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Abstract 

One aspect of security in mobile code is privacy: private (or 
secret) data should not be leaked to unauthorised agents. 
Most of the work on secure information flow has until re- 
cently only been concerned with detecting direct and indi- 
rect, flows. Secret information can however be leaked to the 
attacker also through covert, channels. It is very reasonable 
to assume that the attacker, even as an external observer, 
can monitor the timing (including termination) behaviour of 
the program. Thus to claim a program secure, the security 
analysis must take also these into account. 

In this work we present a surprisingly simple solution 
to the problem of detecting timing leakages to external ob- 
servers. Our system consists of a type system in which well- 
typed programs do not leak secret information directly, indi- 
rectly or through timing, and a transformation for removing 
timing leakages. For any program that is well typed ac- 
cording to Volpano and Smith [VS97a], our transformation 
generates a program that is also free of timing leaks. 

1 Introduction 

As the use of Internet and mobile code increases, prevention 
of security leakages in multilevel secure systems becomes a 
concern for the everyday user. In a multilevel secure sys- 
tems, data with different security levels are processed and 
computed. The security levels are partially ordered and nor- 
mally form a lattice. To maintain confidentiality in such a 
system, secret data must not be leaked to unauthorised users 
or Aow downwards in the security lattice. This work is moti- 
vated by the need for privacy of secret data when code from 
an untrusted source is down-loaded and run on, typically, a 
naive users computer. Since virtually everybody stores data 
they consider private (or secret) on their computers, some 
kind of guarantee for the privacy of that data is needed when 
untrusted code is executed. 

The scenario we imagine is the following: A user down- 
loads a program from an untrusted web-site. To compute 
some information valuable to the user, the program needs 
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access to the users private data. What is problematic is that 
the program might also need to access some databases over 
the Internet in order to function. Is it, safe for the user to 
run the program or could the private data be leaked? 

A concrete example of such a program could be an auto- 
mated financial advisor that needs the users private financial 
information as input and will fetch stock market rates, bank 
loan interest rates etc. over the Internet while computing fi- 
nancial advice for the user. 

In this paper, we will deal with sequential programs and 
security leakage to an attacker external to the system run- 
ning the untrusted code. Secret or private information may 
be leaked to the external attacker in a multitude of different 
ways: 

Direct leakage, the simplest and most blunt way of leak- 
ing information, is when the secret data is just passed 
to the attacker as is. 

Indirect leakage (sometimes called leakage through a 
covert storage channel), is when the secret data is en- 
coded in the observable behaviour of the program. The 
program might for instance perform different kinds of 
database accesses depending on the value of some se- 
cret data. 

Timing leakage (or leakage through a covert timing 
channel) occurs when the program encodes the se- 
cret data in its timing behaviour or manipulates some 
shared resource in such a way that the attacker can ob- 
serve the manipulation by measuring the availability of 
the resource during a particular time interval. 

Programs may also leak information through their ter- 
mination behaviour. That is given that the secret data 
satisfies some condition the program may terminate ab- 
normally or go into a infinite loop. We consider leaking 
through nontermination to be a special case of timing 
leakage. 

Use of covert timing channels is maybe the most cunning 
way to leak data and perhaps also the most difficult to de- 
tect and prevent. Luckily, network latencies etc., introduce 
a lot of noise that must be dealt with by an implementation 
of a timing channel over the Internet. This means that the 
capacity of such a channel is probably quite low. However, 
timing channels cannot be discarded when reasoning about 
the security of a system dealing with sensitive information. 
Even if the capacity of the timing channel is as low as 2 
bits per minute, leaking a 16 digit VISA card number can 
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volvoValue : = 0; 
i := 1; 
while (iC=DBsize) { 

let share : = sharesDB [i] . name in 
let value : = lookupVa1 (share) *sharesDB [i] . no in 

if (isVolvoShare(share) ) 
volvoValue := volvoValue+value; 

i := i + 1 

Figure 1: A program with a timing leak. 

volvoValue : = 0; 
i := 1; 
while (i<=DBsize) { 

let share : = sharesDB [i] .name in 
let value : = lookupVa1 (share) *sharesDB [il .no in 

if (isVolvoShare(share)) 
volvoValue := volvoValue+value 

else 
skipAsn volvoValue (volvoValue+value); 

i:=i+i 

Figure 2: A padded, secure version of the program. 

be done in less than 30 minutes’. Also, combined with the 
ability to make repeated attacks, timing can disclose disas- 
trously sensitive information to the attacker. For example, 
Kocher showed [Koc96], that some implementations of the 
RSA encryption algorithm leak information about the en- 
cryption key through their timing behaviour. By making a 
series of encryptions and measuring their times, the attacker 
could figure out the entire key. 

1.1 Example 

To illustrate how timing leaks can arise and also how they 
can be closed, we consider two program fragments. Figure 1 
presents a program that computes the total value of the 
user’s Volvo shares into the secret variable volvoValue. The 
program loops through a database, sharesDB, implemented 
as an array of records with two secret components: a string 
name and an integer no. The length of the database is public. 
No secret data will be leaked to the public variable i, but 
since the amount of computation performed in the loop is 
dependent on whether sharesDB[i] .name is a Volvo share, 
the program will leak this information through its timing 
behaviour. 

This timing leak can be dosed simply by padding the 
program with dummy computation, as shown in Figure 2. 
The command skipAsn x e takes the same time to execute 
as x : = e but does not do any assignment. Assuming that 
the functions lookupVa1 and isVolvoShare both execute in 
constant time, the program is secure since the contents of 
sharesDB will not influence the execution time of the while- 
loops body. 

‘One decimal digit requires roughly 3.3 bits to encode (23.3 M 10). 

1.2 Contribution 

We present a type-system and a type-directed transforma- 
tion that removes timing leaks from programs to make them 
secure with respect to a semantic security condition based on 
bisimulation. The security condition is very strong and the 
programs that are considered secure do not leak any secret 
information directly, indirectly, by termination behaviour or 
through covert timing channels to external observers. Pro- 
grams that are well typed in our type-system satisfy this 
security condition. Our type-system improves over existing 
ones [VS97a], in that it allows more secure programs ac- 
cording to our condition. The generality of our type-system 
makes type checking undecidable, but we provide a sim- 
ple, decidable, type-directed transformation that gives well- 
typed (secure) programs. The transformation removes tim- 
ing leaks from programs without direct and indirect leaks, by 
padding with dummy instructions where needed. Together, 
our transformation and type-system provide the first realis- 
tic solution for closing timing leaks to external observers. 

2 A Semantic Security Condition 

Essential to analysing the security properties of a program 
is to have a semantic notion of security. The condition of se- 
curity used must be strong enough to capture all important 
leakages possible in a realistic implementation of the system. 
In this section, we first point to problems with the realism 
and strength of the security condition used in some related 
work. We then discuss what a realistic security condition 
should capture, present the language we use and finally de- 
fine our condition of security. 

To simplify the presentation of our system we consider 
only two security classes: L for low security (public) and H 

for high security (secret). We thus have a two-point security 
lattice: L 5 H. 

2.1 Related Work 

The most commonly used semantic security condition is that 
of noninterference [GMBZ], which has been adopted in many 
recent papers on secure flow analysis [VSI96, VS97b, HR98]. 
A program satisfies the noninterference property if its low 
security outputs do not depend on the high security inputs. 
This can be formulated as: 

VEI, EP. El =low Ez + P(E1) =low P(E2) 

where El =low E2 means that if the environments El and 
E2 are defined, all their low-security components are equal. 
Here the program is seen as a function on environments. 

