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Abstract 

In modern Scheme, a macro captures the lexical environ- 
rnent where it is defined. This creates an opportunity for 
extending Scheme so that macros are first-class values. The 
key to achieving this goal, while preserving the ability to 
compile programs into reasonable code, is the addition of a 
type system. Many interesting things can be clone with first- 
class macros, including the construction of a useful module 
system in which modules are also first-class. 

Clams got legs! 
-B.C. 

1 Introduction 

A revolution in macro technology has taken place over the 
last 15 years in the Scheme community. Classical Lisp 
macros operate as pure source-to-source transformations on 
S-expressions [PitBO, SteSO], just as C’s macros operate on 
tokens, or other macro systems operate on characters. Such 
macros have no understanding of the structure of the lan- 
guage they are generating, and in particular, they are blind 
to the scoping of variables. As a result, classical Lisp macros 
sometimes have bugs caused by inadvertent variable cap- 
tures. 

Modern Scheme macros [KFFD86, BR88, CR91, Cli91, 
DHB92, KCR98] have the ability to avoid capture problems 
by generating output that specifies the environment in which 
each variable is to be resolved. The programmer can easily 
write macros that behave properly with respect to the rules 
of lexical scoping. The details of this “namespace manage- 
ment” technology vary from implementation to implemen- 
tation, but always the idea is that a macro should somehow 
capture the environment where it is defined. 

This environment capture bears a resemblance to the 
way environments are captured in “closures” in order to im- 
plement first-class procedures. This is not surprising since 
in both cases the goal is to respect lexical scoping. It sug- 
gests that perhaps some closure-like mechanism might give 
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us first-class macros, in the same way that ordinary closures 
give us first-class procedures. 

This paper describes some extensions to Scheme which I 
have implemented that make macros into first-class values. 
In this system, macros can be passed to procedures as ar- 
guments, returned as values, and stored in data structures. 
And this is done without sacrificing the ability to compile 
into reasonable code. 

The key idea is that a macro, considered as a first-class 
value, has a kind of type. Programs without type errors are 
programs that can be reasonably compiled. 

Although this paper is not primarily about module sys- 
tems, the extensions presented here can be thought of as 
low-level primitives for constructing module systems. One 
of the sample applications presented below is a fully funtr- 
tional module system that supports first-class modules and 
separate compilation. 

Section 2 develops a small example that will serve a-s 
motivation for what follows. Section 3 describes the exten- 
sions to the Scheme language that support first-class macros. 
Section 4 explains the simple type systern used. Section 5 
presents two examples of what can be done in this systew 

a record structure package, and a module system. Section 6 
describes the prototype compiler. Section 7 presents an in- 
teresting unexpected natural feature of the system that, is 
of unknown utility. Section 8 presents some loose ends and 
conclusions. 

2 Motivation 

In the code that follows, I will write macros using the 
“explicit renaming” technology for namespace management 
[Cli9l]. I will also only do the renaming-s that are strictly 
necessary for expository purposes-I will not clutter macro 
definitions with renamings that guard against possible shatl- 
owings of standard keywords and procedures such as lambda 
and car. In practice, you’d do a lot more renaming, or you 
would use something like Scheme’s syntax-rules that does 
renaming for you automatically. 

Consider the following implernentation of the standard 
Scheme force and delay (“promises”) facility: 

(define delay 
(macro 

(lambda (form rename> 
’ (, (rename ‘make-promise) 

(lambda 0 ,Q(cdr form))>>>> 
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(define make-promise 
(lambda (thunk) 

thunk) > 

(define force 
(lambda (promise) 

(promise))) 

This implementation fails to meet the language specifica- 
tion [KCR98] b ecause it doesn’t cache the result of forcing 
a promise, but the programmer may know that the caching 
is wasted effort. She may prefer this implementation for 
certain applications. 

Imagine that we enclose this implementation in a mod- 
ule using some module system such as Waddell and Dybvig’s 
[WD99], and that the module exports force and delay, but 
keeps make-promise private. Recall that modern scheme 
macro namespace management technology will insure that 
the reference to make-promise inserted when a delay expres- 
sion is expanded will resolve to the make-promise defined in 
this module-that’s what the call to rename accomplishes. 

