
Reducing Sweep Time for a Nearly Empty Heap

Yoo C. Chung Soo-Mook Moon Kemal Ebcioglu
Seoul National University IBM T. J. Watson Research Center

{chungyc.smoon}Qaltair.snu.ac.kr kemal(Dwatson.ibm.com

Dan Sahlin
Ericsson Utvecklings AB

dan@cslab.ericsson.se

Abstract

Mark and sweep garbage collectors are known for using time
proportional to the heap size when sweeping memory, since
all objects in the heap, regardless of whether they are live or
not, must be visited in order to reclaim the memory occupied
by dead objects. This paper introduces a sweeping method
which traverses only the live objects, so that sweeping can
be done in time dependent only on the number of live objects
in the heap.

This allows each collection to use time independent of
the size of the heap, which can result in a large reduction
of overall garbage collection time in empty heaps. Unfortu-
nately, the algorithm used may slow down overall garbage
collection if the heap is not so empty. So a way to select
the sweeping algorithm depending on the heap occupancy is
introduced, which can avoid any significant slowdown.

1 Introduction

Automatic management of memory at run time is called
garbage collection [l, 21. Garbage collection eases the de-
velopment of applications tremendously, as anyone who has
had to chase down an obscure dangling pointer reference or
memory leak can attest to.

Mark and sweep garbage collection [3] is a simple and
popular way to implement garbage collection. However,
most implementations of mark and sweep collection suffer
from the problem that when the heap size is greatly in-
creased, the time spent in each garbage collection also in-
creases by a similar factor, regardless of the amount of ob-
jects that are actually live. This is because the sweep phase
must visit every object in the heap, whether live or dead, in
order to check if it was reached during the mark phase.

This linear dependence of sweep time on the heap size
poses a fundamental lower bound on the overall sweep time
when using traditional mark and sweep garbage collection,
since even though the collection frequency is inversely pro-
portional to the heap size, the linear increase in time for

Per~llission to m&z digital or hard copies of all or part of this wxk for
pcrsonal 0~ classroml use is granted without fee provided that eOPics
are not made or dislributed fbr profit or commercial advantage and lhat
copies bear this notice and the fill citation on thC firSt page. ‘ro COPY
other\hise. to republish, to post on servers or to redistribute to li%
requires prior specific permission and/or a fee.
POPL 2000 Boston MA USA
Copyright ACM 2000 I-581 13-125-9/00/1...$5.00

each individual sweep prevents any further decrease in over-
all sweeping time. (That is, the time doesn’t decrease until
the heap size becomes large enough so that garbage collec-
tion doesn’t occur at all. We’ll pretend that the heap size
will never grow that large.)

This is one of the reasons why copying collection is some-
times claimed to be better than mark and sweep collection,
since the time spent by copying collection depends linearly
on the amount of memory occupied by live objects instead
of depending on the size of the heap. Because of this, when
the heap is very large and the number df live objects is very
small (such as is expected with the youngest generation of
a generational garbage collector [4]), copying collection is
usually much faster than mark and sweep collection [5].

On the other hand, copying collectors do have problems
of their own. For example, they can only use half of the
heap at any given time, regularly copy all live data during
each collection, and require that all references be precisely
identified (there are ways to work around some of these prob-
lems [6, 71, but they add additional complexity to implemen-
tations). Thus many systems use mark and sweep garbage
collection instead.

This paper shows that mark and sweep garbage collec-
tion can also use time independent of the size of the heap
using an algorithm which will be called selective sweeping.
This partially offsets one of the disadvantages that mark and
sweep garbage collection suffers against copying garbage col-
lection. Since the algorithm can be slower than the tradi-
tional sweeping algorithm when there are many live objects,
a way to avoid this slowdown is also introduced.

For simplicity, only simple non-incremental garbage col-
lection is considered, and the heap is assumed to be con-
tiguous. (It is a simple matter to extend the approach to a
non-contiguous heap. It should also not be too difficult to
integrate the approach with existing incremental mark and
sweep garbage collectors, although whether this would be
worthwhile is rather questionable.)

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of traditional mark and sweep
garbage collection. Section 3 introduces selective sweeping,
and section 4 shows how to avoid any significant slowdown
that might result from using this algorithm. Section 5 de-
scribes an actual implementation and reports some empir-
ical results. Section 6 gives pointers to other approaches
that also work on reducing or hiding sweep time. Finally,
section 7 concludes.

378

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325694.325744&domain=pdf&date_stamp=2000-01-05

2 Traditional Mark and Sweep Collection

This section introduces traditional mark and sweep garbage
collection and its time complexity, and shows why there is
a lower bound on the overall garbage collection time.

2.1 The Algorithm

In the simplest version of mark and sweep garbage collection,
garbage collection is done by marking all the reachable ob-
jects (called live objects, since they may eventually be used
by the program) in the ma& phase, and then reclaiming
memory occupied by unreachable objects (called dead ob-
jects, since it is certain that they can never be used again)
in the sweep phase.