With noninterference as the underlying notion of secu- 
rity, type-based analyses capable of detecting direct and 
indirect security leakages have been proposed by Volpano 
and Smith [VS97b] (a reformulation of Dennings work 
[Den76, DD77]), and Heintze and Riecke [HR98]. A big 
drawback with noninterference, however, is the extensional 
view of programs as functions from input to output. Thus a 
program that is secure in this sense can still leak information 
through its timing behaviour. 

To close leakage through nontermination, Volpano and 
Smith enforce a condition of termination agreement, where 
both the termination behaviour and low output of a secure 
program are independent of the high inputs [VS97a]. Prac- 
tically, this was done by disallowing looping conditions to 
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depend on high security data. The same restriction was en- 
forced in [SV98] to prevent nontermination to be used as 
a method of leaking information between parallel processes 
in a multi-threaded language. By forcing the arguments to 
partial primitive operators, like division, to be of lowest se- 
curity, leakages trough abnormal termination can be closed 
[VS97a]. 

When it comes to detecting leakages through covert tim- 
ing channels, Volpano and Smith have taken two different 
approaches [VS97a, VS98]. Neither of these deal with timing 
leakage to external observers in a feasible way. In [VS97a], 
a theorem on timing agreement is formulated. This theo- 
rem states that sequential programs with both looping- and 
branching conditions independent of high data will execute 
in lock-step with the low security part of the environment 
independent of the high security data. The consequences of 
disallowing also branching on high data will be discussed in 
Section 3. Although not a security condition in itself, the 
timing agreement theorem contains some of the necessary 
ingredients for a timing-aware security condition. 

Internal timing leakages between concurrent threads aris- 
ing from the probabilistic behaviour of the scheduler is stud- 
ied in [VS98]. A type system and a semantics based on 
Markov chains of probabilistic states and stochastic transi- 
tion matrices are presented, but no explicit security crite- 
rion is given. The system’s security is based on the use of 
a ‘protect C’ statement that ensures atomic execution of 
the command C. Properly implemented and used on all if- 
commands branching on high data, the protect-statement 
can eliminate internal timing leakage. However, (quote) “‘if 
external observation of the running program is allowed, then 
of course covert channels of the kind discussed [ . . ] remain 
possible”. 

The language JFlow, presented by Myers in [Myegg], is 
an extension of Java with annotations for secure informa- 
tion ilow. The annotations can be checked mostly-statically 
but some tests need to be performed at runtime. Leakages 
through timing or nontermination are not detected in JFlow. 
As a way of escaping the restrictiveness of strict information 
flow, the system allows declassification of secret data, which 
makes formal reasoning about the security of the system 
hard. No semantic security condition or soundness theorem 
is given. 

Banatre, Bryce and Le MCtayer [BBL94], present an in- 
formation flow logic in which proofs of (potential) flows be- 
tween variables are derived. The correctness criterion given 
is essentially noninterference on a variable by variable ba- 
sis. The logic does not deal with external observers or flows 
resulting from timing or termination behaviour. 

Methods of detecting potential timing channels when 
both the sending and receiving processes are available for 
analysis have been proposed by He and Gligor in [HGSS]. 
This work is rather informal and does not contain any for- 
mal semantic condition of security. 

A method described for example in [Heh84, Nie84], is 
that of using a programmed counter to measure execution 
time. The idea is to transform the program so that a spe- 
cial program variable introduced to record execution time is 
incremented after each statement. Rustan, Leino and Joshi 
[RLJ98], suggest using this approach to reason about covert 
flows involving timing behaviour. Introducing a low-security 
counter variable that is incremented after each command 
can certainly give a timing-aware semantic security condi- 
tion but this approach works poorly in combination with 

existing type system for security. The problem is that incre- 
menting a low-security counter variable after each command 
conflicts with the requirement that low-security variables 
are not assigned in the branches of high if-commands.. This 
means that unless the incrementation of the counter variable 
is given some special treatment, all high if-commands will 
seem to have indirect leaks. We have thus chosen to build a 
notion of execution time into the semantics, as presented in 
Section 2.3. 

2.2 Requirements on Secure Programs 

To arrive at a realistic and adequately strong security con- 
dition, we must analyse which kinds of information leakages 
should be prevented. In our setting, code is down-loaded 
from an untrusted source, given secret data as input and 
also allowed to access resources over Internet. The attacker 
in this setting is the author of the code and possibly in con- 
trol of the site from which it is down-loaded. The attacker 
is also external to the system running the code. When the 
program runs, it can communicate with the attacker in two 
different ways: 

Immediate communication, where data is sent directly to 
the attacker, that is the site from which the program 
was loaded. This is the only communication allowed by 
Java applets (see e.g. [DFWB97]). 

Indirect communication, by use of a third party. The com- 
munication to the attacker is made by sending data to 
or manipulating some another site on the net in a way 
that the attacker can monitor. 

Since the attacker is external to the system running the 
program, and thus cannot be controlled by that system, we 
must assume that the attacker can observe both what is com- 
municated by the program and when this communication is 
made. From the attackers view, the execution of the pro- 
gram can be seen as a (possibly infinite) sequence of time, 
value pairs that correspond to observable actions and when 
they are made. Our semantic security condition must thus 
force this sequence to be independent of the high security 
data that the program manipulates. 

Forcing the observable actions of a program to be inde- 
pendent of high data poses no new problems. This is just 
the noninterference property. To make sure also that the 
time at which these actions are performed is independent of 
high data, we must in some way reason about the execution 
time of programs. It is hard to determine how fine-grained 
this reasoning should be. Obviously, the number of instruc- 
tions and which operations that are performed affect the 
execution time and so does the hardware (and interpreter) 
on which the program is run. The kind of instructions exe- 
cuted must probably also be considered, but even this might 
not be enough. A subtle way of leaking would still be avail- 
able: the program can exhibit different cache, and thereby 
time, behaviour depending on some high data. Consider the 
following piece of C code: 

if (h) 
for(n=O; n<N; n++> xs[n]++; /*loop 1 */ 

else 
for(n=O; n<N; n++> ys[n]++; /*loop 2 */ 

for(n=N; n>=O; n--> xs[n]++; /* loop 3 */ 

The same number and the same kind of instructions will 
be executed by both branches but if loop 1 is executed the 
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Operators op ::= + 1 * 1 - 1 = 1 != 1 < 1 <= 
Expressions e ::= I 1 e op e 1 le 
Initialisers ie ::= e 1 mkarray ( e) ie ( 

{xl = iel,. . , xn = ie,} 
Commands C,D::=Ee:=eIskipAsnleeI 

if(e)CelseDIskipIfeCI 
letx:=ieinCIuhile(e) Cl 
C; D I output x 

Left-expressions le ::= x 1 1e.x 1 Ze[e] 
Left-values Iv ::= x 1 h-x 1 lv[n] 
Values w ::=lI{ Xl =211,...,xn =wn}I 

[vo,. . . ,vn] 
Basic Values 2 ::= n I true I false 

Figure 3: Syntax of expressions, commands and values. 

array xs will probably be cached when loop 3 is reached. It 
is thus likely that the entire execution will be longer if h is 
false2. The variance in timing here might not be big but it 
is probably big enough to implement a timing channel! The 
code shown above is not secure with our criterion given in 
Definition 2, nor is it well-typed in our type-system. Our 
type system will only allow a high if-command when the 
two branches have exactly the same pattern of allocations 
and variable references. Thus the example above will be 
considered insecure even without loop 3. 