Further imagine that the following alternate implemen- 
‘tation of promises was placed in a second module: 

(define delay 
(macro 

(lambda (form rename) 
’ (, (rename ‘make-promise) 

(lambda 0 ,@(cdr form>>>>>> 

(define make-promise 
(lambda (thunk) 

(cons #F thunk)) ) 

(define force 
(lambda (promise) 

(if (car promise) 
(cdr promise) 
(let ((val ((cdr promise) >>> 

(if (car promise) 
(cdr promise) 
(begin (set-car! promise #T) 

(set-cdr! promise val) 
val)))>)> 

This implementation fully implements the language specifi- 
cation, at the expense of some additional 0verhead.l 

Although this definition of delay is identical to the defi- 
nition of delay in the first module, they differ in that the the 
reference to make-promise inserted by this version of delay 
will resolve to the make-promise defined in this module. 

The programmer may prefer either of these promise im- 
plementations for a given application. Using the module 
system, she has the option of opening and using the appro- 
priate one. 

But that isn’t the end of this software engineering story. 
The programmer uses promises a lot in her programs, and 
she often finds the following procedure for making lazy lists 
useful: 

‘The second (car promise) test is required by the standard. 

(define lazy-map 
(lambda (f 1) 

(if (null? 1) 
‘0 
(cons (f (car 1)) 

(delay 
(lazy-map f (cdr 1))))))) 

The version of delay being used here depends on which ver- 
sion of the promise module was opened in the environment 
where this definition appears. When the programmer wants 
to use lazy-map with the other implementation of promises 
she must repeat the definition of lazy-map in an environment 
were she opens up the other promise module. 

The programmer would rather not duplicate the code for 
lazy-map like this. Instead, she would like to put one copy 
of it in a module of useful promise utilities, and use it with 
both promise implementations. If delay were a procedure, 
instead of being a macro, she could accomplish this by giving 
lazy-map an additional parameter: 

(define lazy-map 
(lambda (delay f 1) 

(if (null? 1) 
’ 0 
(cons (f (car 1)) 

(delay 
(lazy-map delay f (cdr 1))))) 

Then when she called lazy-map, she would pass it the ver- 
sion of delay from the implementation of promises t,hat she 
wanted to use. But unfortunately macros are not first-class 
values, they cannot be passed as arguments to procedures, 
and so this solution will not work in Scheme. 

The rest of this paper describes an extension to Scheme 
that will let the above solution work almost exactly as writ,- 
ten above. Macros will become first-class values that calz be 
passed as arguments, returned as values, and stored in data 
structures. And we will be able to do this u~it~~~ut sacrificing 
the ability to compile Scheme into efficient code. 

The reason we might worry about compilation, is that a 
naive interpretation of what it means to pass a macro (or 
other keyword) as an argument naturally concludes that: 

(lazy-map quote list ‘(I 2)) 

should evaluate to: 

((1) lazy-map delay f (cdr 1)) 

That is, the delay-expression in the body of lazy-map 
should become a quote-expression if the keyword quote is 
passed as the value of the delay parameter. In effect, the 
body of lazy-map would become: 

(if (null? 1) 
’ 0 
(cons (f (car I>> 

(quote 
(lazy-map delay f (cdr 1))))) 

It is obviously quite difficult to generate reasonable com- 
piled code for lazy-map if the compiler must anticipate that 
delay (or any of the other parameters!) might be a macro 
with an arbitrary definition. 

But our imagined programmer doesn’t need such exces- 
sive generality. All she wants is to be able to switch between 
definitions of delay. And the two different versions of delay 
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will, in fact, expand into nearly identical code-the only dif- 
ference being the environmentwhere the (renamed) variable 
make-promise will be found. This should not be hard to 
compile. The programmer isn’t really interested in passing 
in arbitrary macros as the first argument to lazy-map, she 
only wants to be able to pass in macros that are (in some 
sense we need to make precise) of the correct type. 

Given an appropriate notion of the type of a macro, our 
programmer will be able to write: 

(define lazy-map 
(lambda (delay f 1) 

(declare (delay <delay>)) 
(if (null? 1) 

’ 0 
(cons (f (car 1)) 

(delay 
(lazy-map delay f (cdr 1))))))) 

Where (declare (delay <delay>)) is a type declaration 
that indicates that the variable delay is to have the type 
<delay>.’ In the next section we’ll see how to go about 
constructing a suitable <delay> type that describes exactly 
what the compiler needs to know in order to compile this 
code. 

3 The Extensions 

The scenario described in the previous section assumed the 
presence of a module system. We’re actually going to solve 
the more general problem of first-class macros defined in 
an arbitrary environment. In section 5.2, 1’11 show how to 
construct a module system on top of this more general foun- 
dation. 