The mark phase is done by first marking the objects
in the root set (the set of objects that can be referenced
directly by the application, e.g. machine registers or global
variables), and then continually marking unmarked objects
that are referenced from marked objects, until there are no
more objects to be marked. When the mark phase is done,
all objects that can be reached from the root set would have
been marked.

Algorithm 1 is the typical way to mark all objects that
are reachable from the root set. Prior to marking with this
algorithm, all objects in the heap must have been unmarked
(root objects will not be considered as part of the heap).
Otherwise, a path to a still reachable object might not be
completely traversed because of the existence of a marked
object on the path. This can be ensured by unmarking all
marked objects in the heap during the sweep phase of the
previous garbage collection.

Algorithm 1 Marking reachable objects

M t {T : r is in root set}
while M # 0 do

a t some element of M
M t M - {a)
for each object b referenced by a do

if b has not been marked then
mark b, M t M U {b}

end if
end for

end while

M in algorithm 1 contains the set of marked objects
whose children may or may not have been marked (this will
be called the boundary set in this paper). It is in effect the
boundary between marked objects whose children have also
been marked and objects that have not been marked, as in
figure 1.

At any point after the initial stage is complete, i.e. after
all the root objects have been put into the boundary set,
any unmarked objects reachable from the root set must also
be reachable from the boundary set. Thus when there are
no more objects in the boundary set, there are no more
unmarked objects reachable from the root set, and the mark
phase is complete.

Depending on the order objects are removed from the
boundary set, the algorithm traverses objects in depth-first
order using a mark stack (LIFO), or it may traverse objects
in breadth-first order using a mark queue (FIFO). These are
in fact the most common orderings used in mark and sweep
collectors.

Boundary set

Unmarked objects

Figure 1: An example snapshot of the marking process.
Nodes are colored according to Dijkstra’s tricolor marking
abstraction [8], where marked objects whose children have
been marked are black, marked objects whose children might
still be unmarked are grey, and unmarked objects are white.

The sweep phase is when memory occupied by dead ob-
jects is actually reclaimed. This is traditionally done by
visiting each object in the heap one by one and reclaiming
the memory occupied by an object if it is not marked, since
only marked objects can be reached from the root set. Also,
any marked object is unmarked in order to prepare for the
next garbage collection, as can be seen in algorithm 2.

Algorithm 2 naditional sweeping

for each object a in the heap do
if a is marked then

unmark a
else

reclaim memory occupied by a
end if

end for

2.2 Time Complexity

During the mark phase, each live object is pushed and
popped exactly once from the boundary set. Each refer-
ence field of every reachable object is also visited exactly
once. Thus if R is the total number of references in every
live object and n is the number of live objects in the heap,
O(n + R) time is used. If L is the amount of memory oc-
cupied by live objects, then marking can be done in O(L)
time, since R < L and n = O(L).

During the sweep phase, every object is checked to see
whether they are marked or not. If it is marked, it is then
unmarked. If it is not marked, the memory occupied by
the object is reclaimed. If each reclamation can be done in
constant time (which is certainly possible, e.g. using segre-
gated free lists [9]), then O(N) time is used during the sweep
phase, where N is the total number of objects on the heap.

When the sizes of objects in the heap are independent of
the heap size, which will almost certainly be the case,’ then
N will be proportional to the heap size. Thus sweep time is
in O(H), where H is the size of the heap.

When the memory occupied by live objects is a signifi-
cant and constant fraction of the heap size, the time used by

‘The only way object sizes can be dependent on the heap size is
for them to vary as the heap size varies, but such programming styles
are extremely rare.

379

the mark phase and the sweep phase are asymptotically sim-
ilar, since O(L) z O(H) when L 0: H. In practice, marking
time dominates in such cases.

However, when the heap occupancy is low, sweep time
dominates, since the sweep time increases linearly with the
heap size while the marking time stays relatively constant.
This is the main reason why increasing the heap size over
a certain threshold does not help very much in reducing
the overall time spent in garbage collection using traditional
mark and sweep collection, since even though the frequency
of collections depends inversely on the heap size, the time
spent in each collection increases linearly with the heap size.

This is in contrast to copying collection, where the fre-
quency of collections depends inversely on the heap size
while each collection takes relatively constant time, so that
the overall garbage collection time is inversely proportional
to the heap size [5].

(More accurately, the frequency of collections is inversely
proportional to the size of the dead portion of the heap
for both mark-sweep and copying collection. This does not
change the above assertions for higher heap sizes, since the
dead portion occupies most of the heap at such sizes.)

3 Selective Sweeping

As was pointed out in section 2.2, sweep time, which depends
linearly on the size of the heap, dominates the garbage col-
lection time when there are very few live objects compared
to the size of the heap. This is because every object in the
heap, regardless of whether they are live or dead, must be
traversed so that memory occupied by unreachable objects
can be reclaimed.

However, if one knows that there are no live objects be-
tween two given live objects, one can reclaim the space be-
tween them in a single operation, instead of having to visit
all the objects between them, since these objects are obvi-
ously dead.

This can also be done in traditional sweeping by checking
if all objects between two marked objects are unmarked. If
this is the case, then the memory occupied by the unmarked
objects can be reclaimed in a single operation, instead of re-
claiming memory for each dead object separately. However,
since each object is still visited at least once, sweep time
still depends linearly on the heap size.