To avoid building a limitation into the system, we have 
implicitly parameterised our semantics and security condi- 
tion on the interpretation of time. This is discussed some- 
what more in Sections 2.3 and 2.4. 

2.3 The Language 

The language we use, with syntax given in Figure 3, has 
assignments, sequencing, conditionals, local bindings, while 
loops, output commands and two kinds of skip-commands: 
skipAsn le e and skipIf e C. The transformation described 
in Section 4 inserts these skip-commands to remove timing 
leakages. Values consists of records, arrays, integers and 
booleans. An expression cannot construct a record or array 
but this can be done by an initialising expression when a new 
binding is introduced. The output construct implements 
externally observable actions by outputting the value of an 
integer variable to the attacker. 

To give the semantics of programs we use two partial 
functions: a big-step natural semantics for expressions and 
a labelled small-step transition semantics for commands. Se- 
mantic rules for expressions, initialisers and left-expressions 
are standard and given in Figure 4. Evaluation judgements 
for commands are of the forms 

@IQ 3 (E/D) 
(EIC) -% E 

where E is the environment, associating variables with val- 
ues. The annotations on the transition arrow is a possibly 
empty sequence of time-expressions, ts, and for as also out- 
put actions. These describe the time and observable actions 

‘A simple test based on the code above showed that a difference 
of 2-3 seconds in execution time could be measured from a program 
that ran in 1 minute. The test was made on a 296 MHz Sun Ultra 4. 

of making that transition. Output actions, ranged over by o, 
are integer values, n and the symbol J which is used to sig- 
nal termination. There is at most one output action on any 
given transition. We write as1 as2 for the concatenation 
of two sequences and we consider a single action or time- 
expression as a singleton sequence. We use ts to range over 
sequences consisting only of time-expressions, which are: 

t, (tie) The time it takes to evaluate e (or le). 
t asn Time for making an assignment. 
tbr Time to inspect and branch on a value. 
t pti ie Time to evaluate ie and push a new 

binding of the resulting value on the 
evaluation environment. 

tP0 Time to pop the innermost binding 
from the evaluation environment. 

To capture the time of evaluating expressions, the time- 
expressions t and tp,, are indexed on expressions and ini- 
tialisers. Since only basic values can be assigned (assignment 
of arrays- and record-values is not allowed) it is enough to 
use a constant tasn for the time of an assignment. 

Note that time-expressions do not specify time directly. 
They are only descriptions of time and have to be given some 
kind of interpretation if we need to know the real time they 
denote. Such an interpretation can be arbitrarily complex. 
By looking at the entire history of the execution, an inter- 
pretation could even model data-cache behaviour to some 
extent. The semantics is parameterised on the interpreta- 
tion of time. Any interpretation can be used as long as 
primitive operations are given constant times. This is dis- 
cussed in Section 2.4. 

Rules for the evaluation of commands are given in Fig- 
ure 5. The environment E is a sequence of bindings but 
for convenience we also treat it as a mapping, writing E(x) 
to access the value in the rightmost (innermost) binding of 
x. We write E[Zu = I] for updating E at the binding and 
component indicated by Iv to the basic value 1 and we define 
dam(E) as {Zv~3Z.E(lw) = I}. 

The two skip-constructs, skipAsn and skipIf, are de- 
signed to have the same timing behaviour as an assignment 
and an if-branching respectively. In the type-system de- 
scribed in Section 3, skipAsn and skipIf are used in de- 
scribing timing behaviour. Programs can be padded with 
appropriate skip-commands as done by the transformation 
presented in Section 4, thereby removing timing leakages. 

All other rules for evaluation of commands are fairly 
standard. Evaluation of a let introduces a new local bind- 
ing. We have chosen to represent local bindings syntactically 
with a let-like construct called local, and they are moved 
to and from the environment in the rule (Local). We use the 
notation E, x = v for adding a new binding to E and also to 
match out the innermost binding of an environment. The 
time for pushing a binding on the evaluation environment is 
paid in the (Let)-rule when the binding is first introduced 
and the time for popping the binding is paid when the body 
of the let terminates. There are no time-annotations for 
the cost of shuffling bindings in and out of the environment 
made in the (Local) rule. This is of course due to the fact 
that the local construct is nothing but a notational trick to 
keep track of local and global variables and it has no corre- 
sponding implementation overhead. Another technical trick 
we use is that the output command evaluates to a skip that 
then simply terminates, thus we avoid the problem of more 
than one output action on any given transition. 
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(Lit) E t- 1 JJ 1 

E(x) = v E I- el JJ 11 E t- e2 U Z2 E F el JJ [WO, . . . , w,, . . . , wm] E + e2 U n 
War) 

El-x$w 
(OP) 

E t elop e2 U 11[0~1/2 
(Ix) 

E t el[ezl U 21, 

Eke*{ . . . . x=v ,... } 
WV 

El-e.x JJv 
WA) 

EkeJ,Ln EkieJ,Lv 

E k mkarray (e> ie Jj. [v, . . . , v] (n occurences) 

E t- iel $ WI . . E k ie, U vn 

(MkRec) E + {XI = iel, . . . ,x, = ie,} 4 {x1 = wl,. . . , xn = wn) 

EkleJ,lLh El-eJ,ln 
(L-Ix) 

E k le[e] JJL lv[n] 

E I- le UL Iv 
(L-Sel) 

Et- Ze.x UL Zv.x 
(L-Var) 

Ekx J,LLx 

Figure 4: Big-step semantics for expressions and initialisers (Q) and left-expressions (JJ”). 

(Assign) 
EtelJl Et-lelJLh 

(E Ile := e) te’tle’t’=s”‘J) E[lv = I] 
Iv E dam(E) 

6%) 
(E IC) +-% E’ 

(E JC; D) 3 (E’ ID) 

(E IC) 3 {E’ IC’) 

(E IC; D) -% (E’ IC’; D) 

(If) 
E I- e JJ true 

(E]if (e> Celse 0) q (EIC) 

E k e u false 

(E ]if (e> C else 0) t,.tbp, (E ID) 

(SkipAsn) 
Eke&l EtZeULh 

(E ]skipAsn le e) te’t’e’ta’n’J~ E 
Iv E dam(E) 

(Skip) 
(E Iskip) 5 E 

(Let) 

(Local) 

(While) 

(SkipIf) 

Ekie Uv 

(E ]Iet x := ie in C) tpu (E ]IocaI x := v in C) 

(E,x=vlC)~(E’,x=w’ID) 

(E Ilocal x := v in C) 3 (E’ Ilocal x := v’ in 0) 

(E,x=vlC) %E’,x=v’ 

(E [local x := v in C) 
ts.t*,.J 

b E’ 

E F e JJ false 

(E Iwhile (e> C) te’tb”.J) E 

E k e JJ true 

(E Iwhile (e) C) t,tb,, (E IC; while (e> C) 

Eke&Z 

(E ]skipIf e C) t,.tbr, (E/C) 
1 E {true,false} 

(Output) 
E(x) = n 

(E loutput x ) % (skip IE) 

Figure 5: Small-step semantics for commands. 

- 

2.4 A Bisimulation-based Security Condition where =r is defined as 

As a foundation for our semantic security condition, we use 
a partial bisimulation on commands, or. We index this 
relation on a typing environment, I, to distinguish low- and 
high-security left-values. Informally, two commands are I- 
bisimular if they behave stepwise identically with respect 
to execution time, outputs and the manipulation of the low 
variables (according to I’). Also, this behaviour must be 
independent of the high data in the environment. 