3.1 Templates 

A template-expression describes everything a compiler 
would need to know about the environment where a macro 
(or a set of macros) is defined. For example: 

(define promise-template 
(template 

(delay (macro 
(lambda (form rename) 

’ (, (rename ‘make-promise) 
(lambda 0 ,@(cdr form))>>)) 

(make-promise (value <plain>)) 
(force (value <plain>) > > > 

defines promise-template to be a template that describes 
an environment where a macro named delay and two other 
values named make-promise and force are defined. The 
definition of the macro is given, as well as the types of the 
other two values. (The type <plain> contains all of the 
ordinary, dynamically typed, Scheme values.) 

This template doesn’t describe a complete environment, 
it describes just the scope that will immediately surround 
the definitions of those three names. In operational terms, 
it describes the top-most frame in an environment chain-it 

‘declare is not EL new special form, but is rather an extension to 
the syntax of lambda-expressions. This is s bit ugly, but all the alter- 

natives seem worse to me. I find the obvious alternative of placing 
the types in the list of bound variables to be very cluttered and hard 

to read. 

tells the compiler exactly what it needs to know in order to 
design a runtime representation for that frame. 

When a macro defined in a template expands, any iden- 
tifiers it renames (using the rename procedure it will be 
passed) will resolve in an environment constructed from 
the environment where the template-expression was writ- 
ten, extended with the names listed in the template itself. 
The runtime value of such a macro will just be an environ- 
ment frame of the form described by the template. 

A template is not itself an environment. An 
instantiate-expression (described below), must be used in 
order to actually make an instance of the template.” A 
template is a bit like the “interfaces” found in some mod- 
ule systems [Mac84, CR90, Ree93], but without any name 
hiding mechanisms. 

Having defined a template, now we can define the type 
that describes the different delay macros we might get from 
various different instantiations of the template: 

(define <delay> 
(type-of promise-template delay)) 

A type-of-expression obtains the type of any of t.he values 
described in a template. 

This two-step process to actually arrive at the type def- 
inition is necessary because a template might define several 
different macros at the same time, and we might need to 
obtain types for all of them. Alternatively, we could refrain 
from naming the type, and just directly write 

(declare 
(delay (type-of promise-template delay))) 

in our procedure definitions-but this gets tedious. 
The definitions of promise-template and <delay> are 

sufficient to allow the code at the end of the previous sec- 
tion to compile. Knowing that delay is of type <delay>, 

the compiler will be able to use the macro clefinition given 
in the template to expand the delay-expression into a call to 
some make-promise procedure. At runtime, when lazy-map 
is called, the value passed as its first argument will be au 
environment frame, and the appropriate make-promise pro- 
cedure will be found at a known location within that frame. 

3.2 Instantiation 

In order to make an instance of a template, we use 
instantiate. For example: 

(instantiate promise-template 
(set! make-promise 

(lambda (thunk) 
thunk) > 

(set! force 
(lambda (promise) 

(promise)) > 
. . . > 

instantiate is a binding form (like let) that extends the 
environment where the instantiate-expression was writ- 
ten by binding the variables named in the template (delay, 
make-promise and force in this case), and then executes 
its body. The value of the last expression in the bod,y is 

returned. At runtime the actual environment frame created 

3For the moment, don’t worry about whether a template is itself 
a first-class value-we’ll return to that issue. 

135 



by instantiate will use the representation specified by the 
given template. 

Variables that were specified using value in the template 
(make-promise and force in this case) are bound, and given 
their specified types, but are left unassigned. The notion 
of a bound-but-unassigned variable is not found in standard 
Scheme, so there is no precedent for how to specify an initial 
value for such a variable. I have chosen to simply use set ! , 
which is perfectly clear semantically, but which does give the 
code an unfortunate imperative flavor. A purely functional 
language would probably adopt some other solution. 

After the code in the body of an instantiate-expression 
has finished the job of initializing the template instance, it 
will ordinarily want to return some useful value. In the 
case of promise-template, we want it to return the force 
procedure, and the delay macro. (The ability to return the 
latter value being the point of this entire exercise!) We could 
get both these values out by using Scheme’s multiple values 
feature. A solution that will prove more useful to us in the 
long run, is to go back and add a second macro definition 
to the promise template as follows: 

(define promise-template 
(template 

. . . 
(self (macro 

(lambda (form rename) 
(rename (cadr form>)))))) 

This defines self as a macro such that (self foe) expands 
into f oo, where foo is to be resolved in the environment 
where self was defined. So (self force) will be the force 
procedure, and (self delay) will be the delay macro. So 
now we can return both those values by just returning the 
value of self: 

(define uncached-promises 
(instantiate promise-template 

(set ! make-promise . . .) 
(set! force . ..) 
self > 

Now (uncached-promises delay) macro expands into the 
delay macro that was created when the instantiate- 
expression was entered. When that delay macro is used, 
it will generate code that includes a reference to the vari- 
able make-promise from that same environment. So finally, 
our promise-loving programmer can write: 

(lazy-map (uncached-promises delay) 
expensive-operation 
huge-list) 

This trick of defining a macro like self is a useful tech- 
nique that we will employ several times in the following sec- 
tions. 