Unfortunately, it is difficult to avoid having to deal with
every object in the heap when algorithm 1 is used as the
marking algorithm, since it leaves behind no information
about which objects are live, except for the marking that
is done on the live objects. This forces one to check every
object to see if they are marked.

So as the first step in making sweep time independent of
the heap size, instead of discarding objects that have been
removed from the boundary set as in algorithm 1, a set
consisting of all the objects that are reachable should be
constructed.

Algorithm 3 is able to construct the set of marked ob-
jects while marking all the live objects. It is an adaption of
Cheney’s scanning algorithm [lo], which is typically used in
copying collectors.

Algorithm 3 essentially works like algorithm 1. Unlike
algorithm 1, which only maintains the boundary set (the
set of marked objects which may still refer to objects that
have not yet been marked), algorithm 3 also maintains the

Algorithm 3 Constructing set of live objects
sto,tt-1
for each root object r do

tct+1,mttr
end for
while s 5 t do

for each object a referenced by m, do
if a has not been marked then

mark a, t t t + 1, mt t a
end if

end for
ststl

end while
{mi : 0 5 i 5 t} is set of live objects

set of marked objects which are known to refer only to other
marked objects.

Comparing the algorithm to algorithm 1, we see that
the set {mi : 0 5 i < s} is the set of marked objects which
are known to refer only to other marked objects, and that
the set (mi : s 5 i < t} is the boundary set. When the
algorithm completes, the boundary set is empty and the set
{mi : 0 < i 5 t} contains all the objects reachable from the
root set.

Each object is pushed into and popped from the bound-
ary set exactly once, and each reference in every live object
is also visited exactly once, as in algorithm 1. So obtaining
the set of live objects takes the same time as marking all
the live objects, which is in O(L), where L is the amount of
memory occupied by the live objects.

However, the set of live objects alone does not allow one
to check the nonexistence of live objects between two given
live objects in constant time, because without checking all
the objects in the set, one cannot be sure if there are no live
objects between two given live objects. This is because the
order which the objects were entered into the set is indepen-
dent of the order which they are positioned in the heap.

In order to make this possible, we can sort the objects’
by address. Since it is guaranteed that there are no live
objects between two consecutive objects in the sorted set, it
is now possible to sweep the heap without looking at every
object in the heap, as in algorithm 4 (which will be called
selective sweeping in order to distinguish it from traditional
sweeping).

The second and last conditional statements in algo-
rithm 4 are required so that the boundaries of the heap
are properly dealt with. These statements can be removed
if there are dummy objects, considered live at sweep time,
at the start and end of the heap, which would act as sen-
tinels. Using such sentinels would also absolve of the need
for handling the special case where there are no live objects,
since such a case could never happen.

Algorithm 4 can reclaim the memory in each gap between
the live objects in constant time (assuming that the recla-
mation operation itself takes constant time, of course). This
is in contrast to traditional sweeping, where reclaiming the
memory for each gap takes time proportional to the number
of dead objects that reside in them (see figure 2). Since there
can be at most n + 1 gaps when there are n live objects, the
time taken to reclaim all the memory is proportional to the
number of live objects.

Since the set of live objects is maintained separately, the
sweep phase does not need to check whether each object

380

(a) With traditional sweeping (b) With selective sweeping

Figure 2: Object traversal during sweeping. Shaded nodes denote live objects.

Algorithm 4 Selective sweeping

M is the set of live objects
if M = 0 then

free all memory in heap
else

sort M so that me, . , m, E A4 are in order of address
unmark me
if me does not start at beginning of heap then

free memory before me
end if
for 15 i 5 n do

unmark rni
if mi-i and mi are not adjacent then

free memory between m;-1 and rni
end if

end for
if m, does not end at end of heap then

free memory after m,
end if

end if

is marked or not (in fact, it is guaranteed that only the
objects it does visit are marked). In this case, marking is
required only by the mark phase in order to avoid redundant
traversals, unlike in traditional mark and sweep, where it is
also required by the sweep phase in order to check whether
each object is reachable from the root set.

Selective sweeping takes O(n) time when reclaiming
memory, where n is the number of live objects and assum-
ing that each reclamation operation takes constant time.
However, since the set of live objects must be sorted by ad-
dress prior to reclaiming memory, sweeping time will be in
O(n + f(n)) time, where O(f(n)) is the time required for
sorting n objects.

Since comparison sorts such as merge sort or heap sort
take O(n log n) time to sort n objects, sweeping can also be
done in O(n log n) time, which is independent of the size of
the heap. Or a distribution sort such as radix sort [ll] could
be used, which has a O(nlogH) worst case time bound,
where H is the size of the heap, but is much faster than
comparison sorts at large n and in fact can be done in O(n)
time on average.

These worst case time bounds are asymptotically worse
compared to the O(H) time bound of traditional sweeping
when n oc H, where n is the number of live objects and H
is the heap size.’ However, when n is a very small fraction
of H, i.e. when the heap is nearly empty of live objects, the
time spent in sweeping with the selective algorithm would

‘Certain implementations could use O(n log n) time or worse when
freeing memory [12, 131, in which case this statement would not apply.

be insignificant compared to the time spent in sweeping with
the traditional algorithm.