El =r E2 iff dom(Ei) = dom(E2) A dom(E1) C dam(r) A 

WV E dom(El).I’(lv) = rL =s El(h) = E2(Zv) 

Here, l? is a typing environment and TV is a base type of low 
security level. Both will be introduced in Section 3.1 

Definition 1 (IT-bisimulation) 
-r is the largest symmetric relation on commands that sat- 
isfies: 

By relating commands to themselves by F-bisimulation 
we get a sort of timing-aware, stepwise noninterference prop- 
erty, which suits us well as the definition of security: 

Definition 2 (r-security) 

Cl or C2 if VEi, E2 such that El =P E2 we have that 

(El ICI) -3 (E; IDI) a (-732 IC2) 3 (Eh ID2)A 
E; =r E!, A D1 y- D2 

(El ]C,) % E; + (E2 IC,) % E; A E; =I- E; 

C is r-secure if C -r C 

This security condition is semantically a lot stronger than 
actually necessary, due to the definition of I’-bisimulation. 
For example, due to the statelessness of -r the program 
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h := 0; 1 := h is not secure, although it would not leak any 
secret information in our sequential setting. Weaker and 
more elaborate versions of the bisimulation could be defined. 
The relation could be made stateful by dropping the local 
quantification of the environments and relate configurations 
instead of commands. Moreover, as it stands, -r, requires 
the evaluation of (El ICI) and (Eg I&) to both make a step 
with syntactically equal time-expression sequences, which 
essentially forces them to make the same computations (but 
not the same assignments!). This condition could be relaxed 
by making the interpretation of time-expression sequences 
explicit and by forcing the two commands to evaluate in 
times that have the same interpretation, possibly involving 
the entire history of the two executions. Any weaker version 
of the bisimulation would clearly be implied by N,-. To avoid 
any unnecessarily complicated definition and since the type- 
system and transformation presented in Sections 3 and 4 will 
be sound with respect to wr, we have chosen this, stronger 
definition. Also, the statelessness of mr gives a composable 
security criterion and extends nicely to satisfy the Hook-up 
property in parallel programs [McC87], as shown by Sands 
and Sabelfeld [SSSS]. 

It is of course very hard to statically predict cache be- 
haviour. However by forcing two r-bisimular commands to 
have SyntacticalIy equal time-expression sequences, the two 
commands must obey the same pattern of allocations and 
variable references. This severely reduces the possibilities 
for timing leaks based on cache behaviour. 

The only assumption on the interpretation of time in- 
herent in the definition of No, is that a time-expression se- 
quence ts must denote the same time regardless of the values 
bound to the free high-security variables in ts. This means 
that primitive operations must be performed in constant 
time, independent of the argument values of the operator, 
and that the length of an array cannot be secret. 

It might be worth pointing out that wr is only a partial 
bisimulation in that it is not reflexive. Insecure commands, 
like 1 := h, are not related to themselves, which is also the 
reason that wr is not a congruence. I’-bisimulation thus dif- 
fers from ordinary bisimulation by not being an equivalence 
relation, but rather a partial such: 

Lemma 1 (y- is a PER) 
The relation -r is a Partial Equivalence Relation, i.e. it is 
symmetric, transitive but not necessarily reflexive. 

Proof: -r is symmetric by definition, and transitivity is 
easy to show since =r is transitive. 

Due to the symmetry and transitivity of wr, if a command 
is I’-bisimular to anything, it is also I?-bisimular to itself, 
and hence r-secure. 

2.5 Example of a Secure Program 

Even though I?-bisimulation is a very strong security crite- 
rion, it does not rule out useful programs. If we informally 
extend the language with functions and strings, the padded 
version of the Volvo shares example, presented in Figure 2, 
is r-secure. Looping through the database does not leak 
since the length of the database is public. Branching on the 
(secret) value of isVolvoShare(share) is also secure since 
the two branches are I?-bisimular. Of course, the example 
is only r-secure provided that the two functions lookupVa1 
and isVolvoShare are both r-secure. 

Figure 6: The subtyping relation 

3 Typing Secure Programs 

In [VS97a], Volpano and Smith present a type-system in 
which well-typed programs are secure with respect to timing 
leaks to external observers. By a simple inductive reasoning, 
it can be shown that programs typed according to section 
5 of [VS97a] are also r-secure. Our critique to this type- 
system is that it is too restrictive to be of any practical 
use: it requires the condition of both while-loops and if- 
commands to be of lowest security. With this restriction, 
high data can only be copied around and passed to (total) 
primitive operators, which means that only programs that 
are essentially parametric in their high inputs are considered 
secure by the type-system. Our observation to relax this 
restrictiveness is the following: 

A secure program may safely branch on high data 
as long as the external observer cannot determine 
which branch was taken. 

Our type-system closes timing and termination channels 
in well-typed programs by requiring looping conditions to be 
of low security and branches of high if-commands to have the 
same externally observable behaviour. 

3.1 The Type System 

We use the following language of types: 

Security levels s ::= L 1 H (with L < H and s 5 s) 
Base types 7 ::= Int 1 Boo1 
Security types T::= ~~~AA~{(x~:T~,...,x~:~~} 

Security types, ranged over by r, are base types annotated 
with a security level, array-, or record types. The compo- 
nents of records can all have different security types and 
thereby security levels. The type for arrays contains the 
type for the elements in the array, but there is no security 
level for the length of the array, since this must always be 
low. Allowing high values to specify the length of an array 
will open up for timing leakages of the same kind as loops on 
high data, since the array is initialised upon creation. Also, 
array update and indexing are non-total operations, so we 
cannot allow high-security values to be used in specifying 
the index in these operations. This problem, and our treat- 
ment of it, is analogotis to that with the division operator 
in [VS97a]. In Figure 6, we extend the ordering on security 
levels to a subtyping relation. 

The typing of expressions calculate an upper bound on 
the security levels of the variables in the expression. This 
typing has no time component since expressions evaluate 
atomically and are side-effect free in our semantics. Typ- 
ing rules for expressions, initialisers and left-expressions are 
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(LitInt) 
r t-4 n : Int, 

(LitBool) 
I-(x) 4 7- I- b< ei : Int, I? k< es : Int, 

r ta (true, false} : Bool, 
WarI rkax :T 

(Op-Arithm) 
r Ed ei{+, -, *}es : Int, 

r t* e1 
(Ix) 

:Ar I’E< es :IntL rta e : { . . . . x:7 ,... } 
(Se’) (OP-CmP) 

r ks er : Int, r bs es : Int, 

r t, el[e2] : T PI-, f2.x :T IT ta el{=, <=, <}ez : Bool, 

It-< e : Int, r k< ie : T 
(MkA) - 

- 
(MkRec) r ta 

r ks iel : 71 . . . r k< ie, : T, - 
I ka mkarray(e) ie : AT 

( 
Xi = iel, . . . , xn = ie,} : {xl : 71,. . . ,xn : TV} 

Figure 7: Typing rules for expressions, initialisers and left-expressions. (4 ranges over = and 5) 

(Assign”) 

(Assign,) 

rt< e :7, l?t=Ze :ra S<H - (SkipAsn) 
I’l-le:=e:skipAsnlee 

rt-< e :Ti r ä = le : Ti 
rtle:=e:le:=e 

(SkipIf) 

l?tC:CL l?tD:D,. 
(Let ) 

r t C; D : CL; D, 

l? t-< e : BoolH rtc:c, rtD :DL - 
l? t if (e> C else D : skipIf e C, 

CL Nr DL (While) 

r I-< e : Bool, rtczcL rtD :DL - 

r t if (e) C else D : if (e) C, else DL 
(Output) 

Figure 8: Typing rules for commands 

l? k skipAsn le e : skipAsn le e 

rt-c :c, 
I’ E skipIf e C : skipIf e C, 

rtI ie :r r,x:Ttc :cL 
l?t-letx:=ieinC :letx:=ieinC 

r kc e : Bool, r l- C : C, 

l? t while (e> C : while (e) CL 

ryx) = Int, 

r t output x : output x 

given in Figure 7. These rules are parameterised on whether 
sub typing is allowed for variables or not, using a to range 
over = and 5. The Assign rules in Figure 8 use the param- 
eterisation to prevent sub typing from being used in typing 
left-expressions. Apart from using a richer type language, 
our way of typing expressions is essentially identical to that 
of Volpano and Smith [VS97b]. 