The way self works suggests an interesting way to think 
about first-class macros: First-class macros can be viewed 
as a limited form of first-class environments. True first- 
class environments would allow programmers to manipulate 
environments as first-class values, and to access arbitrary 
variables bound inside them. In contrast, first-class macros 
allow programmers to (in effect) manipulate environments 
as first-class values, but with a controlled form of access 
to the enclosed variables: access is only available via code 
generated by expanding the macro. A macro like self is 
willing to grant access to any variable in its environment at 
all, but other environments can be protected by less permis- 
sive guardians. 

4 About The Types 

Having introduced static types for macros into an otherwise 
dynamically typed language, I need to answer a few ques- 
tions about the nature of this type system. Where do new 
types come from and how does the compiler reason about 
them? 

In fact, this is an extremely simple type system (it is 
very 

. 

similar to the way types work in traditional (2): 

New base types are generated by macro definitions ap- 
pearing in template expressions. 

. The types of all procedure arguments must be explic- 
itly declared by the programmer. (Argurnents not men- 
tioned in a declare clause are always of type <plain>.) 

. A procedure has a type determined by the type of its 
return value and the types of its arguments4 

0 Type equality is determined by a simple recursive com- 
parison. Base types are only equal to themselves. Pro- 
cedure types are equal if their return values are ecIua1 
and corresponding arguments are equal. 

The compiler performs only type checking. No type infer- 
ence is needed. There are no polymorphic types. The only 
purpose of the type system is to ensure that: when an en- 
vironment frame serving as the representation of a macro 
is accessed by code generated by the expansion of a macro, 
the macro being represented at runtime is the same as the 
macro that was expanded at compile time. 

There is no fundamental reason why this macro type sys- 
tem needs to be static. The same safety could be achieved 
using dynamic typing. Type declarations would still be 
needed for macro valued procedure arguments. The runtime 
representation for a macro value would be an environment, 
frame, plus a tag that identifies the macro. The compiler 
would emit code to check the tags at runtime to make sure 
that a value used as an operator always had the type that. 
the programmer promised the compiler it woulcl have. 

There would be many advantages to using dynamic typ- 
ing. The main advantage would be that the built-in Scheiue 
primitives could manipulate macro values directly. For ex- 
ample, under static typing the arguments and return value 
of the built-in cons procedure are all of type <plain>, so a 
program that tries to use cons to build a list of values of 
type <delay> will fail to type check, making it impossible 
to build a list that contains a value of type <delay>. But 
if we use dynamic typing, we can pass any value at all to 
cons, because runtime type checks will ultimately prevent 
any macro values from being misused.’ 

Despite the advantages of dynamic typing (and despite 
the fact that I am normally an advocate of dynamically 
typed languages) my prototype implementation uses static 
types for macro values because: 

0 Simple static typing is easier to implement than tly- 
namic typing. The compiler checks the programmer’s 
type declarations at compile time and that’s the end 
of it. There is no need to design a tagging scheme or 
figure out where to insert type checks in compiled code. 

‘The type of lazy-map can be written: 

(procedure <plain> <delay> <plain> <plain>). 

"A polynlorphic type system would also partly address this short.- 
coming. 
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l If I had built a dynamically typed prototype, some 
readers might not have realized that this idea would 
be applicable in languages that were not dynamically 
typed. This way it should be clear that this idea is 
perfectly applicable in a statically typed language. 

l Traditionally, macro expansion leaves no residue be- 
hind in generated code. Thus the runtime type checks 
required for dynamic typing of macro values would vi- 
olate some people’s expectations of what it means for 
something to be a “macro.” 

5 Applications 

This section presents two illustrative examples of using first- 
class macros in practice. The first example, perhaps the 
more surprising of the two, demonstrates how first-class 
macros can be used to define a complete record structure 
package. The second example shows how templates and 
their instances can be used to implement interfaces and 
modules. 

