
Transforming out Timing Leaks

Johan Agat

Department of Computing Science
Chalmers University of Technology and Giiteborg University

agat@cs.chalmers.se

Abstract

One aspect of security in mobile code is privacy: private (or
secret) data should not be leaked to unauthorised agents.
Most of the work on secure information flow has until re-
cently only been concerned with detecting direct and indi-
rect, flows. Secret information can however be leaked to the
attacker also through covert, channels. It is very reasonable
to assume that the attacker, even as an external observer,
can monitor the timing (including termination) behaviour of
the program. Thus to claim a program secure, the security
analysis must take also these into account.

In this work we present a surprisingly simple solution
to the problem of detecting timing leakages to external ob-
servers. Our system consists of a type system in which well-
typed programs do not leak secret information directly, indi-
rectly or through timing, and a transformation for removing
timing leakages. For any program that is well typed ac-
cording to Volpano and Smith [VS97a], our transformation
generates a program that is also free of timing leaks.

1 Introduction

As the use of Internet and mobile code increases, prevention
of security leakages in multilevel secure systems becomes a
concern for the everyday user. In a multilevel secure sys-
tems, data with different security levels are processed and
computed. The security levels are partially ordered and nor-
mally form a lattice. To maintain confidentiality in such a
system, secret data must not be leaked to unauthorised users
or Aow downwards in the security lattice. This work is moti-
vated by the need for privacy of secret data when code from
an untrusted source is down-loaded and run on, typically, a
naive users computer. Since virtually everybody stores data
they consider private (or secret) on their computers, some
kind of guarantee for the privacy of that data is needed when
untrusted code is executed.

The scenario we imagine is the following: A user down-
loads a program from an untrusted web-site. To compute
some information valuable to the user, the program needs

Pomission to make digital or hard copies of all 01' part ofthiS w(Xk fix
Personal or classroom ~1s~ is granted without fee provided that CoPiCs
are tlot ma& or distributed for profit or commercial advantage and that
copies bear this notice and the full citation w the first page. To COPY
otherwise, to republish, to post on servers or to rcdistributc to lists.
requires prior spccifk permission andior a fee.
POPI.. 2000 Boston MA USA
Copyright ACM 2000 I-58113-12%9/00/1...$5.00

access to the users private data. What is problematic is that
the program might also need to access some databases over
the Internet in order to function. Is it, safe for the user to
run the program or could the private data be leaked?

A concrete example of such a program could be an auto-
mated financial advisor that needs the users private financial
information as input and will fetch stock market rates, bank
loan interest rates etc. over the Internet while computing fi-
nancial advice for the user.

In this paper, we will deal with sequential programs and
security leakage to an attacker external to the system run-
ning the untrusted code. Secret or private information may
be leaked to the external attacker in a multitude of different
ways:

Direct leakage, the simplest and most blunt way of leak-
ing information, is when the secret data is just passed
to the attacker as is.

Indirect leakage (sometimes called leakage through a
covert storage channel), is when the secret data is en-
coded in the observable behaviour of the program. The
program might for instance perform different kinds of
database accesses depending on the value of some se-
cret data.

Timing leakage (or leakage through a covert timing
channel) occurs when the program encodes the se-
cret data in its timing behaviour or manipulates some
shared resource in such a way that the attacker can ob-
serve the manipulation by measuring the availability of
the resource during a particular time interval.

Programs may also leak information through their ter-
mination behaviour. That is given that the secret data
satisfies some condition the program may terminate ab-
normally or go into a infinite loop. We consider leaking
through nontermination to be a special case of timing
leakage.

Use of covert timing channels is maybe the most cunning
way to leak data and perhaps also the most difficult to de-
tect and prevent. Luckily, network latencies etc., introduce
a lot of noise that must be dealt with by an implementation
of a timing channel over the Internet. This means that the
capacity of such a channel is probably quite low. However,
timing channels cannot be discarded when reasoning about
the security of a system dealing with sensitive information.
Even if the capacity of the timing channel is as low as 2
bits per minute, leaking a 16 digit VISA card number can

40

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325694.325702&domain=pdf&date_stamp=2000-01-05

volvoValue : = 0;
i := 1;
while (iC=DBsize) {

let share : = sharesDB [i] . name in
let value : = lookupVa1 (share) *sharesDB [i] . no in

if (isVolvoShare(share))
volvoValue := volvoValue+value;

i := i + 1

Figure 1: A program with a timing leak.

volvoValue : = 0;
i := 1;
while (i<=DBsize) {

let share : = sharesDB [i] .name in
let value : = lookupVa1 (share) *sharesDB [il .no in

if (isVolvoShare(share))
volvoValue := volvoValue+value

else
skipAsn volvoValue (volvoValue+value);

i:=i+i

Figure 2: A padded, secure version of the program.

be done in less than 30 minutes’. Also, combined with the
ability to make repeated attacks, timing can disclose disas-
trously sensitive information to the attacker. For example,
Kocher showed [Koc96], that some implementations of the
RSA encryption algorithm leak information about the en-
cryption key through their timing behaviour. By making a
series of encryptions and measuring their times, the attacker
could figure out the entire key.

1.1 Example

To illustrate how timing leaks can arise and also how they
can be closed, we consider two program fragments. Figure 1
presents a program that computes the total value of the
user’s Volvo shares into the secret variable volvoValue. The
program loops through a database, sharesDB, implemented
as an array of records with two secret components: a string
name and an integer no. The length of the database is public.
No secret data will be leaked to the public variable i, but
since the amount of computation performed in the loop is
dependent on whether sharesDB[i] .name is a Volvo share,
the program will leak this information through its timing
behaviour.

This timing leak can be dosed simply by padding the
program with dummy computation, as shown in Figure 2.
The command skipAsn x e takes the same time to execute
as x : = e but does not do any assignment. Assuming that
the functions lookupVa1 and isVolvoShare both execute in
constant time, the program is secure since the contents of
sharesDB will not influence the execution time of the while-
loops body.

‘One decimal digit requires roughly 3.3 bits to encode (23.3 M 10).

1.2 Contribution

We present a type-system and a type-directed transforma-
tion that removes timing leaks from programs to make them
secure with respect to a semantic security condition based on
bisimulation. The security condition is very strong and the
programs that are considered secure do not leak any secret
information directly, indirectly, by termination behaviour or
through covert timing channels to external observers. Pro-
grams that are well typed in our type-system satisfy this
security condition. Our type-system improves over existing
ones [VS97a], in that it allows more secure programs ac-
cording to our condition. The generality of our type-system
makes type checking undecidable, but we provide a sim-
ple, decidable, type-directed transformation that gives well-
typed (secure) programs. The transformation removes tim-
ing leaks from programs without direct and indirect leaks, by
padding with dummy instructions where needed. Together,
our transformation and type-system provide the first realis-
tic solution for closing timing leaks to external observers.

2 A Semantic Security Condition

Essential to analysing the security properties of a program
is to have a semantic notion of security. The condition of se-
curity used must be strong enough to capture all important
leakages possible in a realistic implementation of the system.
In this section, we first point to problems with the realism
and strength of the security condition used in some related
work. We then discuss what a realistic security condition
should capture, present the language we use and finally de-
fine our condition of security.

To simplify the presentation of our system we consider
only two security classes: L for low security (public) and H

for high security (secret). We thus have a two-point security
lattice: L 5 H.

2.1 Related Work

The most commonly used semantic security condition is that
of noninterference [GMBZ], which has been adopted in many
recent papers on secure flow analysis [VSI96, VS97b, HR98].
A program satisfies the noninterference property if its low
security outputs do not depend on the high security inputs.
This can be formulated as:

VEI, EP. El =low Ez + P(E1) =low P(E2)

where El =low E2 means that if the environments El and
E2 are defined, all their low-security components are equal.
Here the program is seen as a function on environments.