Also, since the time spent in sweeping is now indepen-
dent of the heap size, overall garbage collection time is now
inversely proportional to the heap size. This is because each
individual garbage collection takes relatively constant time,
while the collection frequency is inversely proportional to
the heap size. This is in contrast to traditional mark and
sweep collection, where there is a lower bound to the over-
all sweep time because of the linear increase of sweep time
along with the size of the heap.

4 Adaptive Mark and Sweep Collection

When the number of live objects is insignificant compared to
the number of all the objects in the heap, it is quite obvious
that sweep time can be reduced significantly using selective
sweeping. However, when the number of live objects is a
significant fraction of the total number of objects, traditional
sweeping would probably be better, since it is linear on the
heap size and requires no extra step (such as the sorting
step in selective sweeping) before making only a single pass
through the heap. Also, traditional sweeping typically will
use much less memory during the marking phase, since it
does not have to keep track of all the live objects.

Therefore it can be advantageous to select the sweeping
algorithm depending on the number of live objects in the
heap.

4.1 Adaptive Marking

It is possible to use traditional sweeping to reclaim dead
objects even when algorithm 3, which constructs the set of
live objects, is used in the mark phase. However, it would be
a waste of memory, since algorithm 1, which only maintains
the boundary set, can mark all the live objects with the same
efficiency. It is also much more prone to overflows when a
fixed array is used to maintain the set of live objects.

On the other hand, using the traditional algorithm for
marking does not help much to reduce sweep time for a
heap with few live objects. So it might be better if there
were some way to select the marking algorithm to be used
depending on the number of live objects.

This is not simple to do before starting the mark phase,
since the number of live objects is not known One possi-
ble solution would be to predict the number of live objects
based on the detected number of live objects during previ-
ous garbage collections. This would be akin to the adaptive
tenuring policy in a generational garbage collector as pro-
posed by Ungar and Jackson [14], which adjusts the tenur-
ing threshold based on the number of tenured objects during
past minor collections.

381

Unlike their adaptive tenuring policy, however, there is
no need to obtain the actual number of live objects, but
only to detect whether the number of live objects exceeds
some certain threshold. This can be done very simply in the
marking phase itself.

This can be done by checking whether the number of live
objects go over a certain threshold when inserting objects
into the set of live objects with algorithm 3. If at a certain
point this threshold is exceeded, the marking algorithm is
switched to algorithm 1, which does not construct the set of
live objects.

This is possible because the boundary set of algorithm 3,
{mi : s 2 i 2 t}, can be used without any change as the
boundary set for algorithm 1, since both have exactly the
same roles (they are both the set of marked objects which
may refer to unmarked objects).

Also, detecting whether the number of live objects be-
comes greater than some threshold does not need to intro-
duce any additional overhead, since it can use the same
mechanism used to detect stack overflows when marking
with an explicit array-based mark stack (e.g. using explicit
checks or using a guard page [15]), which would have been
used anyways in order to maintain correctness. (When
marking with other methods, such as with a list-based mark
queue, marking would already be expensive enough that
maintaining a simple count would be a negligible overhead.)

With these techniques, it is now possible to select the
sweeping algorithm based on the number of live objects in
the heap without wasting too much memory in the mark
phase.

4.2 Adaptive Sweeping

When the number of live objects is a significant fraction of
the total number of objects in the heap, it would be better to
use traditional sweeping, whereas when there are very few
live objects, it would be better to use selective sweeping,
which only traverses the live objects.

However, when using selective sweeping, there is the issue
of what kind of sorting algorithm to use when sorting live
objects by address.

Using radix sort with a large enough radix, sweeping
can be done in time practically linear on the number of
live objects (see section 5.1). But when the number of live
objects is small enough, comparison sorts might be better
since radix sort does multiple passes, and the difference in
the complexity is less important for smaller instances.

Thus, when using selective sweeping, a comparison sort
should be used when the number of live objects is very small,
and a distribution sort such as radix sort should be used
when the number is much larger (though still small com-
pared to the size of the heap).

The exact range of the number of live objects where se-
lective sweeping with a comparison sort, selective sweeping
with a distribution sort, and traditional sweeping is best
will depend on the application and system. It may be the
case that there is no range where selective sweeping with
a distribution sort is better than selective sweeping with a
comparison sort, or vice versa. But it is certain that selec-
tive sweeping will be much better than traditional sweeping
when the heap occupancy is very low.

5 Actual Case Study

This section outlines the implementation of a garbage collec-
tor used in a real system, which uses selective and adaptive
sweeping, and gives some experimental results showing that
the algorithms actually do work in practice.

5.1 Implementation

A garbage collector using the algorithms described in this
paper was implemented for LaTTe [16]. LaTTe is a freely
available Java virtual machine with a JIT compiler for the
UltraSPARC. The JIT compiler uses a novel register al-
location algorithm [17] and does many optimizations such
as common subexpression, loop invariant code motion, cus-
tomization, etc. It uses lightweight monitors [18] and does
on-demand translation of exception handlers [19]. There is
also a limited adaptive compilation framework, which in-
cludes a reasonably fast bytecode interpreter [20].

