
USE OF ADA FOR SHIPBOARD EMBEDDED APPLICATIONS

T. A. Grobicki
SYSCON Corp.
Columbia, MD

D. F. Sterne, M. E. Schmid, M. J. Gralia
The Johns Hopkins University

Applied Physics Laboratory
Laurel, MD

R. A. R. Pearce
TAAG, Inc.

College Park, MD

Introduction

The Johns Hopkins University Applied Physics Labora-
tory (APL) performs a variety of research, engineering, and
advisory activities under contract to the U.S. Navy. The Na-
vy's planned transition to the use of the Ada* programming
language and its associated technology has become an area
of increasing APL involvement. APL serves on the KAPSE
Interface Team (KIT), the APSE Evaluation and Validation
Team, and several Navy-specific Ada working groups. In ad-
dition, APL has initiated the applied research project
described below.

The general goals of the project are to explore the issues
of applying Ada technology to Navy tactical software sys-
tems and to provide lessons learned for future combat sys-
tem upgrades. The primary vehicle for achieving these
objectives is the top-down redesign, in Ada, of a simplified
version of a tactical software system, the AEGIS Command
and Decision System computer program (C&D). This pro-
gram coordinates the activities of shipboard sensor and
weapons subsystems in response to operator commands and
automated rules of engagement. The objective of redesign-
ing the program is not to produce operational software but
to identify problems and successful techniques of applying
Ada to a typical embedded system.

The redesign of the C&D program is proceeding in three
steps, or "cuts." During each cut, a simplified executable
prototype or "model" of the program will be built, based
on functional requirements selected from the C&D program
performance specification. Each model will be of wider scope
and higher fidelity than its predecessor, and will provide an
opportunity to introduce new design decisions and techniques
and to discard others.

Results

The First Cut, including documentation, has recently been
completed by a team of five people after approximately six

*Ada is a registered trademark of the U.S. Government (Ada
Joint Program Office).

COPYRIGHT 198~ BY THE AS$OGIATION FOR COMPUTING MACHINERY, INC.
Permission to copy w i t hou t fee a l l or par t of t h i s ma te r i a l is granted
p r o v i d e d tha t the c o p i e s a r e n o t made or d i s t r i b u t e d fo r d i r e c t
con~erc ia l advantage, the ACM copyr igh t not ice and the t i t l e of the
p u b l i c a t i o n and i t s d a t e a p p e a r , and not ice is g lven that copying is
by p e r m i s s i o n o f the Assoclat i on fo r Computing Rachinery. To copy
o therwise , or to r e p u b l i s h , requ i res i fee and/or s p e c i f i c perB~s$;on.

months and slightly over one man-year of effort. The First
Cut uses a Digital Equipment Corporation VAX-11/780 com-
puter and the Unix operating system for both program de-
velopment and program execution, and an Ada compiler
developed by the Department of Computer Science at the
University of York, England. The First Cut model imple-
ments only a few highly simplified C&D functions. These
functions include managing a small file of track reports from
a single simulated sensor, displaying track positions, veloci-
ties, and engagement status on a Navy standard AN/UYA-4
(OJ-194) console (Fig. 1), and responding to operator com-
mands to engage tracks, drop tracks, and change track iden-
tification. The First Cut also includes a "wraparound
simulation program" (WASP) to create input stimuli and rec-
ord output responses (Fig. 2). The WASP and C&D model

Fig, 1 AN/UYA-4 operator console.

'13'1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325612.325635&domain=pdf&date_stamp=1985-03-24

together comprise approximately 4000 lines of Ada code ex-
cluding comments. Approximately 70% of the code is con-
cerned with C&D functions; the remainder belongs to the
WASP subsystem. In addition, approximately 2000 to 3000
lines of test software (drivers and stubs) were developed.

COMMAND 8"
DECISION SYSTEM
CONSOLE

:~ i} !~~ :: :::::::::::::::::::::::::::::::: ~i~:i: s:: :: :
~i;i; VAX-.~8o !i ~:::i~i~iii!::!i!;:i!:i:!::~::::il;::::::i::i i i .~ ::':':: COMPUTER ":) :i~ F ;:~:::~:~::~::::::::::~: ~ : : : : "

i::i;::, SIMULATOR ENVIRONMENT SIMULATOR ::i:::i :::::::::::::::::::::::::::::: SIMULATOR . :3:::::::::?:::::::::::: !i!iiiiiiiii~iii~i:~i!i~i!~:!!!::.. ::::::::::::::::::::::::::::::: :: ::::::::::::::::::::::::: !.! i:i:i:iS ::: , ::

:::~ ~ ~ < : : : : : < " ~ SIMiLATION :.::::::: ==

WRAPAROUND
SIMULATION
PROGRAM
CONSOLE

Fig. 2 First Cut system software/hardware configuration.