With noninterference as the underlying notion of secu-
rity, type-based analyses capable of detecting direct and
indirect security leakages have been proposed by Volpano
and Smith [VS97b] (a reformulation of Dennings work
[Den76, DD77]), and Heintze and Riecke [HR98]. A big
drawback with noninterference, however, is the extensional
view of programs as functions from input to output. Thus a
program that is secure in this sense can still leak information
through its timing behaviour.

To close leakage through nontermination, Volpano and
Smith enforce a condition of termination agreement, where
both the termination behaviour and low output of a secure
program are independent of the high inputs [VS97a]. Prac-
tically, this was done by disallowing looping conditions to

41

depend on high security data. The same restriction was en-
forced in [SV98] to prevent nontermination to be used as
a method of leaking information between parallel processes
in a multi-threaded language. By forcing the arguments to
partial primitive operators, like division, to be of lowest se-
curity, leakages trough abnormal termination can be closed
[VS97a].

When it comes to detecting leakages through covert tim-
ing channels, Volpano and Smith have taken two different
approaches [VS97a, VS98]. Neither of these deal with timing
leakage to external observers in a feasible way. In [VS97a],
a theorem on timing agreement is formulated. This theo-
rem states that sequential programs with both looping- and
branching conditions independent of high data will execute
in lock-step with the low security part of the environment
independent of the high security data. The consequences of
disallowing also branching on high data will be discussed in
Section 3. Although not a security condition in itself, the
timing agreement theorem contains some of the necessary
ingredients for a timing-aware security condition.

Internal timing leakages between concurrent threads aris-
ing from the probabilistic behaviour of the scheduler is stud-
ied in [VS98]. A type system and a semantics based on
Markov chains of probabilistic states and stochastic transi-
tion matrices are presented, but no explicit security crite-
rion is given. The system’s security is based on the use of
a ‘protect C’ statement that ensures atomic execution of
the command C. Properly implemented and used on all if-
commands branching on high data, the protect-statement
can eliminate internal timing leakage. However, (quote) “‘if
external observation of the running program is allowed, then
of course covert channels of the kind discussed [. .] remain
possible”.

The language JFlow, presented by Myers in [Myegg], is
an extension of Java with annotations for secure informa-
tion ilow. The annotations can be checked mostly-statically
but some tests need to be performed at runtime. Leakages
through timing or nontermination are not detected in JFlow.
As a way of escaping the restrictiveness of strict information
flow, the system allows declassification of secret data, which
makes formal reasoning about the security of the system
hard. No semantic security condition or soundness theorem
is given.

Banatre, Bryce and Le MCtayer [BBL94], present an in-
formation flow logic in which proofs of (potential) flows be-
tween variables are derived. The correctness criterion given
is essentially noninterference on a variable by variable ba-
sis. The logic does not deal with external observers or flows
resulting from timing or termination behaviour.

Methods of detecting potential timing channels when
both the sending and receiving processes are available for
analysis have been proposed by He and Gligor in [HGSS].
This work is rather informal and does not contain any for-
mal semantic condition of security.

A method described for example in [Heh84, Nie84], is
that of using a programmed counter to measure execution
time. The idea is to transform the program so that a spe-
cial program variable introduced to record execution time is
incremented after each statement. Rustan, Leino and Joshi
[RLJ98], suggest using this approach to reason about covert
flows involving timing behaviour. Introducing a low-security
counter variable that is incremented after each command
can certainly give a timing-aware semantic security condi-
tion but this approach works poorly in combination with

existing type system for security. The problem is that incre-
menting a low-security counter variable after each command
conflicts with the requirement that low-security variables
are not assigned in the branches of high if-commands.. This
means that unless the incrementation of the counter variable
is given some special treatment, all high if-commands will
seem to have indirect leaks. We have thus chosen to build a
notion of execution time into the semantics, as presented in
Section 2.3.

2.2 Requirements on Secure Programs

To arrive at a realistic and adequately strong security con-
dition, we must analyse which kinds of information leakages
should be prevented. In our setting, code is down-loaded
from an untrusted source, given secret data as input and
also allowed to access resources over Internet. The attacker
in this setting is the author of the code and possibly in con-
trol of the site from which it is down-loaded. The attacker
is also external to the system running the code. When the
program runs, it can communicate with the attacker in two
different ways:

Immediate communication, where data is sent directly to
the attacker, that is the site from which the program
was loaded. This is the only communication allowed by
Java applets (see e.g. [DFWB97]).

Indirect communication, by use of a third party. The com-
munication to the attacker is made by sending data to
or manipulating some another site on the net in a way
that the attacker can monitor.

Since the attacker is external to the system running the
program, and thus cannot be controlled by that system, we
must assume that the attacker can observe both what is com-
municated by the program and when this communication is
made. From the attackers view, the execution of the pro-
gram can be seen as a (possibly infinite) sequence of time,
value pairs that correspond to observable actions and when
they are made. Our semantic security condition must thus
force this sequence to be independent of the high security
data that the program manipulates.

Forcing the observable actions of a program to be inde-
pendent of high data poses no new problems. This is just
the noninterference property. To make sure also that the
time at which these actions are performed is independent of
high data, we must in some way reason about the execution
time of programs. It is hard to determine how fine-grained
this reasoning should be. Obviously, the number of instruc-
tions and which operations that are performed affect the
execution time and so does the hardware (and interpreter)
on which the program is run. The kind of instructions exe-
cuted must probably also be considered, but even this might
not be enough. A subtle way of leaking would still be avail-
able: the program can exhibit different cache, and thereby
time, behaviour depending on some high data. Consider the
following piece of C code:

if (h)
for(n=O; n<N; n++> xs[n]++; /*loop 1 */

else
for(n=O; n<N; n++> ys[n]++; /*loop 2 */

for(n=N; n>=O; n--> xs[n]++; /* loop 3 */

The same number and the same kind of instructions will
be executed by both branches but if loop 1 is executed the

42

Operators op ::= + 1 * 1 - 1 = 1 != 1 < 1 <=
Expressions e ::= I 1 e op e 1 le
Initialisers ie ::= e 1 mkarray (e) ie (

{xl = iel,. . , xn = ie,}
Commands C,D::=Ee:=eIskipAsnleeI

if(e)CelseDIskipIfeCI
letx:=ieinCIuhile(e) Cl
C; D I output x

Left-expressions le ::= x 1 1e.x 1 Ze[e]
Left-values Iv ::= x 1 h-x 1 lv[n]
Values w ::=lI{ Xl =211,...,xn =wn}I

[vo,. . . ,vn]
Basic Values 2 ::= n I true I false

Figure 3: Syntax of expressions, commands and values.

array xs will probably be cached when loop 3 is reached. It
is thus likely that the entire execution will be longer if h is
false2. The variance in timing here might not be big but it
is probably big enough to implement a timing channel! The
code shown above is not secure with our criterion given in
Definition 2, nor is it well-typed in our type-system. Our
type system will only allow a high if-command when the
two branches have exactly the same pattern of allocations
and variable references. Thus the example above will be
considered insecure even without loop 3.

To avoid building a limitation into the system, we have
implicitly parameterised our semantics and security condi-
tion on the interpretation of time. This is discussed some-
what more in Sections 2.3 and 2.4.

2.3 The Language

The language we use, with syntax given in Figure 3, has
assignments, sequencing, conditionals, local bindings, while
loops, output commands and two kinds of skip-commands:
skipAsn le e and skipIf e C. The transformation described
in Section 4 inserts these skip-commands to remove timing
leakages. Values consists of records, arrays, integers and
booleans. An expression cannot construct a record or array
but this can be done by an initialising expression when a new
binding is introduced. The output construct implements
externally observable actions by outputting the value of an
integer variable to the attacker.