The non-incremental garbage collector uses mark and
sweep and is partially conservative. Small and large ob-
jects are maintained separately, where a small object is an
object with size less than a kilobyte. Allocation of small ob-
jects are done with pointer increments [21]. This allocation
scheme causes small objects with widely differing sizes to be
adjacent to each other, so the mark bits are bundled with
the objects instead of using a separate mark bitmap.

Marking functions for each object type, which mark
other objects referenced by an object, are generated at run-
time. These are then called directly to mark objects refer-
enced by an object, instead of using descriptor fields which
describe the fields of an object. This approach is also used
in other systems such as SmallEiffel [22].

The mark phase uses an explicit array-based mark stack
when marking with the traditional algorithm. This mark
stack is also used for storing the set of live objects.

For this experiment, enough memory is reserved for the
mark stack so that overflows never occur. For actual use, a
garbage collector which uses only selective sweeping would
not be practical since there might not be enough memory
to store the set of live objects. A garbage collector which
chooses the sweeping algorithm adaptively, on the other
hand, can use the same methods that traditional systems
use to handle stack overflows [23].

Selective and adaptive sweeping are done only on the
small object area, which is the portion of the heap which
contains small objects. For this reason, the term “heap size”
in this section actually means the size of the small object
area. In addition, garbage collection is never triggered while
allocating large objects.

For the sorting algorithm used by selective sweeping,
radix sort based on counting sort was used. It uses a radix
of 2048, and always does three passes to sort the set of live
objects. Since with three passes we can deal with an address
range of 204g3 bytes, or 8 gigabytes, we can always sort an
arbitrary set of 32 bit pointers, since a 32 bit pointer has an
address range of only 4 gigabytes.

Also, since each pass takes time in O(n), where n is the
number of elements to sort, and we always do three passes,
the sorting algorithm used in this implementation takes time
linear on 71.

More details on LaTTe’s memory management will be
described in Chung et al. [24].

31n fact, management of large objects had not yet been properly
implemented at the time of writing.

382

5.2 Experimental Results

For the test programs, -202-jess, -227mtrt, and -228-jack
from the SPECjvm98 benchmark suite [25] were used.
-2OO_check, -201-compress, -209_db, -and -222mpegaudio
were not used since they do almost no garbage collection,
while -213-javac was not used because the number of live
objects during its execution is so large such that selective
and adaptive sweeping would do little to shorten garbage
collection time within the memory available.

The test machine was a 270MHz UltraSPARC with
256MB of RAM running Solaris 2.6. The overall sweep times
used by traditional and selective sweeping are compared in
figure 3. (The actual timings from which the graphs were
obtained are listed in the appendix.)

Most objects in -202-jess and -228-jack die quickly, so
the amount of live objects is typically small (about 1MB).
This is reflected in the results shown in figure 3, where selec-
tive sweeping is in fact always faster than traditional sweep-
ing.

On the other hand, the amount of live objects is much
larger for -227_mtrt (about 8MB). So at lower heap sizes,
and hence higher heap occupancies, traditional sweeping is
much faster, while at higher heap sizes, and hence lower
heap occupancies, selective sweeping is much faster. This
indicates that we should select the sweeping algorithm ac-
cording to the heap occupancy.

Since each individual sweeping time for traditional
sweeping is proportional to the size of the heap, while that of
selective sweeping as implemented in this experiment is lin-
ear on the number of live objects, we can expect the thresh-
old, under which selective sweeping would be better and over
which traditional sweeping would be better, to be a constant
fraction of the size of the heap. (This of course would not
apply if a sorting routine which uses non-linear time were to
be used.)

It would not be difficult to determine this fraction em-
pirically. A good value for LaTTe would not apply to other
systems that might use adaptive sweeping, of course, but
it would give some insight on how adaptive sweeping would
behave.

Since -227mtrt was the benchmark that would bene-
fit from adaptive sweeping, it was used to estimate a good
value for the fraction. Figure 4 shows the sweeping times for
the fractions 0 (equivalent to traditional sweeping), l/512,
l/128, l/64, and I (equivalent to selective sweeping).

It should be noted that these fractions are not the ratio
between the the amount of live memory and amount of total
memory, but rather the ratio between the number of live
objects and the amount of total memory. For example, if
the average size of an object is 16 bytes (which is actually
the practical minimum size for objects), then a fraction of
l/128 actually means that selective sweeping should be used
only when the amount of live memory is less than an eighth
of the size of the heap. (It might be better to use the ratio
between the number of live objects and the number of all
objects, but the memory allocator in LaTTe does not keep
track of the number of allocated objects.)

As can be seen from figure 4, too large a fraction, such
as l/64 in this case, would cause selective sweeping to be
used even when it would be much slower, so that adaptive
sweeping is slower than traditional sweeping at low heap
sizes.