5.1 Structures 

We’ve got types introduced by macro definitions and proce- 
dure types constructed from them. Will we also need to add 
tuple types in order to be able to store first-class macros in 
data structures? As we noted at the end of section 4, one 
way to avoid problems like this is to switch to dynamic typ- 
ing and then just use the existing Scheme list and vector 
types. But if a switch to dynamic typing isn’t an option 
(as would be the case if we were adding first-class macros to 
C), will it be necessary to add more machinery for defining 
record types that can hold first-class macro values? Fortu- 
nately not-we already have all the tools we need to define 
record types ourselves. 

Our goal is to be able to write structure definitions such 
23: 

(define-structure <kens> kons 
(car <delay>) 
(cdr <kens>)) 

Which declares a structure of type <kens>. A <kens> can 
be constructed by calling the kons procedure. It contains a 
car slot of type <delay> and a cdr slot of type <kens>. A 
chain of <kons>‘s could be used to build a list of values of 
type <delay>, should that prove necessary. . . 

Here is how we begin: 

(define define-structure 
(macro 

(lambda (form rename) 
(let ((type (list-ref form I)> 

(make (list-ref form 2)) 
(ids (map car 

(list-tail form 3))) 
(types (map cadr 

(list-tail form 3))) 
(template (rename ‘template)) 
(self (rename ‘self))) 

’ (begin 
(define , type 

(type-of ,template ,self>> 
,(def-struct-template template self 

type ids 
types) 

,(def-constructor template self 
type ids types 
make rename)>>))) 

This tears the define-structure-expression apart into its 
components; creates two new identifiers to be used internall,y 
to name a template (template) and to be a self macro de- 
fined within that template (self); and generates a cIef!inition 
for the given type variable. Two sub-procedures are called 
to generate the template definition (def-struct-template) 
and the constructor definition (def -constructor). 

(define (def -struct-template template self 
type ids 
types) 

’ (define ,template 
(template 

(,self (macro (struct-self ‘,type 
‘,ids))) 

,@(map (lambda (i t) 
‘(,i (value ,t>)> 

ids 
types)))) 

All def-struct-template does is use the given slot names 
and types to generate a template definition, with an addi- 
tional self macro constructed by struct-self: 

(define (struct-self name ids) 
(lambda (form rename) 

(if (memq (cadr form) ids) 
(rename (cadr form) ) 
(error “Unknoun slot” name form) )) ) 

A call to struct-self creates a macro transformer that 
functions like the self macro we defined in section 3.2, ex- 
cept it does some error checking to make sure it is only used 
to access the slots of the structure. 

Finally, def -constructor builds a definition for the con- 
structor procedure: 

(define (def-constructor template self 
type ids types 
make rename> 

(let ( (bvl (map rename ids))) 
’ (define ,make 

(lambda , bvl 
(declare (returns , type) 

,O(map (lambda (v t> 
‘(,v ,t)l 

bvl 
types)) 

(instantiate ,template 
,Q(map (lambda (i v) 

‘(set! ,i ,v>) 
ids 
bvl) 

,self))))) 
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It generates a list of variables for the arguments, a declara- 
tion for the type of the procedure, an instantiate form to 
make an instance of the template, a sequence of initializa- 
tions to the variables in the template instance, and finally 
returns the self macro. 

That’s all there is to it. Now we can create a new <kens>: 

(define x (kens a b)) 

examine its car: 

lx car) 

and even change its car: 

(set! (x car) new) 

The code generated when accessing and modifying a 
<kens> is about as good as you could ask for. We’ll take 
a look at it in section 6. 

There is no runtime type checking when using these 
structures-the typing is all statically checked at compile 
time. So there might be applications where a Scheme pro- 
grammer would use this define-structure facility to avoid 
the overhead of dynamic type checking. But the interest- 
ing thing about this example is not the obvious fact that a 
statically typed record facility can be more efficient than a 
dynamically typed one. The interesting thing is that first- 
class macros are sufficiently powerful to construct a complete 
record structure package. 

5.2 Modules 

As I remarked before, templates strongly resemble the inter- 
faces found in other module systems [Mac84, CR90, Ree93], 
but without any name hiding mechanism. In this section 
we will use templates and their instances to represent the 
interfaces and modules in a fully functional module system. 
Since this module system is constructed on top of first-class 
macros, our mod&es will be first-class as well. This module 
system also easily supports separate compilation. 