To give the semantics of programs we use two partial
functions: a big-step natural semantics for expressions and
a labelled small-step transition semantics for commands. Se-
mantic rules for expressions, initialisers and left-expressions
are standard and given in Figure 4. Evaluation judgements
for commands are of the forms

@IQ 3 (E/D)
(EIC) -% E

where E is the environment, associating variables with val-
ues. The annotations on the transition arrow is a possibly
empty sequence of time-expressions, ts, and for as also out-
put actions. These describe the time and observable actions

‘A simple test based on the code above showed that a difference
of 2-3 seconds in execution time could be measured from a program
that ran in 1 minute. The test was made on a 296 MHz Sun Ultra 4.

of making that transition. Output actions, ranged over by o,
are integer values, n and the symbol J which is used to sig-
nal termination. There is at most one output action on any
given transition. We write as1 as2 for the concatenation
of two sequences and we consider a single action or time-
expression as a singleton sequence. We use ts to range over
sequences consisting only of time-expressions, which are:

t, (tie) The time it takes to evaluate e (or le).
t asn Time for making an assignment.
tbr Time to inspect and branch on a value.
t pti ie Time to evaluate ie and push a new

binding of the resulting value on the
evaluation environment.

tP0 Time to pop the innermost binding
from the evaluation environment.

To capture the time of evaluating expressions, the time-
expressions t and tp,, are indexed on expressions and ini-
tialisers. Since only basic values can be assigned (assignment
of arrays- and record-values is not allowed) it is enough to
use a constant tasn for the time of an assignment.

Note that time-expressions do not specify time directly.
They are only descriptions of time and have to be given some
kind of interpretation if we need to know the real time they
denote. Such an interpretation can be arbitrarily complex.
By looking at the entire history of the execution, an inter-
pretation could even model data-cache behaviour to some
extent. The semantics is parameterised on the interpreta-
tion of time. Any interpretation can be used as long as
primitive operations are given constant times. This is dis-
cussed in Section 2.4.

Rules for the evaluation of commands are given in Fig-
ure 5. The environment E is a sequence of bindings but
for convenience we also treat it as a mapping, writing E(x)
to access the value in the rightmost (innermost) binding of
x. We write E[Zu = I] for updating E at the binding and
component indicated by Iv to the basic value 1 and we define
dam(E) as {Zv~3Z.E(lw) = I}.

The two skip-constructs, skipAsn and skipIf, are de-
signed to have the same timing behaviour as an assignment
and an if-branching respectively. In the type-system de-
scribed in Section 3, skipAsn and skipIf are used in de-
scribing timing behaviour. Programs can be padded with
appropriate skip-commands as done by the transformation
presented in Section 4, thereby removing timing leakages.

All other rules for evaluation of commands are fairly
standard. Evaluation of a let introduces a new local bind-
ing. We have chosen to represent local bindings syntactically
with a let-like construct called local, and they are moved
to and from the environment in the rule (Local). We use the
notation E, x = v for adding a new binding to E and also to
match out the innermost binding of an environment. The
time for pushing a binding on the evaluation environment is
paid in the (Let)-rule when the binding is first introduced
and the time for popping the binding is paid when the body
of the let terminates. There are no time-annotations for
the cost of shuffling bindings in and out of the environment
made in the (Local) rule. This is of course due to the fact
that the local construct is nothing but a notational trick to
keep track of local and global variables and it has no corre-
sponding implementation overhead. Another technical trick
we use is that the output command evaluates to a skip that
then simply terminates, thus we avoid the problem of more
than one output action on any given transition.

43

(Lit) E t- 1 JJ 1

E(x) = v E I- el JJ 11 E t- e2 U Z2 E F el JJ [WO, . . . , w,, . . . , wm] E + e2 U n
War)

El-x$w
(OP)

E t elop e2 U 11[0~1/2
(Ix)

E t el[ezl U 21,

Eke*{ x=v ,... }
WV

El-e.x JJv
WA)

EkeJ,Ln EkieJ,Lv

E k mkarray (e> ie Jj. [v, . . . , v] (n occurences)

E t- iel $ WI . . E k ie, U vn

(MkRec) E + {XI = iel, . . . ,x, = ie,} 4 {x1 = wl,. . . , xn = wn)

EkleJ,lLh El-eJ,ln
(L-Ix)

E k le[e] JJL lv[n]

E I- le UL Iv
(L-Sel)

Et- Ze.x UL Zv.x
(L-Var)

Ekx J,LLx

Figure 4: Big-step semantics for expressions and initialisers (Q) and left-expressions (JJ”).

(Assign)
EtelJl Et-lelJLh

(E Ile := e) te’tle’t’=s”‘J) E[lv = I]
Iv E dam(E)

6%)
(E IC) +-% E’

(E JC; D) 3 (E’ ID)

(E IC) 3 {E’ IC’)

(E IC; D) -% (E’ IC’; D)

(If)
E I- e JJ true

(E]if (e> Celse 0) q (EIC)

E k e u false

(E]if (e> C else 0) t,.tbp, (E ID)

(SkipAsn)
Eke&l EtZeULh

(E]skipAsn le e) te’t’e’ta’n’J~ E
Iv E dam(E)

(Skip)
(E Iskip) 5 E

(Let)

(Local)

(While)

(SkipIf)

Ekie Uv

(E]Iet x := ie in C) tpu (E]IocaI x := v in C)

(E,x=vlC)~(E’,x=w’ID)

(E Ilocal x := v in C) 3 (E’ Ilocal x := v’ in 0)

(E,x=vlC) %E’,x=v’

(E [local x := v in C)
ts.t*,.J

b E’

E F e JJ false

(E Iwhile (e> C) te’tb”.J) E

E k e JJ true

(E Iwhile (e) C) t,tb,, (E IC; while (e> C)

Eke&Z

(E]skipIf e C) t,.tbr, (E/C)
1 E {true,false}

(Output)
E(x) = n

(E loutput x) % (skip IE)

Figure 5: Small-step semantics for commands.

-

2.4 A Bisimulation-based Security Condition where =r is defined as

As a foundation for our semantic security condition, we use
a partial bisimulation on commands, or. We index this
relation on a typing environment, I, to distinguish low- and
high-security left-values. Informally, two commands are I-
bisimular if they behave stepwise identically with respect
to execution time, outputs and the manipulation of the low
variables (according to I’). Also, this behaviour must be
independent of the high data in the environment.

El =r E2 iff dom(Ei) = dom(E2) A dom(E1) C dam(r) A

WV E dom(El).I’(lv) = rL =s El(h) = E2(Zv)

Here, l? is a typing environment and TV is a base type of low
security level. Both will be introduced in Section 3.1

Definition 1 (IT-bisimulation)
-r is the largest symmetric relation on commands that sat-
isfies:

By relating commands to themselves by F-bisimulation
we get a sort of timing-aware, stepwise noninterference prop-
erty, which suits us well as the definition of security:

Definition 2 (r-security)

Cl or C2 if VEi, E2 such that El =P E2 we have that

(El ICI) -3 (E; IDI) a (-732 IC2) 3 (Eh ID2)A
E; =r E!, A D1 y- D2

(El]C,) % E; + (E2 IC,) % E; A E; =I- E;

C is r-secure if C -r C

This security condition is semantically a lot stronger than
actually necessary, due to the definition of I’-bisimulation.
For example, due to the statelessness of -r the program

44

h := 0; 1 := h is not secure, although it would not leak any
secret information in our sequential setting. Weaker and
more elaborate versions of the bisimulation could be defined.
The relation could be made stateful by dropping the local
quantification of the environments and relate configurations
instead of commands. Moreover, as it stands, -r, requires
the evaluation of (El ICI) and (Eg I&) to both make a step
with syntactically equal time-expression sequences, which
essentially forces them to make the same computations (but
not the same assignments!). This condition could be relaxed
by making the interpretation of time-expression sequences
explicit and by forcing the two commands to evaluate in
times that have the same interpretation, possibly involving
the entire history of the two executions. Any weaker version
of the bisimulation would clearly be implied by N,-. To avoid
any unnecessarily complicated definition and since the type-
system and transformation presented in Sections 3 and 4 will
be sound with respect to wr, we have chosen this, stronger
definition. Also, the statelessness of mr gives a composable
security criterion and extends nicely to satisfy the Hook-up
property in parallel programs [McC87], as shown by Sands
and Sabelfeld [SSSS].