A too small a fraction such as l/512, on the other hand,
would cause traditional sweeping to be used even when it

2.5

z
2

E -2

P

1.5

L
1

0 10 20
HZp size (%pB)

50 60 70

4

3.5

3

E 2.5

2
-s

P

2

5 1.5

0.5

0

(a) 202jess

-10 20 30 40
Heft: size ~tlB)

70 80 90 100

(b) -227mtrt

a' 1

0 10 20 ::e 40 50 60
Heap (MB)

(c) -228jack

Figure 3: Comparison of sweep times.

383

3.5

2.5

22 2
E
‘Z
$
g 1.5
CJYJ

1

0.5

0
10

I
i

I I , I I I

\ Traditional -
\ l/51 2 ---n---

11128 ---I---
,,64 a

Selective -.-w-.

15 20 25 zge 35 40
Heap (MB)

Figure 4: Adaptive sweeping times for -227mtrt.

45 50

is the slower algorithm, so adaptive sweeping is slower than
selective sweeping at high heap sizes. It is faster than tra-
ditional sweeping, though, so it might be better than using
a too large a fraction.

However, with a fraction of l/128, we can see that adap-
tive sweeping is never significantly slower than both tradi-
tional and selective sweeping. This is to be expected with a
good value for the threshold, since at high heap occupancies
traditional sweeping is used, while at low heap occupancies
selective sweeping is used.

It is interesting to note that at intermediate heap oc-
cupancies, adaptive sweeping with a good threshold is no-
ticeably faster than both traditional and selective sweeping.
This is because the heap occupancy actually varies some-
what between each collection, so that the sweeping algo-
rithm which is faster also varies. With a good threshold
(such as l/128 in figure 4), the faster of the two algorithms
are used in each collection, so that adaptive sweeping ends
up faster overall than either traditional or selective sweep-
ing. Of course, this does not happen with a bad thresh-
old (such as l/64 or l/512 in figure 4), so choosing a good
threshold is important.

These results show that selective sweeping indeed results
in much larger reductions in sweep time at low heap occu-
pancies, and that choosing the sweeping algorithm at run
time according to the heap occupancy can avoid the slow-
down experienced by selective sweeping at high heap occu-
pancies. In fact, doing so can result in shorter collection
times than either just using traditional or selective sweep-
ing.

6 Related Work

Sahlin [26] introduced an O(n log n) time algorithm for mark
and compact garbage collection, which is also generally
known as taking time proportional to the heap size. He
uses an idea very similar to the one outlined in this paper,
with a couple of important differences.

First, the implementation was for a mark and compact
garbage collector, not a mark and sweep garbage collector,
so some of the algorithms are substantially different.

Second, a separate gathering phase is done to construct a
linked list of non-garbage memory blocks, which is basically
a repetition of the mark phase with a few modifications.
This is done separately so as to identify the garbage cells
in which the links can be stored, which cannot be identi-
fied before completing a mark phase. With this method, no
memory need be reserved for storing the set of live objects.
This is important for a collector which uses pointer reversal
for marking [27], since the whole point of using pointer re-
versal is to avoid having to reserve extra space for auxiliary
data structures, such as a mark stack or a set of live objects.

This is in contrast to the approach used in this paper,
where marking and construction of the set of live objects are
done concurrently. On the other hand, memory for storing
the set of live objects must be reserved separately, though
this memory can be shared with the mark stack when an
explicit array-based mark stack is used during marking.

Boehm [28] pointed out that comparisons of asymptotic
complexity between garbage collection algorithms should
also take allocation time into account, not just garbage col-
lection time. When mark-sweep and copying collection is

384

compared in this way, they both turn out to have a time
complexity of O(H), where H is the size of the heap.

This is very apparent in garbage collectors that do lazy
sweeping, where only enough sweeping is done during alloca-
tion in order to find an appropriate free memory chunk [29].
In this case, there appears to be no time spent in sweep-
ing during garbage collection. However, sweeping done dur-
ing allocation is still work that is being done, and selective
sweeping could help reduce this work.when the heap occu-
pancy is low.

Reducing sweep time is also possible with mark bitmaps,
since a fixed number of objects can be reclaimed in a single
operation, using the fact that it is possible to check in a
single operation whether the bits in a word, i.e. the mark
bits in that portion of the mark bitmap, are all set to zero,
i.e. all the objects in that portion are dead.

However, with mark bitmaps there is only a linear reduc-
tion in sweep time (albeit a large one), so there is still a the-
oretical lower bound on the overall garbage collection time.
Marking also becomes more expensive instruction-wise than
when the mark bits are bundled with the objects. On the
other hand, the improvements in cache effects and sweeping
time make it unclear whether the approach outlined in this
paper would be better. In any case, there should be no se-
rious difficulties in combining the two approaches, although
whether this would be worthwhile is also unclear.

Baker [30] introduced the ultimate algorithm for sweep
time reduction: mark-sweep using a doubly-linked list
(which he called the treadmill), where the sweeping is done
in constant time. Unfortunately, all objects must be of the
same size for it to be usable, so its usefulness in general-
purpose systems is limited.

Wilson and Johnstone [31] extended Baker’s algorithm
to multiple object sizes using segregated storage. However,
unlike Baker’s algorithm, where sweeping can be done in
constant time, their algorithm required that each dead ob-
ject be processed before being reused, so sweeping still uses
time linear on the heap size (although they do sweep each
dead object in a lazy manner during allocation).