Figure 3 provides a top-level view of the system. The
WASP, operating under interactive operator control, reads
a scenario script of events occurring at specified simulation
times. These events generally concern the appearance or dis-
appearance of objects detectable by radar (ships, aircraft ,
and missiles), or changes in the velocities of these objects.
Periodically, the WASP sends simulated radar reports of de-
tected object positions and velocities to C&D, where they are
stored in a memory-resident " track file." Tracks not reported
by the radar simulator are eventually deleted from the track
file. The C&D operator can delete tracks from the track file,
causing further reports for the deleted tracks to be ignored.

A geographic display of relative track positions and ve-
locities is maintained on the A N / U Y A - 4 plan position indi-
cator. The C&D operator can request that the system provide
addit ional information about tracks on the A N /U Y A-4 ' s al-
phanumeric display. The operator can also identify a track
as being friendly or hostile and can engage hostile tracks.
Engagement orders are sent to a simulated weapon control
system, where an intercept between the target and a surface-
to-air missile is calculated. At the predicted intercept time,
a pseudo-random hit or miss decision is made based on an
intercept probabil i ty parameter. The results are sent back to
the C&D system, where they are stored in the track file and
reported to the C&D operator . Targets that have been suc-
cessfully intercepted are no longer reported by the radar simu-
lator, and subsequently are dropped from the track file.
Because the track file can be accessed by several processes
concurrently, it includes a mechanism for exclusive access
during update operations.

The WASP operator can change the intercept probabil i-
ty, the rate at which simulated time advances, and the radar
reporting rate at any time during a simulation run. In addi-
tion, the WASP operator can request that data extracts (state
information snapshots) be produced by various system com-
ponents.

WRAP AROUNO SIMULATION PROGRAM (WASP)//

PROSABIL,Ty ~ / /
{ c,~;~T,;oL ~ - - - . - ° L ~ _ _ i . J w E ~ \ E /

i } U~TIPD ~U 7T IT(~ N~ 'C vKE kO C IT Y' ~ , / ~ ' ~ ~-~

/ MANAI - | -~ I / I M'I~RNE~! , ~ DROP TRACK I '
WASP / / C,~rD ~ l X

Fig. 3 First Cut system top-level data flow.

COMMAND El. DECISION
SYSTEM MODEL (CS-D)

WEAPON

" 1 3 2

r- 1
i I
I

I / CONTROt Z ' - " ' - ~

I I -
I WAKEUP
I--" -- / 4 ~,-,~ r q REQUEST.~

r 7 \ /cLosE CO.T.OL i ° ' ~ I i ~ - r - - ~
/ REQUEST I TRACK I i --"/m~rrpn/_ _ / , . , , , = / I

/, ~ FILE I L_~ .~ . : , 7~S :MUL I
• ~ I I CL(~ / ; I

, ,

% , . . , / _
/ INPUT / I / . / [- - - ' --~_____
/ / I i ~'~ / - - - 7 1 I / :

, , . = ,

, A - ° , / j ,
,, I i F :

~ I i ~ "
~ ' 1 WEAPON l~-t .~ ~P-

L SELECTION i

L_

Fig. 4 Top-level package and task organization.

Structured analysis [1] was used to depict the selected pro-
gram performance requirements, partition them into func-
tions or processes, and identify the inter-process data flow.
The top-level partitioning, as shown in Fig. 3, is based on
the division of functions in a typical shipboard combat sys-
tem. Each process was described using pseudo-code or in-
formal program design language.

Major threads of control in the system were then identi-
fied, and the processes that embodied them were designated
as active processes. The remaining processes were designat-
ed as passive, meaning that their external behavior was driven
by the active processes with which they communicate. Us-
ing a graphic notation based on the ideas of Booch [2] and
Buhr [3], top-level control flow decisions, deliberately omitted
from the data flow diagram, were sketched in for each top-
level data flow. These decisions must be made before decid-
ing which services shall be provided by various Ada pack-
ages that will ultimately make up the system. For example,
if data must flow from process A to process B, which process
should invoke the data-transfer operation? Clearly, if the
processes reside in separate Ada packages, the answer must
be known before the package interfaces can be defined.