Typing environments, mapping variables to security 
types, are ranged over by r and we write l?, x : r for the 
environment that maps x to r and otherwise behaves like I. 
We write l?(x) = r if x is mapped to T by l?, and I’(x) 5 r 
if there exists some T’ such that I’(x) = r’ and r’ 5 T. We 
write I’(Zv) = r as a shorter notation for l? l-= Iv : r and we 
define &m(r) as {Iv)Zlr.I’(Zv) = r}. 

Typing rules for commands are given in Figure 8. The 
typing judgements are of the form: 

rkc :c, 

The “type” of a command C is its low-slice, C,. The low- 
slice is syntactically identical to C but only contains assign- 
ments to low security left-values. All assignments to high 
security left-values and branching on high security data are 
replaced with the appropriate skips. For example, with the 
environment r = {h : Int,, 1 : IntL}, we can derive: 

I + (h := h+l; 1 := 1+4) : (skipAsn h (h+l); 1 := 1*4) 

AS stated in Lemma 2, the low-slice has the same observable 

behaviour as the original command with respect to low left- 
values. Note that although there are similarities, the low- 
slice is not a program slice in the conventional sense (see e.g. 
[RT96]). The low-slice and the type-systems construction of 
it has more in common with the extraction of static program 
parts as described by Mogensen in [Mog89]. 

The typing rules are all rather straightforward. Di- 
rect leakage is prevented by the AssignL-rule. By forcing 
the looping condition to be of low security, the While-rule 
prevents leakage through nontermination and also blocks a 
simple kind of timing leaks. The most interesting rule is 
If,, which stops both indirect- and timing leaks. It allows 
branching on high data provided that the branches have I’- 
bisimular low-slices and thus have the same externally ob- 
servable behaviour. The low slice is skipif e CL but could 
just as well have been skipIf e DL or if (e) C, else D, 
instead, since they are all I?-bisimular. By using skipIf eC, 
instead of if (e> C, else DL in the transformation described 
in Section 4, we avoid getting an exponential blow-up in code 
size. 

3.2 Usefulness in Practice 

Our system guarantees that well-typed programs do not leak 
information to an external observer even through timing be- 
haviour. Unlike the system described in [VS97a], ours is not 
too restrictive to be used in practice since we do not disallow 
well-typed programs to compute with, and branch on secret 
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data. For exampie, the program in Figure 2 is well-typed in 
our system but not in [VS97a]. 

The side condition C, or D,, in the If,-rule makes the 
type system undecidable since or is undecidable. This does 
not prevent sound but incomplete and conservative type 
checking algorithms to be made though. Given an O(n) 
method of computing CL or DL, type checking will not be 
harder than normal [VS97b]. 

It can be argued that no programmers write programs 
where all if-commands branching on high data have l?- 
bisimular branches. As much as this is true, it is also nec- 
essary to produce such programs if we want to avoid timing 
leaks. To reduce the burden for the programmer, the next 
section presents a transformation that removes timing leaks 
by making branches of high if-commands r-bisimular. 

3.3 Soundness of the Type System 

The type system described in Figure 8 is sound with respect 
to l?-bisimulation. The soundness theorem is a corollary of 
the following lemma, stating that the low-slice of a command 
has the same observable behaviour as the command itself. 

Lemma 2 (Typing and r-bisimulation) 
If P t C : CL then C or C, 

A detailed proof of this lemma is given in Appendix A. 

Theorem 1 (Well-typed programs are secure) 

If r t- C : CL then C is P-secure. 

Proof: Follows from Lemma 2 and the symmetry and tran- 
sitivity of or according to Lemma 1. 

4 Transforming out Timing Leaks 

Paying with performance, we can transform out the tim- 
ing leakages of programs by padding the branches of high 
if-commands with dummy instructions so that they get 
the same timing and otherwise externally observable be- 
haviour. In Figure 9 we give an inductively defined algo- 
rithm that transforms out timing leakages. The algorithm 
subsumes the type-system and works by recursively perform- 
ing a crosswise padding of each branch of a high if-commands 
with the low-slice of the other branch. Thereby producing 
a program where the low-slices of the branches of high if- 
commands are l?-bisimular. Transformation judgements are 
of the form: 

T‘tC ct DID, 

In a given type environment, the command C is transformed 
to an almost semantically equivalent P-secure command, D, 
and to the low-slice, DL, of this command. The commands 
D and C are semantically equivalent in the sense that they 
will perform the same sequence of outputs and assignments 
to global variables given identical environments to start the 
evaluation in. They differ in that D might need more eval- 
uation steps than C to do a particular assignment. Also, D 
might go into a nonterminating, non-productive loop even 
if C does not. We argue that this is acceptable since the 
extra nontermination in D will be due to potential informa- 
tion leaks by nontermination in C. We state the semantic 
soundness of the transformation formally in Theorem 3. 

The crosswise padding with low-slices is done in the 
If,-rule. The function ge(C), inductively defined in Fig- 
ure 10, is used to ensure that the low-slices of the trans- 
formed branches are free from outputs and assignments to 
other than variables local to the branches. Thus, the low- 
slices used for padding will add only time, not observable 
actions, to the computation - a requirement which is essen- 
tial to the semantic soundness of the transformation. The 
premises ge(D1 L) = 0 and ge(DzL) = 0 essentially requires 
both branches to be without output actions and assignments 
to low security variables bound outside the branches. This 
requirement stops programs with indirect leaks and is but 
a variant of that made in [VS97b], where only assignments 
to high variables are allowed in the branches of a high if- 
command. Since assignments to low variables locally let- 
bound in the branches is not restricted, they may contain 
arbitrary loop-structures (which then also will be present in 
the low-slices of the branches). The extra nontermination 
that may be introduced by the transformation is due to non- 
terminating loops in one branch being copied over into the 
other. 

4.1 The Cost in Performance and Code Size 

Performing a crosswise copying of the low-slices is a simple 
but not very refined way of making the branches I’-bisimular. 
Ideally, we would like to pad each branch with the differ- 
ence to the maximum execution time, rather than taking 
the sum of the execution times of the two branches. Com- 
puting the difference is undecidable in general but a more 
refined method of padding than cross copying can certainly 
be defined. 