These list-based mark and sweep garbage collectors are
inappropriate as non-incremental garbage collectors, how-
ever, since list manipulation is typically much more expen-
sive than using a simple array-based mark stack. They were
designed as real-time garbage collection algorithms, though,
so this is not a problem in their intended domain.

7 Conclusions

Mark and sweep garbage collection traditionally required
time proportional to the heap size in order to sweep the
heap. This is in contrast to copying collection, where copy-
ing takes time proportional to the amount of live memory,
which is independent of the size of the heap.

This paper has shown that by sorting the live objects by
address and visiting only the live objects during the sweep
phase, mark and sweep garbage collection can also be done
in time independent of the heap size. Thus, instead of having
a fixed lower bound in overall sweep time as in traditional
sweeping, selective sweeping can decrease the overall sweep
time almost arbitrarily by increasing the heap size,

This allows mark and sweep garbage collection with se-
lective sweeping to reduce overall garbage collection time by
a much more significant factor than with traditional sweep-
ing when the heap size is increased. In other words, selective

sweeping uses much less time than does traditional sweeping
when the heap occupancy is very low.

A low heap occupancy is not a desired trait of mod-
ern software, however. For one thing, even though memory
prices have dropped dramatically, there has also been a cor-
responding increase in memory usage. Another point is that
applications typically share memory with other applications,
so it would be a bad thing if applications indiscriminately
increased their heap size in order to lower the heap occu-
pancy.

On the other hand, a low heap occupancy is a desired and
expected trait of the youngest generation in a generational
garbage collector. Thus selective sweeping can speed up
minor collections for a generational garbage collector which
uses only the mark and sweep algorithm.

Also, since the sweeping algorithm can be selected ac-
cording to the heap occupancy at garbage collection time,
the slowdown that would be experienced by the selec-
tive sweeping algorithm at high heap occupancies can be
avoided. Thus selective sweeping is also useful in a sim-
ple non-incremental mark and sweep garbage collector when
the heap occupancy varies by large amounts, by using tra-
ditional sweeping when the heap occupancy is high and se-
lective sweeping when the heap occupancy is low.

References

PI

PI

[31

141

PI

Bl

171

PI

PI

PO1

Richard Jones and Rafael Lins. Garbage Collection:
Algorithms for Automatic Dynamic Memory Manage-
ment. John Wiley & Sons, 1996.

Paul R. Wilson. Uniprocessor garbage collection tech-
niques. Technical report, University of Texas, January
1994.

John McCarthy. Recursive functions of symbolic ex-
pressions and their computation by machine. Commu-
nications of the ACM, 3:184-195, 1960.

David M. Ungar. Generation scavenging: A non-
disruptive high performance storage reclamation algo-
rithm. ACM SIGPLAN Notices, 19(5):157-167, April
1984.

Andrew W. Appel. Garbage collection can be faster
than stack allocation. Information Processing Letters,
25(4):275-279, June 1987.

Michael Hicks, Luke Hornof, Jonathan T. Moore, and
Scott M. Nettles. A study of large object spaces. In
ISMM98 [32], pages 138-145.

Joel F. Bartlett. Compacting garbage collection with
ambiguous roots. Research Report 88/2, Compaq
Western Research Laboratory, February 1988.

Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: An exercise in cooperation. In Lecture Notes
in Computer Science, No. 46. Springer-Verlag, 1976.

P. W. Purdom, S. M. Stigler, and Tat-Ong Cheam. Sta-
tistical investigation of three storage algorithms. BIT,
11:187-195, 1971.

C. J. Cheney. A non-recursive list compacting algo-
rithm. Communications of the ACM, 13(11), November
1970.

385

PIJ

P3l

P41

1151

M

P71

PI

WI

WI

WI

PI

1231

PI

Donald E. Knuth. Sorting and Searching, volume 3 of
The Art of Computer Programming, chapter 5, pages
168-179. Addison-Wesley, second edition, 1998.

C. J. Stephenson. Fast fits - new methods for dynamic
storage allocation. In Proceedings of the 9th Symposium
on Operating Systems Principles, pages 30-32, Bretton
Woods, New Hampshire, October 1983. ACM Press.

R. P. Brent. Efficient implementation of the first-
fit strategy for dynamic storage allocation. ACM
Transactions on Programming Languages and Systems,
11(3):388-403, July 1989.

David Ungar and Frank Jackson. An adaptive tenuring
policy for generation scavengers. ACM !l!ransactions
on Programming Languages and Systems, 14(1):1-27,
January 1992.

Andrew W. Appel and Kai Li. Virtual memory prim-
itives for user programs. In Proceedings of the Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
96-107. ACM Press, 1991.

LaTTe: A fast and efficient Java VM just-in-time com-
piler. http://latte.snu.ac.kr/.

