sequence of attributes ai, as, ak
such that

(i) each ai+1 is outside the span of the previous
elements, q+i L span(K u la,, a2, o+j).

(ii) span(K U la*, a2. ak]) = A

The following Lemma, which is easily proved, is the basis
of our algorithm.

Lemma 1. If K is a subkey and (ai, us, uk) are
chosen as above, then K U {ah] is a subkey.

Proof. By (ii), K U Iai, as, ak] contains a key K’
3 K. However, K” is not contained in K u tan as, ~..,
ub-il, because its span does not contain ak in particular.
Thus K” must contain K U &I. (In general, we cannot
say that x” contains any other q, i I i Cr k-l. It is worth
noting that if we scan the attributes A always in the

same order, then each subsequent expansion phase will
result in a subsequence of the previous expansion
sequence, excluding the last term. Thus the 2nd expan-
sion sequence is a subsequence of (ui, as, ak-J.)
QED.

EzampLe 1. Consider the following fd’s.

AB -a c, W-A, EF-,BD,
C -,E, D -,F

The computation of successive spans and the attribute
sequences (ai, ue, . ..) are shown below. The flnal key
computed is ED using 2 expansion phases and 2 reduc-
tion phases. Note that the attribute A which was con-
structed in the superkey in the first expansion phase
has been ultimately eliminated and is not in the final
key.

1. K = $, span(K) = $

a, = A, span(A) =A
as = B, span(AI3) = ABCE
as = D. span(ABD) = ABCDEF

The attribute D is added to K.

2. K = D, span(D) = DF

a1 = A, span(DA) = ADF
as = B. span(DAB) = ABCDEF

The attribute B is added to K.

3. K = BD, span(BD) = ABCDEF.

To compare, the computation by the Lucchesi and
Osborne’s algorithm for the above fd’s would be as
shown below; the fmal key computed is EF.

1.

2.

3.

4.

5.

6.

ABCDEF is a superkey;
A is not essential because span(BCDEF) contains
A.

BCDEF is a superkey;
B is not essential because span(CDEF) contains
B.

CDEF is a superkey;
C is not essential because span(DEF) contains C.

DEF is a superkey:
D is not essential because span(EF) contains D.

EF is a superkey;
E is essential because span(F) does not contain
E.

EF is a superkey;
F is essential because span(E) does not contain
F.

In general, our algorithm computes larger number
of span’s than that by Lucchesi and Osborne’s algo-
rithm. But as can be seen form Example 1, the attri-
bute sets for which we compute span are mostly
increasing and this allows significant optimization
(Lemma Z), ultimately resulting in the superior perfor-
mance. In Lucchesi and Osborne’s algorithm, the sets
for which the span is computed are decreasing, and the
smaller sets are not known until the discovery of non-
essential elements. This requires each span to be com-
puted essentially from scratch.

190

M

:

::

r*

n

3

Sl

3.1. The Procedures INIT() and sm()

We now present the procedures to compute Ko.
the span(X) for an arbitrary attribute set X, and finally
the procedure to compute a key. For the efficiency con-
sideration, we begin by forming for each attribute x in A
the list list(x) which consists of all fd’s whose left side
contains x. We use an array size[], where for each fd f: X
4 Y we have size[f] = IX/, the cardinality or the number
of attributes in X.

proc INIT(); [builds the list(x)‘s and computes Ko]
begin
for each fd i: X + Y do

begin
for each x in X do

begin
size[f] := size[f]+l: [initially, all size[] = 01
add f to the list(x);
end;

fog each y in Y do tinitially, all count[] = 01
count[y] := count[y]+l;

end;
Ko := empty set:
fog each attribute y in A do

if count[y] = 0
then add y to Ka;

end; iof INITj

For the procedure SPAN(). we use an array
mark[], where mark[x] = 1 indicates that the attribute
x is marked. We sometimes write “mark x” to mean
“mark[x] := 1.” Q is a queue of the attributes which are
presently known to be in span(X) ‘but which have not
been processed yet [l]. On termination of SPAN(X), the
attributes that are marked constitute the set span(X).
Initially alI attributes are unmarked. (The procedure
SPAN is very similar to Algorithm 2 in [3].)