Next, each active process was assigned to one or more Ada
tasks, and additional third party tasks (agents and buffers)
were added to decouple intertask communication and to
avoid obvious opportunities for deadlock. Each passive pro-

cess was treated as a subprogram or package of subprograms.
Active and passive processes were then grouped and encap-
sulated within Ada packages to provide access control and
information hiding. Figure 4 shows a portion of the result-
ing top-level program architecture (some components are not
shown). Note that the packages, shown as dotted lines, are
only "roughed in;" the visible parts of the packages are not
explicity identified.

Interfaces for the top-level Ada packages were then speci-
fied, identifying the data types, callable subprograms,
parameters, and exceptions each package makes accessible
to the other packages in the system. The package specifica-
tions were compiled to assure consistency. Top-level pack-
ages were then assigned to the various team members, who
carried out detailed design and coding based on the top-level
task structure diagram, the compiled package specifications,
and the functional specifications captured in informal pro-
gram design language. A more detailed Ada-based graphic
notation was used in the formulation o f lower-level pack-
ages and tasks. As an example, Fig. 5 shows the Ada dia-
gram developed during the detailed design of the "c lock"
package.

The First Cut program was completed on schedule with-
out significant problems. Figure 6 shows a sample
AN/UYA-4 display generated by the program.

133

CLOCK__PACKAGE

I REQUEST__BUFFER
] 'NITIAUZE I I .,]

, ~ / / ..A<,= // / I DUMP__DATA I
I PUT__REQUEST

I REQUIEST_WAKEUP f
I FLUSH /

SET_CLOCK_MUL'IrlPL.R~ / DUM,:DATA / / GE'I'__"E"UEST~

' , ~ %M,,M~' " / ~
I CUPdP'ENT--SIMTIME U " ~) ~ / SiMULATiON CLOCK % C~ Y

, " i ~ - - ~ , , ~ J
II , . . fi__J

L , ,(,z. ,
" / " -m ° '"" / / / /

/ °..:_.A,A /c' , ; /

" ~ ORDERED__REQUEST__LIST__PACKAGE
! i

1 ,NmAt'zE-UsT I [NIEXT--REOUESlr--WME 1
l I

I l

I --ovL--.,~ l I ouMP-u~ I
t_ I

Fig• 5 Ada diagram of the simulation clock package•

Fig, 6 Graphic display generated by First Cut program.

Evaluation

As a whole, our experience with Ada has been overwhelm-
ingly positive• In particular, the integration phase proceed-
ed remarkably smoothly; this was attributed to Ada's
automatic verification of interface consistency among pack-
ages, and its strong typing rules• Automatic error recovery
was easily implemented using Ada's exception mechanism.
This mechanism allowed the 15 tasks in the system to be cod-
ed for crash-proof execution•

In general, Ada's tasking features were found powerful
and easy to use, and valuable as a conceptual tool for problem
decomposition. However, we frequently chose to add or were
forced to add third party tasks to decouple intertask com-
munications. In freely adding third party tasks, we shared
the concern expressed by others [4] that excessive interac-
tions with the runtime scheduler would result, significantly
reducing the efficiency of the system• We found the combi-
nation of a buffer task and an agent task (Fig. 7) especially
useful in several circumstances in which buffered communi-
cation was required between two tasks and the destination
task was unwilling to be suspended while waiting for data
to enter an empty buffer, or to repeatedly check the buffer's
status• Gehani [5] cites situations like these as evidence of
Ada's "polling bias•" This combination of a buffer and an
agent constitutes a tasking idiom similar to idioms suggest-
ed by Buhr [3], Maclaren [6], and Hilfinger [7]. We agree
with Hilfinger that Ada compiler writers must strive to make
these and other idioms especially cheap computationally so
that designers may use them liberally in their designs. Be-
cause this issue is of such importance, we recommend that
execution speed tests of a collection of tasking idioms be de-
veloped as an essential part of any serious Ada compiler and
runtime system evaluation•

task sender; task agent;

task body sender [s task body agent is
m:message; m:message;

begin begin
loop loop

buffer.get(m);
receiver.put(m);

end loop;
buffer.put(m); end agent;

end loop;
end sender;

task buffer is
entry put (m: in message);
entry get (m: out message);

end buffer;

task body buffer is

- - standard bounded buffer

end buffer;

task receiver is
entry put(m: in message);
entry other service (.,•);

end receiver;

task body receiver is

begin
loop

select
accept put (. . . .) do

end put;

accept other service (•..) do

Fig. 7

end other service;
end select;

end loop;
end receiver;

Buffer/agent tasking idiom.