It is of course very hard to statically predict cache be-
haviour. However by forcing two r-bisimular commands to
have SyntacticalIy equal time-expression sequences, the two
commands must obey the same pattern of allocations and
variable references. This severely reduces the possibilities
for timing leaks based on cache behaviour.

The only assumption on the interpretation of time in-
herent in the definition of No, is that a time-expression se-
quence ts must denote the same time regardless of the values
bound to the free high-security variables in ts. This means
that primitive operations must be performed in constant
time, independent of the argument values of the operator,
and that the length of an array cannot be secret.

It might be worth pointing out that wr is only a partial
bisimulation in that it is not reflexive. Insecure commands,
like 1 := h, are not related to themselves, which is also the
reason that wr is not a congruence. I’-bisimulation thus dif-
fers from ordinary bisimulation by not being an equivalence
relation, but rather a partial such:

Lemma 1 (y- is a PER)
The relation -r is a Partial Equivalence Relation, i.e. it is
symmetric, transitive but not necessarily reflexive.

Proof: -r is symmetric by definition, and transitivity is
easy to show since =r is transitive.

Due to the symmetry and transitivity of wr, if a command
is I’-bisimular to anything, it is also I?-bisimular to itself,
and hence r-secure.

2.5 Example of a Secure Program

Even though I?-bisimulation is a very strong security crite-
rion, it does not rule out useful programs. If we informally
extend the language with functions and strings, the padded
version of the Volvo shares example, presented in Figure 2,
is r-secure. Looping through the database does not leak
since the length of the database is public. Branching on the
(secret) value of isVolvoShare(share) is also secure since
the two branches are I?-bisimular. Of course, the example
is only r-secure provided that the two functions lookupVa1
and isVolvoShare are both r-secure.

Figure 6: The subtyping relation

3 Typing Secure Programs

In [VS97a], Volpano and Smith present a type-system in
which well-typed programs are secure with respect to timing
leaks to external observers. By a simple inductive reasoning,
it can be shown that programs typed according to section
5 of [VS97a] are also r-secure. Our critique to this type-
system is that it is too restrictive to be of any practical
use: it requires the condition of both while-loops and if-
commands to be of lowest security. With this restriction,
high data can only be copied around and passed to (total)
primitive operators, which means that only programs that
are essentially parametric in their high inputs are considered
secure by the type-system. Our observation to relax this
restrictiveness is the following:

A secure program may safely branch on high data
as long as the external observer cannot determine
which branch was taken.

Our type-system closes timing and termination channels
in well-typed programs by requiring looping conditions to be
of low security and branches of high if-commands to have the
same externally observable behaviour.

3.1 The Type System

We use the following language of types:

Security levels s ::= L 1 H (with L < H and s 5 s)
Base types 7 ::= Int 1 Boo1
Security types T::= ~~~AA~{(x~:T~,...,x~:~~}

Security types, ranged over by r, are base types annotated
with a security level, array-, or record types. The compo-
nents of records can all have different security types and
thereby security levels. The type for arrays contains the
type for the elements in the array, but there is no security
level for the length of the array, since this must always be
low. Allowing high values to specify the length of an array
will open up for timing leakages of the same kind as loops on
high data, since the array is initialised upon creation. Also,
array update and indexing are non-total operations, so we
cannot allow high-security values to be used in specifying
the index in these operations. This problem, and our treat-
ment of it, is analogotis to that with the division operator
in [VS97a]. In Figure 6, we extend the ordering on security
levels to a subtyping relation.

The typing of expressions calculate an upper bound on
the security levels of the variables in the expression. This
typing has no time component since expressions evaluate
atomically and are side-effect free in our semantics. Typ-
ing rules for expressions, initialisers and left-expressions are

45

(LitInt)
r t-4 n : Int,

(LitBool)
I-(x) 4 7- I- b< ei : Int, I? k< es : Int,

r ta (true, false} : Bool,
WarI rkax :T

(Op-Arithm)
r Ed ei{+, -, *}es : Int,

r t* e1
(Ix)

:Ar I’E< es :IntL rta e : { x:7 ,... }
(Se’) (OP-CmP)

r ks er : Int, r bs es : Int,

r t, el[e2] : T PI-, f2.x :T IT ta el{=, <=, <}ez : Bool,

It-< e : Int, r k< ie : T
(MkA) -

-
(MkRec) r ta

r ks iel : 71 . . . r k< ie, : T, -
I ka mkarray(e) ie : AT

(
Xi = iel, . . . , xn = ie,} : {xl : 71,. . . ,xn : TV}

Figure 7: Typing rules for expressions, initialisers and left-expressions. (4 ranges over = and 5)

(Assign”)

(Assign,)

rt< e :7, l?t=Ze :ra S<H - (SkipAsn)
I’l-le:=e:skipAsnlee

rt-< e :Ti r ä = le : Ti
rtle:=e:le:=e

(SkipIf)

l?tC:CL l?tD:D,.
(Let)

r t C; D : CL; D,

l? t-< e : BoolH rtc:c, rtD :DL -
l? t if (e> C else D : skipIf e C,

CL Nr DL (While)

r I-< e : Bool, rtczcL rtD :DL -

r t if (e) C else D : if (e) C, else DL
(Output)

Figure 8: Typing rules for commands

l? k skipAsn le e : skipAsn le e

rt-c :c,
I’ E skipIf e C : skipIf e C,

rtI ie :r r,x:Ttc :cL
l?t-letx:=ieinC :letx:=ieinC

r kc e : Bool, r l- C : C,

l? t while (e> C : while (e) CL

ryx) = Int,

r t output x : output x

given in Figure 7. These rules are parameterised on whether
sub typing is allowed for variables or not, using a to range
over = and 5. The Assign rules in Figure 8 use the param-
eterisation to prevent sub typing from being used in typing
left-expressions. Apart from using a richer type language,
our way of typing expressions is essentially identical to that
of Volpano and Smith [VS97b].

Typing environments, mapping variables to security
types, are ranged over by r and we write l?, x : r for the
environment that maps x to r and otherwise behaves like I.
We write l?(x) = r if x is mapped to T by l?, and I’(x) 5 r
if there exists some T’ such that I’(x) = r’ and r’ 5 T. We
write I’(Zv) = r as a shorter notation for l? l-= Iv : r and we
define &m(r) as {Iv)Zlr.I’(Zv) = r}.

Typing rules for commands are given in Figure 8. The
typing judgements are of the form:

rkc :c,

The “type” of a command C is its low-slice, C,. The low-
slice is syntactically identical to C but only contains assign-
ments to low security left-values. All assignments to high
security left-values and branching on high security data are
replaced with the appropriate skips. For example, with the
environment r = {h : Int,, 1 : IntL}, we can derive:

I + (h := h+l; 1 := 1+4) : (skipAsn h (h+l); 1 := 1*4)

AS stated in Lemma 2, the low-slice has the same observable

behaviour as the original command with respect to low left-
values. Note that although there are similarities, the low-
slice is not a program slice in the conventional sense (see e.g.
[RT96]). The low-slice and the type-systems construction of
it has more in common with the extraction of static program
parts as described by Mogensen in [Mog89].