proc SPAN(X); lcomputes span(X)]
begin
Q := empty queue;
for each attribute x in X do

begin
add x to Q;
mark x; imarking also prevents an x

entering Q more than once]
end;

while Q not empty do
begin
x := head of Q;
delete x from Q;
fog each fd t: X + Y in list(x) do Ix is in span(X)]

begin
size[f] := size[f]-1;
if size[f] = 0
the2 for each y in the right side of f do

if y is not marked
then mark y and add it to Q;

end;
end;

end; [of SPAN]

Ezumple 2. The following example illustrates the
algorithms INIT() and SPAN{). Assume that the fd’s are:

AD -a B, AEI -) E, C+D
B + c, AC + F

The list(x) contains those fd’s for which the column of x
in the diagram below contains .a dot (*) in the

corresponding row. The value of each size[f] is shown on
the right side and equals the number of dots in the row.

count[y] 0 1 1 1 1 1

ABCDEF size[f]
I I I I I I

AD+B .-----------,-------- 2
I I I I I. I

B -,C ----.---------------- 1
I I I I I I

C +D --------.------------ 1

AB+E
IIIIII 2
.---.----------------

I I I I I I
AC + F .-------.------------ 2

The life history of the queue Q in the call SPAN(A) is

Q=A
Q = empty

The behavior of Q in the call SPAN(AB) is more interest-
ing as shown below; span@@ = ABCDEF.

Q = AB (head of Q on the left)

i:;,
Q = EDF
Q = DF
Q = F (B is already marked and not added to Q)
Q = empty

3.2.The ProcedureKEY()

Let Ko be the attributes computed by INIT:), and S
= span(Ko). Then it is not hard to see that each key of
R(A) has the form K = X0 U K’, There K’ is a key of (A-S)
for the reduced fd’s on A-S:

replace each X + Y by X-S -) Y-S

(Note that the reduced fd’s are valid only for the pur-
pose of computing the key. We need to consider now
only those reduced fd’s whose right side is non-empty; if
X-S = #, then because S equals its own span we neces-
sarily have Y-S = $.) The characteristic property of the
reduced fd’s on A-S is that every attribute of A-S is on
the left side of some fd and also on the right side of
some fd. We focus below on computing a key of such a
family of fd’s. To use it for the general case, simply
compute Ko by the procedure INIT() first and then exe-
cute SPAN(K0). This will set the initial values of mark[]
and size[] properly (see lines 1 and 2 in the procedure
below). We use the following observation in computing
the various spans during each expansion phase from a
subkey to a superkey. (The proof of the lemma is omit-
ted: the lines 3-5 in procedure KEY are based on the
lemma.)

Lemma 2. If y is not in span(X) and the arrays
mark[] and size[] are initialized to the values resulting
from the call SPAN(X), then t.he array mark[] following
the call SPAN(y) gives span(X U Iyj).

We use two additional arrays svma&-k[] and svsize[]
in the procedure KEY() to save the current values of
mark[] and size[], respectively, before proceeding with
the each expansion phase. We assume that the arrays
mark[] and save[] used by SPAN{) are global and the
successive application of SPAN0 uses the previous
mark[] and size[] values. Also, we assume that all

191

unmarked attributes are connected in a doubly linked
list U; this would allow efficient selection of an
unmarked attribute and deletion of an attribute as it
gets marked. Initially, every attribute in A is in U (or,
more generally, if Ko is non-empty then U contains the
attributes in A-span(Ka)).

proc K!ZY(); [compute a key]
begin

1: call INIT();
2: call SPAN(Ko):

svmark[] := mark[]; {copy the whole array]
svsize[] := size[]; [copy the whole array{
tcompute the initial expansion list L = (ai. az, a*)]
L := empty list;
last.:= nil;’ Ilast points to the last item of Lj
while U not empty do

begin
x := the Dust item of U;
add x to the end of L and adjust the pointer last;
delete x from U;