Continuing with our promises example, here is how we 
would like to define the promises interface: 

(define-interface promise-interface 
<promise-module> 
(force delay) 
((<delay> delay)) 

(delay (macro (lambda (form rename) 
‘ ( , (rename ‘make-promise) 

(lambda () 
,O(cdr form)>>>)) 

(make-promise (value <plain>) > 
(force (value <plain>)) ) 

This defines promise-interface to be the interface to mod- 
ules irnplementing promises. <promise-module> is defined 
to be the type of such modules. The list (force delay) 
specifies which names in a promise module are to be ex- 
ported. Next is a Iist of types to be defined-in this case 
<delay> is to be defined as the type of delay in a promise 
module. There then follows a list of variable specifications 
exactly as they would appear in a plain template-expression. 

After seeing this definition, the compiler will be able to 
compile any program that uses a promise module. For ex- 
ample, the definition of lazy-map. 

To instantiate a promise module, we will use a module- 
expression: 

(define uncached-promises 
(module promise-interface 

(set! make-promise 
(lambda (thunk) 

thunk)) 
(set! force 

(lambda (promise) 
(promise))))) 

Here promise-interface is the interface we’ are instantiat- 
ing, the body initializes the module, and the value returnecl 
is the module itself (a value of type <promise-module>). 

Finally, to import the exported definitions of a module 
into the current environment, we open it as follows: 

(open uncached-promises) 

So we have three things to define: define-interface, 
module and open. define-interface looks a lot like 
define-structure did: 

(define define-interface 
(macro 

(lambda (form rename) 
(let ((name (list-ref form 1)) 

(type (list-ref form 2)) 
(exported (list-ref form 3)) 
(typedefs (list-ref form 4)) 
(specs (list-tail form 5)) 
(template (rename ‘template) > 
(self (rename ‘self > > > 

’ (begin 
(define , type 

(type-of ,template ,self>) 
, Q (map 

(lambda (typedef) 
’ (define ,(car typedef) 

(type-of ,template 
,(cadr typeclef)))) 

typedef s) 
(define ,name 

(macro (interface-self ‘,template 
‘,self))) 

(define , template 
(template 

(,self (macro (module-self 
‘,exported))) 

,Ospecs>)))>>> 

It tears the define-interface-expression apart, generates 
new template and self identifiers, and creates a pile of def- 
initions. All but the last two definitions define type names 
requested by the user. The second-to-last definition defines 
the interface name to be a macro with a transformer built by 
interface-self-this macro represents the interface. The 
last definition defines the template, adding a definition for 
a self macro (by now a familiar cliche) whose transformer 
will be constructed by module-self-instances of this macro 
will represent modules. 

The only thing you can do with the instance itself is to 
use module to instantiate it, so here is its definition: 

(define module 
(macro 

(lambda (form rename) 
‘(,(cadr form) ,@(cddr form>>)>> 
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All this does is pass the buck to the interface macro, which 
was created by interface-self: 

(define (interface-self template self > 
(lambda (form rename) 

C (instantiate ,template 
,O(cdr form) 
,self))) 

This just plugs the body of the module-expression into an 
instantiate-expression and returns the self macro. 

The only thing you can do with a module is to use open 
to open it, so here is its definition: 

(define open 
(macro 

(lambda (form rename) 
‘(,(cadr form))>)) 

This just passes the buck to the module macro, which was 
created by module-self: 

(define (module-self exported) 
(lambda (form rename> 

‘(begin ,@(map (lambda (id) 
‘ (define-alias , id 

, (rename id) )> 
exported)))) 

This creates a bunch of aliases in the current environment 
for the variables exported from the module. (define-alias 
is borrowed from Waddell and Dybvig [WDSS] who use it 
for a similar purpose in their module system.) 

Note that if you’re not using first-class macros or first- 
class modules, you don’t need to use types anywhere in your 
program in order to use this module system. 

6 Implementation 

The prototype implementation works by compiling Scheme 
plus first-class macros into standard Scheme. At first this 
sounds like an easy task: just expand all the macros and 
you’re done. But additional code must be generated to ma- 
nipulate the extra environment frames needed to represent 
instantiated templates (and hence first-class macros them- 
selves), so the process is more than just a simple macro 
expansion. 

These extra frames are represented using Scheme vectors, 
while all the standard environment frames are left implicit 
in the generated Scheme code. This compilation technique 
has the advantage that the reader can easily find the code 
that was generated to support the first-class macros. 

