
VISTA: Vitro Software Test Application Program

Michael B. Paulkovich
Bill R. Brykczynski

Vitro Corporation
Silver Spring, MD

INTRODUCTION

The ultimate goal of any software
element is its effective operation in
a complete system. Integrating a
collection of software elements into
an embedded real-time system is
usually a complex and time-consuming
task. Therefore, thorough and
comprehensive testing and evaluation
of individual software elements at the
procedure- or module- level prior to
system integration is an effective way
to minimize the number of program
errors still existent at final
integration. This preliminary testing
normally involves tedious mathematical
conversions and data analysis, and
program execution and variation of
inputs by test personnel on a
dedicated (target) computer system.

The VISTA project involves the
design of a high-order "command
language" for use in controlling the
execution of preliminary software
testing; the software under test is
thus exercised with a variety of
user-specified stimuli (inputs), and a
computer-analysis of the software
execution and output parameters is
performed and reported. This software
testing is performed via simulation on
a host mainframe computer.

The VISTA project was started in
February 1984 as a 1-year, 2-man
effort for the preliminary operational
program, with continued improvement
and support expected thereafter. Ada
[i] was used as a PDL (Program Design
Language) tool, using a classical
top-down structured design approach
with stepwise refinement of the
design. Final implementation was also
done using Ada, by refining the final
(detailed) design PDL program into
functional Ada code.

Additionally, the Ada PDL design
program was given preliminary
test/debug workouts at several
intermediate levels of design,
actually executing the "prototype"
design program, and debugging until
execution was satisfactory.

The initial VISTA program was
developed on the DEC VAX 11/780 [2]
using the VMS Operating System and
Telesoft-Ada [3], and has been
designed to be readily transportable
to other host computers and systems.

The final VISTA program, to date,
consists of 6 separate Ada subprograms
(invoked separately in batch mode),
amounting to 8500 lines of Ada code.

This paper describes our
experience in utilizing Ada in such a
compiler-like and analyzer/report
generator applications program, and
our approach, procedures, and insight
gained in the areas of:

Using Ada as a PDL
Using Ada Design as a proto-
typing (executable) program

COPYRIGHT 1985 BY THE ASSOCIATION FOR COMPUTING MACHINERY, INC.
Permission to copy w i t h o u t fee a l l or par t of t h i s m a t e r i a l is granted
provided tha t the copies are not made or d ; e t r l b u t e d ¢or d i r e c t
commercia| advantage, the ACM copyr ight no t ice and the t i t l e of the
p u b l i c a t i o n and i t s date appear, and not ice is RiVen tha t copyin R is
by permission of the Associat ion for Comput|np /~achJhery. To c o p y
otherwise , or to repub l i sh , requi res • fee and/or s p e c i f i c permission.

14

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325612.325623&domain=pdf&date_stamp=1985-03-24

- Using Ada as the target
implementation programming
language
Design and construction of such
a compiler/simulator/analyzer
program.

The material in this paper is
presented as follows:

I. VISTA DESCRIPTION
II. DESIGN of VISTA, including

use of Ada
III. IMPLEMENTATION of VISTA
IV. CONCLUSIONS

I. VISTA DESCRIPTION
.

VISTA Functions

The VISTA program was designed to
utilize the Navy Standard Machine
Transferrable Support Software
(MTASS/M) at the "core" of its
processing, while VISTA provides
powerful and user-friendly interfaces
via the VISTA "command language" and
output analyzer. The Navy MTASS/M
software provides support for the
computers AN/UYK-20, AN/UYK-44, and
AN/AYK-14 in the languages ULTRA-16
and CMS-2/M. (These computers are
widely used for real-time military
Command and Control and digital signal
processing applications). MTASS/M is
used within VISTA to:

i) Linkload the program(s) under test
with VISTA support programs (combining
previously compiled relocatable object
elements using the MTASS SYSGEN/M
Loader/System Generator).

2) Execute multiple simulation runs
(using the MTASS SIM/M Program
Interpreter).

The VISTA program is cued and
controlled by the input command file,
which consists of source text written
in the VISTA Programming Language
("VPL"). This sequence of commands
will direct VISTA to load and System
Generate (SYSGEN) a (previously
compiled) computer program object

element, and to invoke the MTASS/M
Program Interpreter/Simulator (SIM/M)
with a specified sequence of inputs
and output/analysis options.