To try to give some kind of formal argument about the 
slow-down of the transformed program relative the original 
one is pointless. The best we can say is that the trans- 
formed program can take arbitrarily longer time to execute, 
since even code that was semantically dead in the original 
program may be executed in the transformed one. For a 
tree-structure of nested high if-commands, the original pro- 
gram would execute only one path in the tree whereas the 
transformed program will execute all paths. As discussed in 
the previous section, this can lead to nontermination of the 
transformed program. 

One can easily be mislead to think3 that a combination 
of nested high if-commands and the cross copying made in 
the If, rule of the transformation would lead to exponential 
blow-up in code size. However, the worst case blow-up in 
code size from cross copying is actually only by a factor 
linear in the nesting depth of high if-commands. What saves 
us from exponential blow-up in code size is that the skipIf 
introduced as low-slice of a transformed high if has roughly 
half the size of a corresponding if-command with I’-bisimular 
branches. To reason formally about the code size blow-up, 
we begin by defining a simple measurement of code size. 

Definition 3 (Code size) 
Define #C as: 

#(if (e) C else D) = 1 f zy l :T 
#(C; D) = #C + #D uie e 

,#if”l;ei;; 

#(skipIf e c) = I+ “c #(letx:=ieinC)=l+#C 
#(skipAsn le e) = 1 #(output x ) = 1 

3As the author was in an earlier draft 
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(Assign,) 
l? I-< e : ?, l? t= le : TH s 5 u - 

rkle:=e c) le:=eIskipAsnlee 

(Assign,) 
l? t< e : TL r t-= le : rL - 

rtle:=e V le:=elEe:=e 

(Seq) 

(x4 

(SkipAsn) 

(SkipIf) 

(Let) 

(While) 

(Output) 

r t-< e : Bool, - r k cl it D1 1 DIL rt- C2 v DZ 10~~ ge(DIL) = 0 ge(DzL) = 8 

r k if (e) Cl else C’S v if (e> DI ; D2 L else DI L; DZ I skipIf e (01 L; D2 L) 

r I---< e : Bool, - l? t Cl v D1 I D1 L r k C2 v D2 I D2L 

r I- if (e) (2’1 else C2 L) if (e) DI else D2 1 if (e> DI L else D2L 

I? + skipAsn le e c) skipAsn le e I skipAsn le e 

I’tC v DIDL 

I? k skipIf eC v skipIf e D I skipIf e D, 

rtsie:r r,x:TtC v DIDL 

I’Eletx:=ieinC L) letx:=ieinDIletx:=ieinDL 

I’ t< e : Bool, - I’tC L) D(DL 

I? k while (e) C L) while(e) D ] while (e> DL 

rt< x :IntL - 

r t output x it output x I output x 

Figure 9: An algorithm for transforming out timing leakages 

is+) = 1x1 

ge(le) = c 

ge(1e.x) = (T 

ge(le) = m 

ge(le[e]) = c 

ge(Ze) = u 

ge(le := e) = u 

ge(Cl>= UI ge(C2) = u2 

ge(Cl;C2)= UI U 02 

se(G) = 01 ge(C2) = n2 ge(C) = u 

ge(if (e) Cl else C2) = ul U u2 ge(letx:=ieinC)=a\{x} 

ge(C) = u 

ge(uhile (e> C) = u ge(skipAsn le e) = 8 

ge(C) = u 

ge(skipIf e C) = 0 ge(output x ) = (0) 

Figure 10: ge(C) - the global effects of C - free assigned variables and indication of output actions. 
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Our first observation is that the low slice computed by the 
transformation will always have the same size as the original 
command. 

Lemma 3 (Size of corn 
47- 

uted low-slice) 
If!?!--C L) DID,, then C-#D,. 

Proof: Simple by induction on the height of the transfor- 
mation derivation. 

We will write ndr(C) for the maximal nesting depth of high 
(according to I’) if-commands in C. 

Theorem 2 (Code size blow-up wrt. nesting depth) 
If l? l- C L) D 1 D, and ndr(C) 2 n then #D 5 (n+ l)#C. 

Proof: By induction on the height of the transformation 
derivation. Cases Assign,,, Assign,,, SkipAsn and Output 
are all trivial. Cases Seq, Ifr., SkipIf, Let and While all 
follow immediately from the induction hypothesis and some 
simple arithmetic. In case If, we have that C is of the form 
if(e) Cl else Cz and D = if (e) DI; DzL else DIL; Dz 
whereI’ECr 9 Dr/Dr,andI’tCa C) DzIDz,,. Fromthe 
assumption that ndr(C) 5 n we know that ndr(Cr) 5 n - 1 
and ndy(&) 5 n - 1. Now from Definition 3 we have 

#D=l+#D~+#D2L+#D1L+#D2 

5 l+#Dl L + #DzL + n#Cl + n#Ca (by ind. hyp.) 

5 l+#Cl + #C2 + n(#Cl +#C2) (by Lemma 3) 

I (n+l)#C (by Definition 3) 

In the worst case scenario, the high if-commands in a 
command C are nested to a depth which is linear in the size 
of C. Such nesting occurs for example in a multiple choice 
implemented by nesting if-commands in the else-branch and 
the transformation will in that case blow up C to a command 
with size in the order of O(#C2). To avoid such quadratic 
blow-up, deeply nested if-commands can often be flattened. 
Consider the following program: 

if (el) Cl 
else if (es) C2 
. . . 

else C, 

Transforming this program will give a quadratic blow-up 
in code size, given that all Ci’s are relatively small. By 
introducing a fresh high security variable x we can flatten 
the program as follows: 

let x := true 
in if (el&&x) (Cl;x := false); 

if (ez &&x1 (C2;x := false); 
. . . 
if (x1 C,; 

The size of this program is linear in the size of the original 
one and the transformation will only blow it up to roughly 
the double of its size. The amount of computation made in 
the transformed versions of these two programs is essentially 
the same. In both cases, one transformed Ci and the low- 
slices of all transformed Cj, where i # j, will be executed. 

4.2 Semantic Soundness of the Transformation Algorithm 

To reason about the semantic soundness of the transforma- 
tion algorithm, we abstract from the evaluation time. We 
first introduce a multiple step evaluation --D. 

Definition 4 (Multiple step evaluation) 
We define --D inductively as: 

(E/C) % E’ (E IC) 4 (E’ ID) 
ts..f 

(EIC) + E’ (E IC) z (E’ ID) 

(E IC) + (E’ ID) (E’ ID) OS:” E” 

lEIC) -$*J E,, 

(E IC) -% (E’ IC’) (E’ IC’) 5 (E” IC”) 

(E IC) ““2’ (E” IC”) 

To reason about observable evaluation steps we define 
I=& to be a multiple step evaluation with exactly one output 
action, namely 0. 

Definition 5 (Observable evaluation) 
Define m as: 

(E IC) 6 (E’ ID) iff 3ts. (E IC) “2 (E’ ID) 

(E IC) 6 E’ iff 3s. (E/C) ““-9 E’ 

Definition 6 (Weak simulation) 
Define E as the largest relation that satisfies 

C E D if VE. 

(E IC) 6% (E’ IC’) + (E ID) I& (E’ ID’) A C’ 5 D’ 

(E IC) & E’ *(E(D) 6 E’ 

It is easy to show that & is reflexive, transitive and that it 
is preserved by contexts (i.e. that it is a precongruence). 

Our statement of semantic soundness of the transforma- 
tion is that the transformed program, D, will be simulated 
by the original program: D C C. The transformation is 
not complete so C L D does not hold in general due to 
the extra nontermination that might be introduced into D. 
Completeness could be achieved if the transformation was 
assisted by some kind of termination analysis, so that the 
algorithm would fail rather than introduce extra nontermi- 
nation. In Section 4.4, we prove the transformation complete 
for a certain class of programs. 