3: call SPAN(x); {the array mark[] now
gives span(L U txJ)l

end;
K := empty list;
repeat

if last # nil
fhen begin Ireduction phase]

x := the last item of L;
delete x from L and adjust pointer last;
add x to K;
mark[] := svmark[]:
sizer] := svsize[J;
call SPAN(x);

svmark[] := mark[];
svsize[] := size[]:
last := nil:

end;
[compute the expansion list for the new subkey

K u 1x1 as a sublist of Lj
for each item y in L do

if mark[y] = 0 [mark[] contains values set
from lines 4 or 5j

5: then call SPAN(y)
else delete y from L and reset last if necessary;

until last is nil;
end; jof KEY{

4. TIME COMPLEXITY OF THE PROCRDURE KEY()

Let us assume that each functional dependency X
+ Y is represented as a list of elements in X followed by
a separator like “+” and then followed by the elements
in Y. We denote by 1/F/ the sum of the lengths of all
these lists. Clearly, the sum of the lengths of list(x)‘s is
proportional to 11F1. The procedure INIT() scans the list
for each fd once, and the computation of Kc requires
scanning the array count[] once. Therefore it requires
O(\q + 1141) = O(llF[) time, assuming that 1lF1 is non-
trivial. As for the procedure SPAN(X), X is scanned once
and each list(x) is scanned at most once in the wb,jle-
loop. It too then requires at most O(llFil) time.

Now we analyze the procedure KElY(). All calls to
SPAN in line 3 of the while-loop will together scan the
list(x)‘s at most once because of our use of the global
arrays mark[] and size[]. The time requirement for the
while-loop is then O(llfil). The repeat-until loop is
iterated IKl+l times, where K is the computed key. The
total time for all copy operations between mark[] and
svmark[], and those between size[] and svsize[] is

O(lKI.IA!). The calls to SPAN in line 4 and those in line 5
of the for-loop together will scan the list(x)‘s at most
once in each iteration of repeat-until. The total time
complexity of KEY{) is thus O(lK/.1lfi/), as desired.

5. CONCLUSION

We have given here an improved algorithm for
computing a key of a relation R(A) from a given set of
functional dependencies F. The algorithm is more
efficient than the previously best known algorithm for
the cases when the key size is small compared to the
number of attributes iA/, which is often the case. In the
other cases, our algorithm has the same efficiency as
before. It is possible that the ideas similar to those
given here can be used to improve the algorithm for
computing all keys of R(A). The algorithm given here is
easily generalized for computing a key which contains a
given subkey K’ and/or contained in a given superkey
K”. Our algorithm has, however, no impact on the prob-
lem of determining if an attribute is prime (i.e., belongs
to some key), which is known to be NP-complete [a].

REFERENCE

1.

2.

3.

4.

5.

6.

7.

8.

Aho. A. V., Hopcroft, J. E., and Ullman, J. D.. “The
design and analysis of computer algorithms,”
Addison-Wesley Publ. Co., Reading. Massachussetts.
1974.

Armstrong, W. W.. “Dependency structures of data-
base relationships, ” in Information Processing 74,
North-Holland Pub. Co., Amsterdam, 1974, pp. 560-
563.

Beeri, C. and Bernstein, P. A., “Computational prob-
lems related to the design of normal form rela-
tional schema,” ACM Trans. on Databose Systems,
4(1979). pp. 30-59.

Bernstein, P. A., “Synthesizing third normal form
relations from functional dependencies,” ACM
Trans. on Database Systems, l(1976). pp. 272-296.

Codd, E. F.. “A relational model for data for large
shared data banks,” Comm. of ACM, 13(1970), pp.
377-367.

Date, C. J., “An introduction to database systems,”
Vol 1 (3rd ed.), Addison-Wesley Pub. Co., Reading,
Massachussetts, 1961.

Ling, T.-K., Tompa, F. W., and Kameda, T., “An
improved third normal for relational da.tabase,”
ACM Trans. on Darabase Systems, 6(1981). pp. 329-
346.

Lucchesi, C. L. and Osborne, S. L., “Candidate keys
for relations,” 3’. of Computer und System SC.,
17(1978), pp. 270-279.

‘I ’ 1

192