Another issue concerning Ada's tasking features arose in
developing the wraparound simulation program. To provide
flexibility in demonstrating and debugging the system, we
wanted to be able to start, stop, hasten, and retard the simu-
lation clock, thereby controlling rates at which targets ap-
pear and travel, and the rates at which time-related processing
in the C&D model occurs. This requirement proved at odds
with Ada's time-related constructs• The time base that regu-

'134

lates the expiration of Ada's delay statements and rendez-
vous time-outs is hidden within the Ada runtime system and
is, hence, not under programmer control. We first consid-
ered including a global time multiplier in all delay and time-
out statements that would scale all time interval values up
or down to slow or accelerate time-dependent processing. Al-
though this scheme would require an infinite multiplier val-
ue to stop the system clock, near-stops could be achieved with
very large multipliers. However, rate changes would not take
place uniformly, because delay statements in progress when
the multiplier changed would continue at the old clock rate.
This effect would create major problems when attempting
to resume a normal execution rate after a near-stop.

Instead, we constructed a simulation clock package (Fig. 5)
containing its own time multiplier, which can be set by the
WASP operator. All delay statements in the system were then
replaced by procedure calls to the clock package. These calls
request the future delivery of an "alarm" at a specified simu-
lation time. The clock package keeps track of real elapsed
time and maintains a list of pending alarm requests. At the
appropriate simulation time, as governed by the multiplier,
the clock package sends alarms (rendezvous calls) to the re-
questers. This scheme provides a satisfactory substitute for
Ada's delay statement but appears inadequate for imitating
Ada's rendezvous time-outs. This is due to the inability to
correctly cancel either the rendezvous or the time-out, de-
pending on the amount of simulated time that has elapsed.

It can be argued that the facilities we sought are more
properly provided by a runtime symbolic debugger, or by
allowing the programmer to make service requests to the run-
time system through an additional privileged interface. In
either case, we believe these facilities are not particularly ex-
otic, and that they should be available in one form or other
on most development systems.

The University of York Ada Workbench Compiler Sys-
tem (Release 1) was chosen because it appeared to be the best
of several candidate compilers available to the project.
Nevertheless, the completion of the First Cut was impeded
by shortcomings in the compiler and runtime system includ-
ing unimplemented features, incorrectly implemented fea-
tures, and task-scheduling inefficiencies. Based on our
experience with several other compilers, we believe these
shortcomings to be representative of the limitations of most
Ada compilers available in 1984. Technology immaturity still
represents a major obstacle to using Ada, even for research
purposes. The University of York compiler was designed to
be used with several existing Unix tools including a symbol-
ic debugger, a tool that enforced recompilation order rules,
and a performance analyzer. These tools proved invaluable,
and similar tools should be considered mandatory for the
development of any large real-time system. In particular, the
performance analyzer identified time-of-day calculations hid-
den within the calendar package that consumed 20°7/0 of the
First Cut program's execution time. By substituting a sim-
pler subprogram tailored to our needs, the consumption
dropped to 5070.

A few significant tool limitations were encountered, stem-
ming from a lack of cooperation between the Unix tools and
the Ada compiler. For example, under some circumstances,
we were unable to make the Unix symbolic debugger recog-
nize the names of variables declared in the outermost block
of a task or package. The Unix profiler captured execution
timing statistics for procedures, but not for tasks. Since
procedures can be shared by many tasks, the statistics provid-
ed few clues about the distribution of execution time across
tasks. These experiences suggest that other existing non-Ada
tools may need to be extended or modified to support the
greater demands of the Ada language.

In the absence of a recognized comprehensive Ada-based
development methodology, the collection of software devel-
opment techniques used in this project appears to be a good
starting point for an interim methodology. We believe that
structured analysis should be augmented by including esti-
mates of data traffic frequencies along key data flows and
required response time for key processes. These estimates are
needed to provide a basis for choosing between task struc-
turing options during the design phase. Our experience sug-
gests that Ada-based graphic notations are needed during the
initial, high-level design phase to bridge the gap between func-
tional specifications expressed as data flow diagrams and
detailed design typically expressed in a program design
language.