To prove semantic soundness, we need a few lemmas ex- 
pressing that only time can be observed from computations 
that do not perform any outputs or assignments to global 
variables. 

Lemma 4 (Assigned variables) 
Write E \ o for E with all bindings of variables in o re- 

moved. If ge(C) = (T, l e CT and either (E (C) 2 (E’ ID) or 

(E IC) ‘2 E’, thenE\o=E’\aand%.as=ts. 

Proof: The proof is simple by induction on the height on 
the derivation of ge( C) = cr. 

49 



Lemma 5 
As a corollary to Lemma 4 we have that: 

If ge(C) i 0 and either (E ]C) 2 (E’ ID) or (E IC) “2 E’, 
then E = E’ and 3%. as = ts 

Lemma 6 (Dummy computation) 
Ifge(C)=0thenD;CCDandC;DgD. 

Proof: Follows from Lemma 5. We use the same technique 
as in the proof of Lemma 2 to show that {(D; C, D)) C E 
and {(C; D, D)} G _C. 

Theorem 3 (Transformation & semantic soundness) 

If l? l- C L) D ] DL then D 5 C. 

Proof: We use induction on the height of the transformation 
derivation. The cases Assign,, Assign,, SkipAsn, SkipIf and 
Output are all immediate from the reflexivity of C. Cases 
Seq, If,., Let and While follow from use of the induction 
hypothesis and the precongruence property of E. 

In the case of If, we know that C is of the form 
if (e) Ci else CZ and D = if (e) DI; DzL else DIL; Dz. 
WealsohavethatI’l-Ci LS Di]Di,,I’l-CZ L) DzIDz~, 
ge(DIL) = 0 and ge(Dz,) = 8. By induction, Di & Cl 
and Dz C C2. So by transitivity and Lemma 6 we have 
DL; Dar. C Cr and DIL; D2 & Cs. Now the precongruence 
property gives us our goal: D & C. 

4.3 Correctness of the Transformation Algorithm 

The transformation algorithm is correct in the sense that 
transformed programs are secure. To prove this we need the 
idempotence property of the type system. 

Lemma 7 (Low-slice idempotence) 
If I’ t C : C, then l? t C, : C, 

Proof: Trivial by induction on the height of the typing 
derivation. 

Lemma 8 (Transformation and well-typing) 
IfI’bC LS D]D,thenI’l-D :DL. 

Proof: A simple inductive reasoning on the depth of the 
transformation derivation proves this statement. Virtually 
all cases in the proof are immediate from use of the induc- 
tion hypothesis and the typing rule corresponding to the 
transformation rule used. 

The only case where some more elaborate reasoning has 
to be made is for the If, rule. We then have: 

r kc e : 3001~ ge(DIL) = 0 ge(DzL) = 0 

rtcl c) D1jDIL rkcCz L) DZIDSL 

r Fif (e) Cl else C2 L) 
if (e) DI; DzL else DIL; DZ 1 skipIf e (DIL; DzL) 

Using the induction hypothesis we get l? t D1 : DiL and 
I t- DZ : DzL. From Lemma 7 and typing rule Seq we get 
r t D1; DaL : DIL; DaL and r t DIL; DZ : DIL; D2L. By 
Lemma 2 and the symmetry and transitivity of-r according 
to Lemma 1, we thus have D1 L; DzL wr D1 L; DzL. We can 
then use typing rule If, to get our goal. 

Theorem 4 (Transformation gives secure programs) 

If P t C L) D ] DL then D is r-secure. 

Proof: Follows from Theorem 1 and Lemma 8. 

4.4 Completeness w.r.t. Volpano and Smith’s system 

In section 2 of [VS97a], Volpano and Smith present a type- 
system in which well typed programs are noninterfering, free 
of nontermination leakages but may contain timing leaks. 
Our transformation is complete with respect to this type- 
system in the sense that well typed programs can be trans- 
formed without inserting any nontermination: 

If C is well-typed according to /VS97a], the trans- 
formation will succeed and yield a semantically 
equivalent prqgram D that is free of timing leaks. 

To state this formally we first define the notion of se- 
mantic equivalence we will use. 

Definition 7 (Weak bisimulation) 
CNDiffCCDandDLC. 

Typing environments in [VS97a] are split into two com- 
ponents, X;y, mapping locations and identifiers to security 
levels. We will not distinguish locations and identifiers, and 
refer to both as variables. 

The language used by Volpano and Smith differs from 
ours in that integers are the only values used and that ob- 
servable actions are modelled by assignments to global vari- 
ables of low security. Moreover, our language has no con- 
struct corresponding to the try command that guard uses of 
the division operator. Let P range over programs in [VS97a] 
not containing try commands. Define T(P) to be the trans- 
lation to our syntax that takes each if- and while condi- 
tion, e, to e! =O and each assignment to a global low variable, 
x := e, to the sequence x := e; output x . 

Theorem 5 
If X; y l- P : s cmd in the system of [VS97a], C = 
T(P) and I? = {x : Int,]X(x) = s V-y(x) = s}, then 
r l- C L) D ] DL and C - D. 

Proof: It suffices to show I? I- C L) D ] DL and C 5 D. 
The well typedness of P ensures that all while loops have a 
condition of lowest security and that no loops exists in the 
branches of if-commands with a high condition. We thus 
use induction on the height of the typing derivation. 

4.5 Example: RSA encryption 

RSA encryption is based on computing A = M” mod n, 
where M is the clear text message and e is the encryption 
key. To decrypt, M = Ad mod n is computed where d 
is the decryption key. To efficiently compute Xf, mod n, 
the modular exponentiation algorithm can be used, but as 
shown by Kocher [KocQG], a careless implementation will 
leak k through timing. In Figure 11, we give an example 
of such an implementation. We represent k as a w elements 
long array of secret booleans, with the most significant bit of 
k at k[O]. The program shown is not r-secure since the two 
branches of the if have different timing behaviours, neither 
is the program type correct in our system. The transforma- 
tion algorithm presented in Figure 9 will close these timing 
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s := 1; 
i := O- 
while ii C w> { 

if (kCil> 
r := (s*x) mod n 

else 
r := s; 

s := r*r; 
i := i+l 

> (The result is now in r) 

Figure 11: An implementation of the modular exponentia- 
tion algorithm that leaks through timing. 

s := I; 
i := 0; 
while (i < w) { 

if (k[i]) 
r := (s*x) mod n; 
skipAsn r s 

else { 
skipAsn r (&*x1 mod n) ; 
r := s 

1; 
s := r*r; 
i := i+l 

1 

Figure 12: The output of our transformation: a secure im- 
plementation of the modular exponentiation algorithm. 

leaks by transforming the program into the one given in 
Figure 12. The security of this, padded program relies on 
constant time execution of the operators * and mod. Since 
r, s and x are bignums in a realistic example, multiplication 
and modulo will be implemented by subroutines. To get 
secure implementations of these, the transformation can be 
used again. 

5 Conclusions and Future Work 

We have presented a simple and realistic solution to remov- 
ing timing leaks to external observers, by using a combi- 
nation of typing and transformation. Our solution is for- 
malised and proved correct. It improves over previous work 
in that it relaxes the requirement that branching conditions 
must be of lowest, security, thereby allowing a much larger 
class of programs to be typed. 