The program under test is then
"executed" (in the simulated environ-
ment on a mainframe host) under MTASS
SIM/M, and the output reports are
generated following SIM/M execution.

VPL -- VISTA Programming Language
.

The purpose of VPL is to provide
inputs to the VISTA program to control
and monitor test conditions and report
generation. VPL contains powerful
features, providing conversions for
16-bit, 2's complement arithmetic for
i, 2, and 4 word-lengths using various
format options, in any scale, with
either octal or decimal notation.
These conversions facilitate both the
control of software stimuli and
analysis of outputs. Sophisticated
command constructs are incorporated
into VPL which provide a convenient
means for specifying complex test
conditions.

VISTA Output -- Description of Reports
.

The primary output from a VISTA
execution run is the collection of
reports that is generated. These
reports are a result of a detailed and
elaborate analysis of the output from
the MTASS simulator, and are described
below.

Execution Report

This report is a matrix of all
P-register addresses executed within
the test program.

Non-executed Points Report
.

This report is a list of all
points within the test program that
were not executed during any portion
of the test run.

12

Comparison/Dump Report
.

This report provides conversion of
octal data into decimal form (if
desired), and a comparison analysis of
expected versus actual values.

OS Procedure Calls Report
.

This report provides a
chronological listing of all calls
made from the test program to the
(simulated) real-time Operating System
(WDS OS or SDEX-20), and the input
parameters passed to those OS
procedures.

Jump History (trace) Report
.

This report is a history of all
jumps taken within the test program,
thereby providing a condensed "trace"
report.

Simulator (MTASS SIM/M) Report
.

This is simply the "LOG" printout
from the MTASS simulator run. It can
be used by the test personnel for the
purpose of a detailed program trace
report, or as a tool by the VISTA
support/maintenance personnel when
problems occur.

II. DESIGN of VISTA

HIGH-LEVEL DESIGN

The VISTA program was subdivided
into 5 subprograms -- 4 of them are on
the "front-end" prior to the MTASS/M
interface, and the other (the
Post-processor) is on the "back-end",
analyzing outputs from the MTASS SIM/M
r u n :

Lexical Analyzer
Interpreter
Assembler
Linker/Monitor
Post-processor

(VPL compiler step i)
(VPL compiler step 2)
(VPL compiler step 3)
(MTASS/OS Job Control)
(SIM/M Analyzer and
report generator)

Design of VISTA was accomplished
by first creating functional speci-
fication documents and data/ interface
descriptions, then structure charts,
and finally Ada/PDL.

DETAILED DESIGN/CODE

PROGRAM DESIGN LANGUAGE (PDL)

The Tier Concept.

All program design was done using
Ada/PDL as a "pseudocode" design
language. A design document (Ada
program) was constructed and refined
incrementally at discreet "Tiers" of
detail which correspond to predefined
levels of abstraction, as follows:

Tier 0 -- Program Interaction Definition
and external interfaces,
including subprogram definition.

Tier 1 -- Subprogram Definition including
module definition.

Tier 2 -- Module Definition and
identification of procedures.

Tier 3 -- Procedure Definition.

The Tier 3 level of design is at
such a level of detail that this PDL
program becomes the base for the
target code -- the next phase of
refinement is initiated by the
execution/debug of this Tier 3 PDL
program, which is used as the initial
version of the actual program code.

Each Tier in the PDL development
process can be saved, thus providing
higher-level Design Documents for
life-cycle reference, and ensuring
traceability of requirements to the
target program code. These PDL
documents can be input to automated
analysis programs to provide cross-
references and other design
information at any Tier. For the
VISTA project, the Byron [4] method of
Ada/PDL design structure was used as a
guideline, although no special PDL

13

~i ~ i ~ ~el ~i~ ¸̧

processor or report generators were
used (other than the Ada compiler for
verification of syntax). Informal
walk-thrus and reviews were conducted
at the completion of each design Tier.

Each Tier of PDL was compiled to
verify proper program structure,
coupling, and symbol (label)
references. Beginning at the Tier 2
level, the compiled PDL programs were
actually executed until satisfactory
performance was attained, e.g.,

- External (file) interfacing was
verified

- No unhandled exceptions occurred
- No endless loops occurred
- Pertinent outputs were verified
- Proper program termination occurred.