Remaining Issues

Despite the success of projects like this one that have used
Ada for laboratory prototypes, for small non-real-time ap-
plications, or as a program design language, several crucial
questions about Ada remain unanswered. The most impor-
tant question is whether Ada programs will run too slowly
or occupy too much memory to be useful for real-time
embedded applications. Unfortunately, until compilers and
runtime system mature, n o o n e can accurately predict what
the ultimate speed and memory limits for Ada programs may
be. Thus, a commitment to begin implementing a large time-
critical system in Ada today, on a tight schedule, entails sub-
stantial risk. This risk will diminish as compilers and run-
time systems improve and as the technical community
develops more experience using Aria in real-time embedded
applications.

Based on our contact with tactical embedded systems and
people who have built these systems, we believe that the
greatest obstacle to acceptance of Ada is a philosophical one.
The Ada "design philosophy" is based on the premise that
it is possible to build acceptably efficient real-time programs
that are machine independent, that are built from reusuable
components, and that are relatively easy to maintain. This
premise is contrary to current practice as embodied in many
existing real-time systems. Most of today's real-time systems
had to be painstakingly designed, coded, and tuned to max-
imize efficiency; in the process, transportability, reusabili-
ty, and maintainability were inevitably sacrificed. To the
designers of these systems, the Aria philosophy appears in-
compatible with real-world efficiency requirements, and ac-

135

• " : • 2 ¸ . ,

cepting the Ada philosophy, especially in the absence of
representative example systems written in Ada, constitutes
a giant leap of faith.

This gap between the philosophy of Ada and the philoso-
phy underlying current practice has important implications
that must be recognized and dealt with. If efficiency must
be sacrificed to gain these other desirable characteristics, then
Ada programs may need to be executed by much more power-
ful computers. The significance of Ada then goes beyond the
software development process, influencing system engineer-
ing. More sophisticated tools will be needed so that an ap-
plication can be tuned and optimized without sacrificing its
understandability and maintainability. The importance of
these tools is so great that system development schedules
should be based on their availability. A software develop-
ment team for a large embedded system must not only be
required to have mastered Ada programming skills, but to
have embraced the Ada design philosophy--otherwise the
software it develops will be no better than if written in any
other language. Thus, sufficient training and competency re-
quirements should be established to insure that Ada does not
serve as a facade hiding continued use of outdated design
philosophies.

As a programming language, Ada has many attractive and
useful properties. However, the excellence of Ada's features
alone is not sufficient to insure that use of Ada will produce
good results. We believe that Ada can and will be used with
great success, but only if larger issues like those described
above are clearly recognized and addressed.

Current Status and Future Work

The First Cut system is the first of three planned proto-
types. The Second Cut is currently under way and expected
to be completed by the end of 1985. The objectives are to
build a larger, higher fidelity model of the AEGIS C&D sys-
tem (approximately 15,000 lines), and to use this model as

a stress test for Ada compiler and APSE technology, and
for Ada-based software development techniques.

Summary

A simplified model of an embedded Navy computer pro-
gram has been developed using the Ada programming lan-
guage, environment tools, and Ada-adapted design methods.
The experience has made evident the numerous real and
potential benefits of Ada, and the immaturity of today's Ada
technology. Although temporary technological and cultural
obstacles remain, we believe that Ada can be the vehicle for
modernization of the software development process and for
software cost reduction both within and outside the Depart-
ment of Defense.

REFERENCES

1. T. DeMarco, Structured Analysis and System Specifi-
cation, Prentice-Hall, New York, t979.

2. G. Booch, Software Engineering with Ada, Benjamin
Cummings Pub. Co., Menlo Park, Calif., 1983.

3. R.J. Buhr, System Design with Ada, Prentice-Hall, En-
glewood Cliffs, N.J., 1984.

4. E.S. Roberts et al, "Task Management in Ada--A Crit-
ical Evaluation for Real-Time Multiprocessors," Software--
Practice and Experience, Vol. 11, pp. 1019-1051, 1981.

5. N.H. Gehani and T. A. Cargill, "Concurrent Program-
ming in the Ada language: The Polling Bias," Software--
Practice and Experience, Vol. 14(5), pp. 413-427, May 1984.

6. L. Maclaren, "Evolving Toward Ada in Real Time Sys-
tems," Proc. ACM-SIGPLAN Symp. on the Ada Program-
ming Language, Boston, December 9-11, 1980.

7. P . N . Hilfinger, "Implementation Strategies for Ada
Tasking Idioms," Proc. AdaTEC Conf. on Ada, Arlington,
Va., October 6-8, 1982.

136