The typing rules are all rather straightforward. Di-
rect leakage is prevented by the AssignL-rule. By forcing
the looping condition to be of low security, the While-rule
prevents leakage through nontermination and also blocks a
simple kind of timing leaks. The most interesting rule is
If,, which stops both indirect- and timing leaks. It allows
branching on high data provided that the branches have I’-
bisimular low-slices and thus have the same externally ob-
servable behaviour. The low slice is skipif e CL but could
just as well have been skipIf e DL or if (e) C, else D,
instead, since they are all I?-bisimular. By using skipIf eC,
instead of if (e> C, else DL in the transformation described
in Section 4, we avoid getting an exponential blow-up in code
size.

3.2 Usefulness in Practice

Our system guarantees that well-typed programs do not leak
information to an external observer even through timing be-
haviour. Unlike the system described in [VS97a], ours is not
too restrictive to be used in practice since we do not disallow
well-typed programs to compute with, and branch on secret

46

data. For exampie, the program in Figure 2 is well-typed in
our system but not in [VS97a].

The side condition C, or D,, in the If,-rule makes the
type system undecidable since or is undecidable. This does
not prevent sound but incomplete and conservative type
checking algorithms to be made though. Given an O(n)
method of computing CL or DL, type checking will not be
harder than normal [VS97b].

It can be argued that no programmers write programs
where all if-commands branching on high data have l?-
bisimular branches. As much as this is true, it is also nec-
essary to produce such programs if we want to avoid timing
leaks. To reduce the burden for the programmer, the next
section presents a transformation that removes timing leaks
by making branches of high if-commands r-bisimular.

3.3 Soundness of the Type System

The type system described in Figure 8 is sound with respect
to l?-bisimulation. The soundness theorem is a corollary of
the following lemma, stating that the low-slice of a command
has the same observable behaviour as the command itself.

Lemma 2 (Typing and r-bisimulation)
If P t C : CL then C or C,

A detailed proof of this lemma is given in Appendix A.

Theorem 1 (Well-typed programs are secure)

If r t- C : CL then C is P-secure.

Proof: Follows from Lemma 2 and the symmetry and tran-
sitivity of or according to Lemma 1.

4 Transforming out Timing Leaks

Paying with performance, we can transform out the tim-
ing leakages of programs by padding the branches of high
if-commands with dummy instructions so that they get
the same timing and otherwise externally observable be-
haviour. In Figure 9 we give an inductively defined algo-
rithm that transforms out timing leakages. The algorithm
subsumes the type-system and works by recursively perform-
ing a crosswise padding of each branch of a high if-commands
with the low-slice of the other branch. Thereby producing
a program where the low-slices of the branches of high if-
commands are l?-bisimular. Transformation judgements are
of the form:

T‘tC ct DID,

In a given type environment, the command C is transformed
to an almost semantically equivalent P-secure command, D,
and to the low-slice, DL, of this command. The commands
D and C are semantically equivalent in the sense that they
will perform the same sequence of outputs and assignments
to global variables given identical environments to start the
evaluation in. They differ in that D might need more eval-
uation steps than C to do a particular assignment. Also, D
might go into a nonterminating, non-productive loop even
if C does not. We argue that this is acceptable since the
extra nontermination in D will be due to potential informa-
tion leaks by nontermination in C. We state the semantic
soundness of the transformation formally in Theorem 3.

The crosswise padding with low-slices is done in the
If,-rule. The function ge(C), inductively defined in Fig-
ure 10, is used to ensure that the low-slices of the trans-
formed branches are free from outputs and assignments to
other than variables local to the branches. Thus, the low-
slices used for padding will add only time, not observable
actions, to the computation - a requirement which is essen-
tial to the semantic soundness of the transformation. The
premises ge(D1 L) = 0 and ge(DzL) = 0 essentially requires
both branches to be without output actions and assignments
to low security variables bound outside the branches. This
requirement stops programs with indirect leaks and is but
a variant of that made in [VS97b], where only assignments
to high variables are allowed in the branches of a high if-
command. Since assignments to low variables locally let-
bound in the branches is not restricted, they may contain
arbitrary loop-structures (which then also will be present in
the low-slices of the branches). The extra nontermination
that may be introduced by the transformation is due to non-
terminating loops in one branch being copied over into the
other.

4.1 The Cost in Performance and Code Size

Performing a crosswise copying of the low-slices is a simple
but not very refined way of making the branches I’-bisimular.
Ideally, we would like to pad each branch with the differ-
ence to the maximum execution time, rather than taking
the sum of the execution times of the two branches. Com-
puting the difference is undecidable in general but a more
refined method of padding than cross copying can certainly
be defined.

To try to give some kind of formal argument about the
slow-down of the transformed program relative the original
one is pointless. The best we can say is that the trans-
formed program can take arbitrarily longer time to execute,
since even code that was semantically dead in the original
program may be executed in the transformed one. For a
tree-structure of nested high if-commands, the original pro-
gram would execute only one path in the tree whereas the
transformed program will execute all paths. As discussed in
the previous section, this can lead to nontermination of the
transformed program.

One can easily be mislead to think3 that a combination
of nested high if-commands and the cross copying made in
the If, rule of the transformation would lead to exponential
blow-up in code size. However, the worst case blow-up in
code size from cross copying is actually only by a factor
linear in the nesting depth of high if-commands. What saves
us from exponential blow-up in code size is that the skipIf
introduced as low-slice of a transformed high if has roughly
half the size of a corresponding if-command with I’-bisimular
branches. To reason formally about the code size blow-up,
we begin by defining a simple measurement of code size.

Definition 3 (Code size)
Define #C as:

#(if (e) C else D) = 1 f zy l :T
#(C; D) = #C + #D uie e

,#if”l;ei;;

#(skipIf e c) = I+ “c #(letx:=ieinC)=l+#C
#(skipAsn le e) = 1 #(output x) = 1

3As the author was in an earlier draft

47

(Assign,)
l? I-< e : ?, l? t= le : TH s 5 u -

rkle:=e c) le:=eIskipAsnlee

(Assign,)
l? t< e : TL r t-= le : rL -

rtle:=e V le:=elEe:=e

(Seq)

(x4

(SkipAsn)

(SkipIf)

(Let)

(While)

(Output)

r t-< e : Bool, - r k cl it D1 1 DIL rt- C2 v DZ 10~~ ge(DIL) = 0 ge(DzL) = 8

r k if (e) Cl else C’S v if (e> DI ; D2 L else DI L; DZ I skipIf e (01 L; D2 L)

r I---< e : Bool, - l? t Cl v D1 I D1 L r k C2 v D2 I D2L

r I- if (e) (2’1 else C2 L) if (e) DI else D2 1 if (e> DI L else D2L

I? + skipAsn le e c) skipAsn le e I skipAsn le e

I’tC v DIDL

I? k skipIf eC v skipIf e D I skipIf e D,

rtsie:r r,x:TtC v DIDL

I’Eletx:=ieinC L) letx:=ieinDIletx:=ieinDL

I’ t< e : Bool, - I’tC L) D(DL

I? k while (e) C L) while(e) D] while (e> DL

rt< x :IntL -

r t output x it output x I output x

Figure 9: An algorithm for transforming out timing leakages

is+) = 1x1

ge(le) = c

ge(1e.x) = (T

ge(le) = m

ge(le[e]) = c

ge(Ze) = u

ge(le := e) = u

ge(Cl>= UI ge(C2) = u2

ge(Cl;C2)= UI U 02

se(G) = 01 ge(C2) = n2 ge(C) = u

ge(if (e) Cl else C2) = ul U u2 ge(letx:=ieinC)=a\{x}

ge(C) = u

ge(uhile (e> C) = u ge(skipAsn le e) = 8

ge(C) = u

ge(skipIf e C) = 0 ge(output x) = (0)

Figure 10: ge(C) - the global effects of C - free assigned variables and indication of output actions.