By parameterising over the interpretation of time, our 
system becomes very precise. Even some timing leaks im- 
plemented by varying data-cache behaviour are detected and 
deemed insecure by our security criterion and type system. 
A key assumption built into our system is that primitive 
operators execute in constant time, regardless of the values 
given as arguments. 

A minor oversimplification in our semantics is that it 
neglects the unconditional jumps made in the machine code 
that a compiler produces for if- and while-commands. The 

code generated for the command if (e) Cl else C2; D will 
typically have the following form: 

I4 Code for conditional expression 
brt Li Branch to Ll if the condition was true 

Ka Code for else-branch 
jmp ~2 Unconditional jump to ~2 

;:; [$I 
Code for then-branch 
Code for the rest of the program 

Thus, even if Cl and C2 execute with the same timing 
behaviour, the value of e can probably be leaked given that 
the time for executing jmp L2 can be noticed. Although per- 
forming an unconditional jump often does not take any time 
at all for modern, heavily pipelined processors, the jump 
would certainly be noticeable for an interpreted language 
like Java byte-code. The simplest way to close this possibil- 
ity to leak secret information is to generate a (redundant) 
jmp L2 instruction also after the code for Cl. 

As every semantic model abstracts from the real world, 
so does ours. This means that in an implementation of our 
system, there will always be well-typed programs that leak 
information by utilising some aspect of reality not covered 
by the semantic model. One weakness of our system is that 
the semantics has no concept of program counter or where 
in memory a piece of code is physically stored. It is thus im- 
possible for the security condition to tell whether two syn- 
tactically identical pieces of code originate from the same 
location in memory. This sadly opens up for timing leaks 
implemented by utilising the behaviour of the instruction 
cache. If and how such leaks can be closed without com- 
pletely turning off the cache remains to be investigated. 
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A Proof of Lemma 2 

To prove Lemma 2 we will need the following small addi- 
tional lemmas. 

Lemma 9 (High left-expressions) 
Ifr~=le:5H,E1=rEzandE1tleuL12, 
then Ez t le qL Iv. 

Proof: By induction over the height of the evaluation 
derivation. Uses the fact that only expressions of type Int, 
may be used for indexing. 

Lemma 10 (Well-typed expressions) 
Ifrt~ie:7,E1~ieUwandEl=rEZ, 
then r F< v : r, Es F ie #- V’ and r I-< w’ : 7, - - 
Proof: By induction over the height of the evaluation 
derivation. 

Lemma 2 (Typing and l?-bisimulation) 

If r t C : CL then C wr CL 

Proof: We prove this lemma by induction on the height 
of the typing derivation and by cases on its structure. In 
each case we provide a set X, such that (C, C,) E X. To 
prove X C_ wr and thereby C wr CL, we use the standard 
technique of proving that X c Fr(X U or), where Fr is 
the dense bisimulation operator that has wr as its Iargest 
fix-point (see e.g. [Gor94]). Fr is defined according to: 

Fr(X) = {(C,,Cz) ] (EI ICI) % E; =+ 

(Ez IC,) -% E; A E; =r E;} U 

{(G,Cz) 1 (E2 IC2) % E; =+ 

(EL IC,) = E; A E; =r E;} U 

{(Cl,Cz> I (El ICI) - (E; IDI) * 

P2 IC2) - (E; lD2) A 

E’,=rEb A (Dl,D2)EX}U 

{(G,C2) I (E2 IC2) -3 (E; I&) =+ 
(El ICI) -% (G p1> A 

Ei =r E; A (01, D2) E X} 

The proof is now by induction on the height of the typing 
derivation, with a case analysis on the outermost typing rule 
used. 

AssignL: C is of the form le := e and C, = C. Choose 
x = {(C, CL)}. 

AssignH: C is of the form le := e and CL = skipAsn le e. 
We also have that I’ F< e : Fs and r F= le : 7;H, where 
s < H. Given EI and E2 such that El =r E2, we 
assume 

From semantic rule Assign we then have that El k e 4 
1, El t le UL Iv, Iv E dom(El) and E~[lv = 21. The 
definition of =r gives us Iv E dom(E2). By Lemma 9 we 
get E2 I- le J,lL Iv. From Lemma 10 we get E2 t e 4 l’, 
and semantic rule SkipAsn gives us 

(E2 lskipdsn le e) te’t”‘taa”.J) E2 

Since Iv is a high left-value w.r.t. l?, we have that El =r 
Ea. Thus it is enough to choose X = {(C, C,)}. 

Seq: C is of the form Ci;C2 and C, = Di; Dz, where 
l? t- Ci : D1 and r + Cz : D2. By induction, Cr -r D1 
and CZ ~~ Dz. We can thus take: 

X={(C'I;C~,&;D~)(C'~ Nr Dl,C2 -~rDz} 

IfL: C is of the form if (e) Cr else CZ and C, = 
if (e) D1 else D2, where F I-< e : Bool,, l? l- Ci : D1 
and l? t C2 : Dz. By indu&on we have Cr -r D1 
and CZ -r DZ Since the same branch will be taken 
by both C and C, given that El =r E2. We can thus 
choose X = {(G, C,,)} 

If”: C is of the form if (e) Cr else C2 and C, = 
skipIf e D1, where l? Fs e : Boo&,, l? I- Ci : D1, 
l? F C’s : D2 and D1 wr D2. Given El and E2, 

El =r ES, we assume (Eq [CL) * (Eg IDI). We 
then have E2 t- e Jj 1 where 1 E {true,false} and 
from Lemma 10 that El I- e .lJ Z’, where also 1’ E 
{true,false}. By semantic rule If we now have two 
cases: 

If (EIIC) % (El ICI) we can choose X = 
{(C, C,)} since we have Ci N,- DI by induction. 

If (El(C) le.tbr, (E1 (CZ) we can also choose X = 
{(C, CL)} since since we have C2 wr D2 by in- 
duction, and C’s wr D1 from Lemma 1. 

Thus, we take X = {(C, CL)}. 

SkipAsn: C is of the form skipAsn le e and C, = C. 
Choose X = {(C,Cr)}. 

S kipIf: C is of the form skipIf eD and CL = skipIf eD, 
where r + D : DL. By induction we have D Nr D, and 
thus we can choose X = {(C, C,)}. 

Let: C is of the form let x := ie in D and CL = 
let x := ie in D,, where F F< ie : r and I?, x : - 
r t D : DL. Assuming El =r E2 and (El IC) b 
(El Ilocal x := v in D), we have by Lemma 10 that 

(E:! IC,) b (E2 (local x := u’ in DL), where v’ 
differs from v only in the high parts according to 7. 
By induction, we have D -r,x:r DL, so we also have 
local x := v in D wr local x := v’ in D, and we can 
choose X = {(C, Cr.)). 

While: C is of the form while (e) D, and C, = 
while (e> D,, where l? t-5 e : Bool, and r F D : DL. 
By induction we have that D -r D,. With El and E2 
such that El =r E2, both C and c, will either termi- 
nate or continue to loop, since e only depends on low 
variables. We have two cases: 

If (El (C) te’tbr.J> Er then (E2 ICL) te’tbr’Jk E2. 

If (El (C) 2 (W (D;C) then (Ez IC,) * 
(E2 1% CL) 

Choosing X = {(C, C,)} U ((II; C, D,; CL)10 wr DL} 
we have that X c Fr(XU wr). 

output: C is of the form output x , and CL = C. We can 
choose X = {(C, C,), (skip, skip)), since I’(x) = IntL. 
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