Primary design concerns at the PDL
and Code levels were:

a) Standard Structure Concepts --
hierarchy of functions, data coupling
and isolation, cohesion, factoring,
packaging:

- global constants were factored to
Ada packages as a way of (i)
localizing VPL Keywords and other
constants to facilitate maintenance
and retargeting, and (2) factoring
common (redundant) data.

- data and procedures were declared
at a level of scoping visibility
only as high as was necessary to
enable visibility to "fanned-in"
references.

- procedures and functions were
coupled explicitly via parameter
lists; the only hidden data
coupling (other than implicit "USED"
package services) was the use of
global constants.

- in many cases, "USED" package
services were explicitly qualified
(e.g., ASCII.ESC and
STRING UTILITIES.BLANKS) in order to
aid p?ogram clarity, even though
visibility rules were able to
determine unambiguous resolution of
the reference.

b) Low priority "bells and whistles"
were not implemented until the initial

VISTA program was completed.

c) Fan-out was kept within the "Hrair"
limit (maximum of 7-9).

d) Ada procedure parameter lists were
kept within the Hrair limit.

e) Design was structured such that any
change proposals to VISTA performance,
or changes in MTASS, would cause
minimal impact. Design was kept
structured and modular; foresight was
applied to any areas where change
would likely occur.

f) Consideration was given to
portability to other host computers
and operating systems.

g) Real code (vice remarks) was used
in PDL as much as possible, where
appropriate; also, the PDL was geared
toward the goal of executing the
design program as a high-level
prototype program starting at the
Tier-2 (module) level.

III. IMPLEMENTATION of VISTA
.

INTERNAL DATA STRUCTURE
.

In order to isolate data coupling
between VISTA subprograms and to
provide a re-targetable internal data
structure, an intermediate "language"
was developed, and dubbed "v-Code"
(VISTA internal Code). This group of
data files is output from the VPL
Interpreter subprogram as an input to
the Assembler subprogram, and contains
an interpretation of all declaratives
and runtime instructions for a given
VPL input file.

V-Code also represents an
intermediate breakdown of VPL;
workload is partitioned so that the
next step (VISTA Assembler) performs
further processing, interfacing with
the MTASS/M system. Thus, the task of
the VISTA Assembler is to process the
V-Code files to assemble command-
streams for input to the MTASS
SYSGEN/M and SIM/M support programs.

Since the output from the MTASS

14

5

simulator is ultimately destined for
the VISTA Postprocessor for analysis,
we also embedded cues and flags (which
are implemented as comments in the
simulator command-stream) to aid the
Postprocessor in its analysis of the
output simulator Log file.

The entire internal data structure
within VISTA and between separately
invoked subprograms was configured
using TEXT IO string-format files,
because: (i) human-readable
intermediate files are easier to
"dump" or examine offline for debug
and test purposes, and (2) interfaces
to and from MTASS are string-format
files. Thus, the VISTA project
required much string-handling
functions, for external inputs (VPL)
and throughout internal processing and
external outputs (reports); such
processing is not inherently supported
by built-in Ada features.

PROGRAM UTILITY PACKAGES
.

Program utilities were developed
simultaneously beginning at the Tier 2
level of VISTA design. These
utilities include:

i. VISTA-particular functions:

a) Packages DECIMAL TO OCTAL and
OCTAL TO DECIMAL -- for the MTASS
interface, we needed conversions for
multiple 16-bit words in 2's
complement format, with MULTIPLIER and
SCALE arguments.

b) These functions required extensive
mathematical and numeric/string
conversion procedures. Note that the
built-in GET and PUT procedures, which
do provide numeric/string and Base
conversions, were not adequate, since
2's complement, 16-bit arithmetic is
not supported.

2. Functions necessary due to
limitations in the Telesoft compiler:

a) VALUE/IMAGE and WIDTH attributes
were not implemented (see ib above).

b) Some other attributes were not

implemented:
FLOAT'LARGE.

FLOAT'SAFE SMALL and

Additionally, we had to circumvent
other limitations in the compiler:

c) Certain types of overloading were
not implemented.

d) Generics were not implemented.

e) Data Representation Specification
was not supported.

3. Limitations~deficiencies in Ada as
a language.

In general, any non-trivial
computer program which is to be
implemented in Ada can not be
efficiently produced until a library
of string and math utilities has been
established, in order to fill a "hole"
which is inherent in the Ada language.
The following packages were created
for the VISTA project to meet that
requirement: STRING_UTILITIES,
MATH UTILITIES, VALUES, and IMAGES.