I will demonstrate the compiler by walking through some 
examples based on the record structure code from sec- 
tion 5.1, and in particular, assuming the following structure 
definition: 

(define-structure <kens> kons 
(car <delay>) 
(cdr <kens>)) 

This define-structure expression will macro expand 
into the following three definitions, where template-l, 
self-a, car-3 and cdr-4 are the identifiers generated by 
the rename procedure when the macro wanted fresh identi- 
fiers: 

(define <kens> 
(type-of template-1 self-211 

(define template-l 
(template 

(self -2 (macro (struct-self 
‘<kens> 
‘(car cd.r)))) 

(car (value <delay>)) 
(cdr (value <kens>))>) 

(define kons 
(lambda (car-3 cdr-4) 

(declare (returns <kens>) 
(car-3 <delay>) 
(cdr-4 <kens>) 1 

(instantiate template-1 
(set! car car-31 
(set! cdr cdr-4) 
self-2111 

When the compiler processes the template expression for 
template-i, it must design an environment frame in which 
variables self-l, car and cdr are defined. 

self-2 will be defined as a macro-all the compiler 
knows about that macro is that any identifiers it renames 
will be looked up first in this frame, and if they aren’t found 
there, in the environment where the template expression 
occurred. You might expect that in order to implement this 
name lookup, such a frame would need to contain a pointer 
to the environment frame for the surrounding environment. 
But in fact this isn’t necessary. 

The reason for this is subtle: roughly, a top-level 
template expression, such as this one, isn’t itself a first- 
class value.” Therefore the macro types it creates are only 
available within the scope where this template is defineletl. So 
it is impossible to use those macros outside of that scope. 
And thus the variables in the environment surrounding the 
template expression can always be located somewhere np 
the chain of ordinary environment frames. 

You might also expect that the compiler would need to 
allocate a slot to contain the value of self-a. But the run- 
time representation of the self-2 macro will be the frame 
itself, so no such slot is needed. 

Thus the compiler designs a frame containing two slots 
for instances of template-l-the first slot will contain the 
value of the variable car and the second will contain the 
value of the variable cdr. 

We now consider the compilation of the clefinition of the 
constructor function kons. The only interesting issue is the 
compilation of the instantiate expression. The compiler 
allocates a frame of the appropriate size, and then arranges 
that inside the body of the instantiate expression, car and 
cdr will refer to the first and second slots of that frame, ant1 
that self-2 will refer to the frame itself. The generated 
code is: 

(define kons 
(lambda (car-3 cdr-4) 

(let ((instance-5 (make-vector 2)) ) 
(vector-set ! instance-5 0. car-31 
(vector-set! instance-5 1 cdr-4) 
instance-5)) 1 

“But see the next section. 
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Finally, consider the compilation of the definition: 

(define kar 
(lambda (x> 

(declare (x <kens>) 
(returns <delay>) 1 

(x car))) 

The interesting issue here is the compilation of (x car> in 
the presence of a declaration that x has type <delay>. The 
type declaration allows the compiler to locate the expander 
procedure (generated by struct-self ). The compiler calls 
this expander, passing it the expression (x car) and a spe- 
cially constructed rename procedure that knows that car 
and cdr should refer to the First and second slots of the 
frame that is the value of x, and that self-2 should refer to 
x itself. The result is: 

(define kar 
(lambda (x1 

(vector-ref x 0))) 

Following the same pattern, the code generated for 
lazy-map, as defined in sections 2 and 3, is: 

(define lazy-map 
(lambda (delay-env f 1) 

(if (null? 1) 
’ 0 
(cons (f (car 1)) 

( (vector-ref delay-env 0) 
(lambda (> 

(lazy-map delay-env 
f 
(cdr 1)))))))) 

Here the compiler has designed a frame for promise- 
template where the procedure make-promise is located in 
the first slot. 

The algorithm for compiling an expression is to first de- 
termine the type of its first sub-expression (the operator, 
its car). That type determines everything about how to 
compile the entire expression. In the case where the type 
is <plain> (the type of ordinary Scheme values), the ex- 
pression is compiled as a procedure call, where the rest of 
the sub-expressions are argument expressions. In the case 
where the type is a macro type, the expression is compiled 
as follows: 

(let ((env-17 compute-operator) ) 
result-of-e~pansio,n) 

Where compute-operator is the code generated when the op- 
erator expression was compiled, env-17 is a freshly gener- 
ated identifier, and result-of-ezpansion, is the result of ex- 
panding the macro using a specially constructed rename pro- 
cedure that knows where the various variables that might be 
inserted by the macro are located inside env-17. 