48

Our first observation is that the low slice computed by the
transformation will always have the same size as the original
command.

Lemma 3 (Size of corn
47-

uted low-slice)
If!?!--C L) DID,, then C-#D,.

Proof: Simple by induction on the height of the transfor-
mation derivation.

We will write ndr(C) for the maximal nesting depth of high
(according to I’) if-commands in C.

Theorem 2 (Code size blow-up wrt. nesting depth)
If l? l- C L) D 1 D, and ndr(C) 2 n then #D 5 (n+ l)#C.

Proof: By induction on the height of the transformation
derivation. Cases Assign,,, Assign,,, SkipAsn and Output
are all trivial. Cases Seq, Ifr., SkipIf, Let and While all
follow immediately from the induction hypothesis and some
simple arithmetic. In case If, we have that C is of the form
if(e) Cl else Cz and D = if (e) DI; DzL else DIL; Dz
whereI’ECr 9 Dr/Dr,andI’tCa C) DzIDz,,. Fromthe
assumption that ndr(C) 5 n we know that ndr(Cr) 5 n - 1
and ndy(&) 5 n - 1. Now from Definition 3 we have

#D=l+#D~+#D2L+#D1L+#D2

5 l+#Dl L + #DzL + n#Cl + n#Ca (by ind. hyp.)

5 l+#Cl + #C2 + n(#Cl +#C2) (by Lemma 3)

I (n+l)#C (by Definition 3)

In the worst case scenario, the high if-commands in a
command C are nested to a depth which is linear in the size
of C. Such nesting occurs for example in a multiple choice
implemented by nesting if-commands in the else-branch and
the transformation will in that case blow up C to a command
with size in the order of O(#C2). To avoid such quadratic
blow-up, deeply nested if-commands can often be flattened.
Consider the following program:

if (el) Cl
else if (es) C2
. . .

else C,

Transforming this program will give a quadratic blow-up
in code size, given that all Ci’s are relatively small. By
introducing a fresh high security variable x we can flatten
the program as follows:

let x := true
in if (el&&x) (Cl;x := false);

if (ez &&x1 (C2;x := false);
. . .
if (x1 C,;

The size of this program is linear in the size of the original
one and the transformation will only blow it up to roughly
the double of its size. The amount of computation made in
the transformed versions of these two programs is essentially
the same. In both cases, one transformed Ci and the low-
slices of all transformed Cj, where i # j, will be executed.

4.2 Semantic Soundness of the Transformation Algorithm

To reason about the semantic soundness of the transforma-
tion algorithm, we abstract from the evaluation time. We
first introduce a multiple step evaluation --D.

Definition 4 (Multiple step evaluation)
We define --D inductively as:

(E/C) % E’ (E IC) 4 (E’ ID)
ts..f

(EIC) + E’ (E IC) z (E’ ID)

(E IC) + (E’ ID) (E’ ID) OS:” E”

lEIC) -$*J E,,

(E IC) -% (E’ IC’) (E’ IC’) 5 (E” IC”)

(E IC) ““2’ (E” IC”)

To reason about observable evaluation steps we define
I=& to be a multiple step evaluation with exactly one output
action, namely 0.

Definition 5 (Observable evaluation)
Define m as:

(E IC) 6 (E’ ID) iff 3ts. (E IC) “2 (E’ ID)

(E IC) 6 E’ iff 3s. (E/C) ““-9 E’

Definition 6 (Weak simulation)
Define E as the largest relation that satisfies

C E D if VE.

(E IC) 6% (E’ IC’) + (E ID) I& (E’ ID’) A C’ 5 D’

(E IC) & E’ *(E(D) 6 E’

It is easy to show that & is reflexive, transitive and that it
is preserved by contexts (i.e. that it is a precongruence).

Our statement of semantic soundness of the transforma-
tion is that the transformed program, D, will be simulated
by the original program: D C C. The transformation is
not complete so C L D does not hold in general due to
the extra nontermination that might be introduced into D.
Completeness could be achieved if the transformation was
assisted by some kind of termination analysis, so that the
algorithm would fail rather than introduce extra nontermi-
nation. In Section 4.4, we prove the transformation complete
for a certain class of programs.

To prove semantic soundness, we need a few lemmas ex-
pressing that only time can be observed from computations
that do not perform any outputs or assignments to global
variables.

Lemma 4 (Assigned variables)
Write E \ o for E with all bindings of variables in o re-

moved. If ge(C) = (T, l e CT and either (E (C) 2 (E’ ID) or

(E IC) ‘2 E’, thenE\o=E’\aand%.as=ts.

Proof: The proof is simple by induction on the height on
the derivation of ge(C) = cr.

49

Lemma 5
As a corollary to Lemma 4 we have that:

If ge(C) i 0 and either (E]C) 2 (E’ ID) or (E IC) “2 E’,
then E = E’ and 3%. as = ts

Lemma 6 (Dummy computation)
Ifge(C)=0thenD;CCDandC;DgD.

Proof: Follows from Lemma 5. We use the same technique
as in the proof of Lemma 2 to show that {(D; C, D)) C E
and {(C; D, D)} G _C.

Theorem 3 (Transformation & semantic soundness)

If l? l- C L) D] DL then D 5 C.

Proof: We use induction on the height of the transformation
derivation. The cases Assign,, Assign,, SkipAsn, SkipIf and
Output are all immediate from the reflexivity of C. Cases
Seq, If,., Let and While follow from use of the induction
hypothesis and the precongruence property of E.

In the case of If, we know that C is of the form
if (e) Ci else CZ and D = if (e) DI; DzL else DIL; Dz.
WealsohavethatI’l-Ci LS Di]Di,,I’l-CZ L) DzIDz~,
ge(DIL) = 0 and ge(Dz,) = 8. By induction, Di & Cl
and Dz C C2. So by transitivity and Lemma 6 we have
DL; Dar. C Cr and DIL; D2 & Cs. Now the precongruence
property gives us our goal: D & C.

4.3 Correctness of the Transformation Algorithm

The transformation algorithm is correct in the sense that
transformed programs are secure. To prove this we need the
idempotence property of the type system.

Lemma 7 (Low-slice idempotence)
If I’ t C : C, then l? t C, : C,

Proof: Trivial by induction on the height of the typing
derivation.

Lemma 8 (Transformation and well-typing)
IfI’bC LS D]D,thenI’l-D :DL.

Proof: A simple inductive reasoning on the depth of the
transformation derivation proves this statement. Virtually
all cases in the proof are immediate from use of the induc-
tion hypothesis and the typing rule corresponding to the
transformation rule used.

The only case where some more elaborate reasoning has
to be made is for the If, rule. We then have:

r kc e : 3001~ ge(DIL) = 0 ge(DzL) = 0

rtcl c) D1jDIL rkcCz L) DZIDSL

r Fif (e) Cl else C2 L)
if (e) DI; DzL else DIL; DZ 1 skipIf e (DIL; DzL)

Using the induction hypothesis we get l? t D1 : DiL and
I t- DZ : DzL. From Lemma 7 and typing rule Seq we get
r t D1; DaL : DIL; DaL and r t DIL; DZ : DIL; D2L. By
Lemma 2 and the symmetry and transitivity of-r according
to Lemma 1, we thus have D1 L; DzL wr D1 L; DzL. We can
then use typing rule If, to get our goal.

Theorem 4 (Transformation gives secure programs)

If P t C L) D] DL then D is r-secure.

Proof: Follows from Theorem 1 and Lemma 8.