STRING UTILITIES Examples:
UNPAD
LEFT- and RIGHT-JUSTIFY
MATCH
UPPER and LOWERCASE
INSERT STRING
SUBSTRING POSITION
FORCE STRING LENGTH

MATH UTILITIES Examples:
SIGN(INTEGER)
SIGN(FLOAT)
ROUND(FLOAT)
TRUNCATE(FLOAT)
CHARACTER VALUE(CHARACTER)
CHARACTER-IMAGE(INTEGER)
SQUARE ROOT
LOGICAL AND(OCTAL DIGIT,
OCTAL DYGIT)

VALUES/IMAGES:

a) Predefined Ada attributes do not
allow FLOAT'VALUE and FLOAT'IMAGE;
and, the TEXT IO GET and PUT
procedures for STRINGS are very
unforgiving -- essentially, "Runtime
Typing" has been applied, causing
exceptions (DATAERROR). Effective

15

exception handling for these is more
inconvenient than writing your own
user-friendly conversion procedures.

b) Our IMAGE function provides
alternate options in the format of the
output string. Also, our IMAGE
function operates in 2's complement
representation for octal~binary; and
VALUE operates in either
sign-magnitude or 2's complement.
These features were mandatory for the
VISTA-SIM/M interface.

IV. CONCLUSIONS

We are able to draw the following
conclusions from our experience using
Ada for the VISTA project:

i. Using Ada as a PDL.

Utilizing Ada as a Program Design
Language facilitated (and
necessitated) structured program
design, and allowed easy analysis of
high-level program design aspects,
such as procedure coupling and
functional cohesion. Our method of
step-wise refinement (the "Tier"
concept) could, however, benefit by
incorporating a software tool which
would generate new higher-level PDL
documents based upon lower-level PDL
documents as an input. For example,
if the Tier 3 PDL (or code-level)
program is modified, we would like to
be able to create the updated Tier 2
and Tier 1 documents automatically,
using the Tier 3 code as the input.
The feasibility of this has been
studied at Vitro to a small extent,
and we believe it to be quite
achievable.

The use of the Ada PDL as a
prototyping executable design program
proved to be beneficial; in
retrospect, perhaps we did not place
as much emphasis on this as might be
desirable. In future projects, we
advise that a structured design plan
be created and followed regarding the
use of PDL Ada and PDL prototype
testing. This plan should indicate
the exact amount of detail (both code
and remarks) that is required at each
Tier of design, and the prototype

execution testing that is required at
each phase.

Obviously, the use of Ada as the
target implementation language aided
greatly in efficient conversion to
(structured) final code. However,
even if the target language was
assembly (for instance), the
structured form of the PDL program
could be retained by the use of
certain techniques such as pseudocode
comments, data localization,
partitioning, packaging, et cetera.

2. Using Ada as a target
implementation language.

Basically, the use of Ada as the
target implementation language for
VISTA resulted in the same structural
advantages that arise from its use as
a PDL. The detailed nature of the
program at code-level, however, brings
about some new problems. Perhaps one
of the more common complaints about
Ada as a language would be the lack of
string-manipulation functions; the
processing of string data types is
frequently required in many software
applications -- especially one such as
VISTA.

Additionally, regarding the lack
of mathematical functions, many
functions (such as trigonometric)
which are normally provided in
High-order languages are
project-dependent, and it is debatable
whether these should be included in
the Ada specification. However, there
are some elementary math functions
which are very useful and yet require
low overhead. These were listed in
the discussion above.

We feel that a minimal set of
these String and Math functions should
have been specified in MIL-STD-1815A
in packages (in the same way that
packages TEXT IO, ASCII, STANDARD, et
cetera were specified). Such
functions are an integral part of most
other quality High Order Languages.
This would eliminate much of the
unnecessary and redundant coding,
commonly referred to as "Re-inventing
The Wheel".

16

Notes:

[1] Ada is a registered trademark of
the U.S. Government (AJPO).

[2] VAX and VMS are trademarks of
Digital Equipment Corporation.

[3] Telesoft-Ada is a trademark of
Telesoft Corporation.

[4] Byron is a trademark of
Intermetrics, Inc., Cambridge, MA.

~7