7 First-Class Templates 

Templates were introduced in order to make macros into 
first-class values. Until now, we have not considered the pos- 
sibility that templates themselves might be first-class values. 
As it happens, we can obtain Iirst-class templates with very 
little additional work. The same trick that worked to make 

macros first-class, will also work to make templates first.- 
class: we simply allow templates to appear inside template 
expressions!7 

Unfortunately, it seems to be very hard to generate a 
plausible example of why one would need templates to be 
first-class. A likely scenario might be where a Inodule in- 
terface exports a template that users of the module are ex- 
pected to instantiate. Something like: 

(define-interface promise-inferface 
<promise-module> 
(force delay kons-tmplt) 
((<delay> delay) 

(<kens-tmplt> kons-tmplt) 
(<kens> kons-tmplt self)) 

(kens-tmplt (template 
(car (value <delay>)) 
(cdr (value <kens>)) 
(self (macro . . .)>)) 

(delay (macro . . .) > 
(make-promise (value <plain>)) 
(force (value <plain>) > > 

All of the examples I have been able to construct that 
have this structure have some at-least-as-good solution that 
doesn’t involve first-class templates. Often simply export- 
ing a procedure that instantiates a non-first-class template 
works just as well. I’d be interested in hearing from anybody 
who thinks they can construct a really compelling case for 
first-class templates. 

8 Conclusions 

An interpreted system with first-class macros was presented 
by Jonathan Rees as the first step in explaining the clevel- 
opment of a module system for Scheme [ReeM]. His final 
system, in which code can actually be compiled, no longer 
supported first-class macros. The system presented here re- 
sults from my search for a way to save first-class macros 
from Jonathan’s trash can. 

This system also owes a debt to the module system pro- 
posed by Oscar Waddell and Kent Dybvig [WD99]. At the 
conclusion of the presentation of their system at POPL’OD, 
an audience member asked why no additional runtime en- 
vironment structures were needed in order to support t,heir 
system. Thinking about when you w&d need additional 
environment structures in a system such as theirs helped 
lead me to the system here. 

Compilers have always generated different code depencl- 
ing on the types of variables in expressions. In a C program, 
an expression like “x + 1” compiles into different machine 
instruction depending on whether x is an integer, floating 
point, or pointer variable. First-class macros deliver this 
ability to do type-driven code-generation directly into the 
programmer’s hands. With first-class macros, (x car) coin- 
piles into a structure reference if x is of the type <kens> 
defined in section 5.1, but if x has a different type it may 
compile quite differently-the programmer is in complete 
control. 

I am sure that I have only scratchecl the surface of the the 
interesting things that can be done with first-class macros. 
Consider the simple “syntactic protocol” employed by the 
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open macro define in section 5.2. It can be used to open a * 
module, as intended, but it can also be used to open some- 
thing else--open is “generic.” With a simple syntactic mes- 
sage passing protocol (a dispatch on a symbol used a~ the 
first operand), a first-class macro can support different syn- 
tactic “operations.” The result is a sort of syntactic analog 
of object-oriented programming. All this territory remains 
to be explored. 

There is no type-inference here. Types must be com- 
pletely declared in every lambda-expression. It would be 
interesting to try to add some form of type-inference. The 
difficulty I foresee is that type-inference depends on knowing 
data flow, and data flow depends on having parsed the pro- 
gram, and first-class macros make parsing depend on types, 
closing the loop. 

Some limited form of type-inference may be possible. If 
an argument to a procedure is never used in operator posi- 
tion, its macro type does not need to be precisely known at 
compile time. So some polymorphism is still possible. For 
example 

(lambda (x> x> 

can still be compiled and given the type cy + cu, while 

(lambda (f) (f)) 

can not be compiled without knowing exactly what the type 
of f will be. 

Although it is hard to see how to make macro types cul- 
turally compatible with the ML type system, it is quite easy 
to see how combine them with the C (or other traditional) 
type system. In place of <plain>, our single non-macro type, 
substitute int, char, struct point *, etc. 

There are many features of this system that are less 
than satisfactory. The declare syntax added to lambda- 
expressions is ugly. The body of a template really should 
look like a sequence of ordinary definitions. (So that macros 
that expand into a sequence of definitions could be used 
there.) Using set ! to initialize the values in a instantiata- 
expression seems out-of-place in a mostly functional lan- 
guage like Scheme. But none of these problems seem to 
be more than ordinary issues of programming language 
design-none are fatal flaws. 

Despite all the mechanisms and syntax introduced here, 
the key observation is actually very simple: With the sup- 
port of a type system, macros can become first-class values, 
and the result is a useful and powerful new programming 
tool. 
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