4.4 Completeness w.r.t. Volpano and Smith’s system

In section 2 of [VS97a], Volpano and Smith present a type-
system in which well typed programs are noninterfering, free
of nontermination leakages but may contain timing leaks.
Our transformation is complete with respect to this type-
system in the sense that well typed programs can be trans-
formed without inserting any nontermination:

If C is well-typed according to /VS97a], the trans-
formation will succeed and yield a semantically
equivalent prqgram D that is free of timing leaks.

To state this formally we first define the notion of se-
mantic equivalence we will use.

Definition 7 (Weak bisimulation)
CNDiffCCDandDLC.

Typing environments in [VS97a] are split into two com-
ponents, X;y, mapping locations and identifiers to security
levels. We will not distinguish locations and identifiers, and
refer to both as variables.

The language used by Volpano and Smith differs from
ours in that integers are the only values used and that ob-
servable actions are modelled by assignments to global vari-
ables of low security. Moreover, our language has no con-
struct corresponding to the try command that guard uses of
the division operator. Let P range over programs in [VS97a]
not containing try commands. Define T(P) to be the trans-
lation to our syntax that takes each if- and while condi-
tion, e, to e! =O and each assignment to a global low variable,
x := e, to the sequence x := e; output x .

Theorem 5
If X; y l- P : s cmd in the system of [VS97a], C =
T(P) and I? = {x : Int,]X(x) = s V-y(x) = s}, then
r l- C L) D] DL and C - D.

Proof: It suffices to show I? I- C L) D] DL and C 5 D.
The well typedness of P ensures that all while loops have a
condition of lowest security and that no loops exists in the
branches of if-commands with a high condition. We thus
use induction on the height of the typing derivation.

4.5 Example: RSA encryption

RSA encryption is based on computing A = M” mod n,
where M is the clear text message and e is the encryption
key. To decrypt, M = Ad mod n is computed where d
is the decryption key. To efficiently compute Xf, mod n,
the modular exponentiation algorithm can be used, but as
shown by Kocher [KocQG], a careless implementation will
leak k through timing. In Figure 11, we give an example
of such an implementation. We represent k as a w elements
long array of secret booleans, with the most significant bit of
k at k[O]. The program shown is not r-secure since the two
branches of the if have different timing behaviours, neither
is the program type correct in our system. The transforma-
tion algorithm presented in Figure 9 will close these timing

50

s := 1;
i := O-
while ii C w> {

if (kCil>
r := (s*x) mod n

else
r := s;

s := r*r;
i := i+l

> (The result is now in r)

Figure 11: An implementation of the modular exponentia-
tion algorithm that leaks through timing.

s := I;
i := 0;
while (i < w) {

if (k[i])
r := (s*x) mod n;
skipAsn r s

else {
skipAsn r (&*x1 mod n) ;
r := s

1;
s := r*r;
i := i+l

1

Figure 12: The output of our transformation: a secure im-
plementation of the modular exponentiation algorithm.

leaks by transforming the program into the one given in
Figure 12. The security of this, padded program relies on
constant time execution of the operators * and mod. Since
r, s and x are bignums in a realistic example, multiplication
and modulo will be implemented by subroutines. To get
secure implementations of these, the transformation can be
used again.

5 Conclusions and Future Work

We have presented a simple and realistic solution to remov-
ing timing leaks to external observers, by using a combi-
nation of typing and transformation. Our solution is for-
malised and proved correct. It improves over previous work
in that it relaxes the requirement that branching conditions
must be of lowest, security, thereby allowing a much larger
class of programs to be typed.

By parameterising over the interpretation of time, our
system becomes very precise. Even some timing leaks im-
plemented by varying data-cache behaviour are detected and
deemed insecure by our security criterion and type system.
A key assumption built into our system is that primitive
operators execute in constant time, regardless of the values
given as arguments.

A minor oversimplification in our semantics is that it
neglects the unconditional jumps made in the machine code
that a compiler produces for if- and while-commands. The

code generated for the command if (e) Cl else C2; D will
typically have the following form:

I4 Code for conditional expression
brt Li Branch to Ll if the condition was true

Ka Code for else-branch
jmp ~2 Unconditional jump to ~2

;:; [$I
Code for then-branch
Code for the rest of the program

Thus, even if Cl and C2 execute with the same timing
behaviour, the value of e can probably be leaked given that
the time for executing jmp L2 can be noticed. Although per-
forming an unconditional jump often does not take any time
at all for modern, heavily pipelined processors, the jump
would certainly be noticeable for an interpreted language
like Java byte-code. The simplest way to close this possibil-
ity to leak secret information is to generate a (redundant)
jmp L2 instruction also after the code for Cl.

As every semantic model abstracts from the real world,
so does ours. This means that in an implementation of our
system, there will always be well-typed programs that leak
information by utilising some aspect of reality not covered
by the semantic model. One weakness of our system is that
the semantics has no concept of program counter or where
in memory a piece of code is physically stored. It is thus im-
possible for the security condition to tell whether two syn-
tactically identical pieces of code originate from the same
location in memory. This sadly opens up for timing leaks
implemented by utilising the behaviour of the instruction
cache. If and how such leaks can be closed without com-
pletely turning off the cache remains to be investigated.

6 Acknowledgements

Thanks to David Sands, Andrei Sabelfeld, Jijrgen Gustavs-
son and the Multi-group at Chalmers in general for encour-
agement and helpful comments during the development of
this work. Also thanks to Pablo Giambiagi, Walid Taha
and the anonymous reviewers for suggesting improvements
and for spotting several typos and misplaced squiggles in
preliminary versions of this paper.

References

[BBL94]

[DD77]

[Den761

[DFWB97]

J.-P. Banatre, C. Bryce, and D. Le Metayer.
Compile-time detection of information flow in
sequential programs. Lecture Notes in Computer
Science, 875:55-73, 1994.

D. E. Denning and P. J. Denning. Certification
of programs for secure infdrmation flow. Com-
munications of the ACM, 20(7):504-513, July
1977.

D. E. Denning. A lattice model of secure in-
formation flow. Communications of the ACM,
19(5):236-243, May 1976.

D. Dean, E. W. Felten, D. . Wallach, and D. Bal-
fanz. Java security: Web browsers and beyond.
Technical Report TR-566-97, Princeton Univer-
sity, Computer Science Department, February
1997.

51

[GM821

[Gor94]

[Heh84]

[HG92]

[HR98]

[Koc96]

[McC87]

W&‘l

PM991

[Nie84]

[RLJ98]

[RT96]

J. Goguen and J. Meseguer. Security poli-
cies and security models. In Proceedings of
the IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, April 1982.

A. Gordon. A tutorial on co-induction and
functional programming. In Glasgow functional
programming workshop, pages 78-95. Springer
Workshops in Computing, 1994.

E. C. R. Hehner. Predicative programming part
1. Communications of the ACM, 27(2):134-143,
February 1984.

J. He and V. D. Gligor. Formal methods and au-
tomated tool for timing-channel identification in
tcb source code. In In Proceedings 2nd European
Symposium on Research in Computer Security,
LNCS 648, pages 57-75, November 1992.

N. Heintze and J. G. Riecke. The SLam calcu-
lus: programming with secrecy and integrity. In
Conference Record of the Twenty-Fifth Annual
ACM Symposium on Principles of Programming
Languages, pages 365-377. ACM, 1998.

P. C. Kocher. Timing attacks on implementa-
tions of diffie-hellman, rsa, dss, and other sys-
tems. In Neal Koblitz, editor, Advances in Cryp-
tology - CRYPTO’96, volume 1109 of LNCS,
pages 104-l 13. Springer-Verlag, 1996.

D. McCullough. Specifications for multi-level
security and hook-up property. In Proceedings of
the IEEE Symposium on Security and Privacy,
pages 161-166. IEEE Computer Society Press,
1987.

T.B. Mogensen. Separating binding times in
language specifications. In Proceedings of the
Conference on Functional Programming Lan-
guages and Computer Architecture ‘89, Imperial
College, London, pages 12-25, New York, NY,
1989. ACM.

A.C. Myers. JFlow: practical mostly-static in-
formation flow control. In ACM, editor, POPL
‘99. Proceedings of the 26th ACM SIGPLAN-
SIGACT on Principles of programming lan-
guages, January 20-22, 1999, San Antonio, TX,
pages 228-241, New York, NY 10036, USA,
1999. ACM Press.

H.R. Nielson. Hoare Logic’s for Run-time Anal-
ysis of Programs. Ph.D. thesis, CST-30-84, Ed-
inburgh University, 1984.

K. Rustan, M. Leino, and R. Joshi. A seman-
tic approach to secure information flow. Lec-
ture Notes in Computer Science, 1422:254-271,
1998.

T. Reps and T. Turnidge. Program special-
ization via program slicing. In 0. Danvy,
R. Glueck, and P. Thiemann, editors, Dagstuhl
Seminar on Partial Evaluation, volume 1110 of
Lecture Notes in Computer Science, pages 409-
429. Springer-Verlag, Feb 1996.

jSS99] A. Sabelfeld and D. Sands. Prob-
abilistic noninterference for multi-
threaded programs. Unpublished
(http://www.cs.chalmers.se/-dave/papers/prob-
sabelfeld-sandsps), June; Revised October
1999.

[SV98] G. Smith and D. Volpano. Secure information
flow in a multi-threaded imperative language.
In Conference Record of POPL ‘98: The 25th
ACM SIGPLA N-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 355-
364, San Diego, California, 19-21 January 1998.

[VS97a] D. Volpano and G. Smith. Eliminating covert
flows with minimum typings. Proc. 10th
IEEE Computer Security Foundations Work-
shop, pages 156-168, June 1997.

[VS97b] D. Volpano and G. Smith. A type-based ap-
proach to program security. In TAPSOFT’97,
volume 1214 of LNCS, pages 607-621. Springer-
Verlag, April 1997.

[VS98] D. Volpano and G. Smith. Probabilistic nonin-
terference in a concurrent language. Proc. 11th
IEEE Computer Security Foundations Work-
shop, pages 34-43, June 1998.

[VSI96] D. Voipano, G. Smith, and C. Irvine. A sound
type system for secure flow analysis. J. Com-
puter Security, 4(3):1-21, 1996.

52

A Proof of Lemma 2

To prove Lemma 2 we will need the following small addi-
tional lemmas.

Lemma 9 (High left-expressions)
Ifr~=le:5H,E1=rEzandE1tleuL12,
then Ez t le qL Iv.

Proof: By induction over the height of the evaluation
derivation. Uses the fact that only expressions of type Int,
may be used for indexing.

Lemma 10 (Well-typed expressions)
Ifrt~ie:7,E1~ieUwandEl=rEZ,
then r F< v : r, Es F ie #- V’ and r I-< w’ : 7, - -
Proof: By induction over the height of the evaluation
derivation.

Lemma 2 (Typing and l?-bisimulation)

If r t C : CL then C wr CL

Proof: We prove this lemma by induction on the height
of the typing derivation and by cases on its structure. In
each case we provide a set X, such that (C, C,) E X. To
prove X C_ wr and thereby C wr CL, we use the standard
technique of proving that X c Fr(X U or), where Fr is
the dense bisimulation operator that has wr as its Iargest
fix-point (see e.g. [Gor94]). Fr is defined according to:

Fr(X) = {(C,,Cz)] (EI ICI) % E; =+

(Ez IC,) -% E; A E; =r E;} U

{(G,Cz) 1 (E2 IC2) % E; =+

(EL IC,) = E; A E; =r E;} U

{(Cl,Cz> I (El ICI) - (E; IDI) *

P2 IC2) - (E; lD2) A

E’,=rEb A (Dl,D2)EX}U

{(G,C2) I (E2 IC2) -3 (E; I&) =+
(El ICI) -% (G p1> A

Ei =r E; A (01, D2) E X}

The proof is now by induction on the height of the typing
derivation, with a case analysis on the outermost typing rule
used.

AssignL: C is of the form le := e and C, = C. Choose
x = {(C, CL)}.

AssignH: C is of the form le := e and CL = skipAsn le e.
We also have that I’ F< e : Fs and r F= le : 7;H, where
s < H. Given EI and E2 such that El =r E2, we
assume

From semantic rule Assign we then have that El k e 4
1, El t le UL Iv, Iv E dom(El) and E~[lv = 21. The
definition of =r gives us Iv E dom(E2). By Lemma 9 we
get E2 I- le J,lL Iv. From Lemma 10 we get E2 t e 4 l’,
and semantic rule SkipAsn gives us

(E2 lskipdsn le e) te’t”‘taa”.J) E2

Since Iv is a high left-value w.r.t. l?, we have that El =r
Ea. Thus it is enough to choose X = {(C, C,)}.

Seq: C is of the form Ci;C2 and C, = Di; Dz, where
l? t- Ci : D1 and r + Cz : D2. By induction, Cr -r D1
and CZ ~~ Dz. We can thus take:

X={(C'I;C~,&;D~)(C'~ Nr Dl,C2 -~rDz}

IfL: C is of the form if (e) Cr else CZ and C, =
if (e) D1 else D2, where F I-< e : Bool,, l? l- Ci : D1
and l? t C2 : Dz. By indu&on we have Cr -r D1
and CZ -r DZ Since the same branch will be taken
by both C and C, given that El =r E2. We can thus
choose X = {(G, C,,)}

If”: C is of the form if (e) Cr else C2 and C, =
skipIf e D1, where l? Fs e : Boo&,, l? I- Ci : D1,
l? F C’s : D2 and D1 wr D2. Given El and E2,

El =r ES, we assume (Eq [CL) * (Eg IDI). We
then have E2 t- e Jj 1 where 1 E {true,false} and
from Lemma 10 that El I- e .lJ Z’, where also 1’ E
{true,false}. By semantic rule If we now have two
cases:

If (EIIC) % (El ICI) we can choose X =
{(C, C,)} since we have Ci N,- DI by induction.

If (El(C) le.tbr, (E1 (CZ) we can also choose X =
{(C, CL)} since since we have C2 wr D2 by in-
duction, and C’s wr D1 from Lemma 1.

Thus, we take X = {(C, CL)}.

SkipAsn: C is of the form skipAsn le e and C, = C.
Choose X = {(C,Cr)}.

S kipIf: C is of the form skipIf eD and CL = skipIf eD,
where r + D : DL. By induction we have D Nr D, and
thus we can choose X = {(C, C,)}.

Let: C is of the form let x := ie in D and CL =
let x := ie in D,, where F F< ie : r and I?, x : -
r t D : DL. Assuming El =r E2 and (El IC) b
(El Ilocal x := v in D), we have by Lemma 10 that

(E:! IC,) b (E2 (local x := u’ in DL), where v’
differs from v only in the high parts according to 7.
By induction, we have D -r,x:r DL, so we also have
local x := v in D wr local x := v’ in D, and we can
choose X = {(C, Cr.)).

While: C is of the form while (e) D, and C, =
while (e> D,, where l? t-5 e : Bool, and r F D : DL.
By induction we have that D -r D,. With El and E2
such that El =r E2, both C and c, will either termi-
nate or continue to loop, since e only depends on low
variables. We have two cases:

If (El (C) te’tbr.J> Er then (E2 ICL) te’tbr’Jk E2.

If (El (C) 2 (W (D;C) then (Ez IC,) *
(E2 1% CL)

Choosing X = {(C, C,)} U ((II; C, D,; CL)10 wr DL}
we have that X c Fr(XU wr).

output: C is of the form output x , and CL = C. We can
choose X = {(C, C,), (skip, skip)), since I’(x) = IntL.

53