Byung-Sun Yang, Soo-Mook Moon, Seongbae Park,
Junpyo Lee, SeungIl Lee, Jinpyo Park, Yoo C. Chung,
Suhyun Kim, Kemal Ebcioglu, and Erik Altman.
LaTTe: A Java VM just-in-time compiler with fast
and efficient register allocation. In Proceedings of the
1999 International Conference on Parallel Architec-
tures and Compilation Techniques, pages 128-138, New
Port Beach, California, October 1999.

Byung-Sun Yang, Junpyo Lee, Jinpyo Park, Soo-Mook
Moon, Kemal Ebcioglu, and Erik Altman. Lightweight
monitor for Java VM. ACM SIGARCH Computer Ar-
chitecture News, March 1999.

SeungIl Lee, Byung-Sun Yang, Suhyun Kim, Seongbae
Park, Soo-Mook Moon, Kemal Ebcioglu, and Erik Alt-
man. On-demand translation of Java exception han-
dlers in the LaTTe JVM just-in-time compiler. In Pro-
ceedings of the 1999 Workshop on Binary Translation,
New Port Beach, California, October 1999.

Yoo C. Chung. Interpreter design for LaTTe. Avail-
able athttp://pallas.snu.ac.kr/“chungyc/papers/
interpreter.ps.

Yoo C. Chung. Allocation with increments in a non-
moving collector. Available at http: //pallas. snu. ac.
kr/“chungyc/papers/fast-alloc.ps.

Dominique Colnet, Philippe Coucaud, and Olivier Zen-
dra. Compiler support to customize the mark and
sweep algorithm. In ISMM98 [32], pages 154-165.

Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environment. Software
Practice and Experience, 18(9):807-820, September
1988.

Yoo C. Chung, Junpyo Lee, Soo-Mook Moon, and Ke-
ma1 Ebcioglu. Memory management in the LaTTe Java
virtual machine. In preparation.

P51

WI

[271

[281

1291

[301

[311

1321

SPEC JVM98 Benchmarks.
osg/ jvmSS/.

http : //www . spec . erg/

Dan Sahlin. Making garbage collection independent
of the amount of garbage. Research Report R87008,
Swedish Institute of Computer Science, 1987.

H. Schorr and W. Waite. An efficient machine inde-
pendent procedure for garbage collection in various list
structures. Communacations of the ACM, 10(8):501-
506, August 1967.

Hans-Juergen Boehm. Mark-sweep vs. copying col-
lection and asymptotic complexity. Available at
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
complexity.html.

R. John M. Hughes. A semi-incremental garbage col-
lection algorithm. Software Practice and Experience,
12(11):1081-1084, November 1982.

Henry G. Baker. The Treadmill: Real-time garbage
collection without motion sickness. A CM SIGPLA N
Notices, 27(3):66-70, March 1992.

Paul R. Wilson and Mark S. Johnstone. Real-
time non-copying garbage collection. In Eliot Moss,
Paul R. Wilson, and Benjamin Zorn, editors, OOP-
SLA/ECOOP ‘93 Workshop on Garbage Collection in
Object-Oriented Systems, October 1993.

Proceedings of the International Symposium on Mem-
ory Management (ISMM ‘98), Vancouver, British
Coumbia, Canada, October 1998. ACM Press.

386

Appendix

Tables 1, 2, and 3 tabulate the execution times, marking
times, sweeping times, and numbers of collections for each
given heap size, using the selected benchmarks from the
SPECjvm98 benchmark suite that were run on top .of the
LaTTe Java virtual machine on a 279MHz UltraSPARC.
The heap size, which is actually the size of the small ob-
ject area as mentioned in section 5.1, is given in units of
megabytes. The units for the times are in seconds.

Looking at the tables, one might notice that the marking
times are larger when constructing the set of the live objects
(i.e. doing selective sweeping) than when just marking the
live objects (i.e. doing traditional sweeping). This could be
considered a little odd, since the instruction sequences for
constructing the set of live objects and just marking the live
objects are nearly identical.

This is probably due to cache effects, since when con-
structing the set of live objects, the location at which an
object is pushed in and the location from which the ob-
ject to walk is popped can be quite a distance apart, unlike
when marking with the traditional algorithm, in which the
object that is pushed into the mark stack is more likely
to be popped immediately for walking. Also, algorithm 3,
which is used to construct the set of live objects, does a
breadth-first traversal, which tends to have lower locality of
reference than depth-first traversal, as done when marking
with an explicit mark stack.

These differences may eventually be mitigated by using
techniques such as prefetching or using a different algorithm
to construct the set of live objects.

However, this contributes only a constant multiplicative
factor to the marking time, so it does not change the fact
that each individual garbage collection can be done in time
independent of the heap size with selective sweeping, and
hence the overall garbage collection time is stili reduced by
a much larger factor at high heap sizes when compared to
traditional sweeping.

Table 4 shows the times for -227-mtrt using adaptive
sweeping, with the threshold set to the given constant frac-
tions of the heap size.

387

Heap ColIs.
125 4

6
8

10
12
14
16
18
20
25
30
35
40
45
50
60
70

69
48
38
31
26
23
20
18
15
12
11
10

9
8
7
6

t

Traditional
Exec. Mark Sweep

43.044 4.738 3.302
40.065 2.651 2.600
38.832 1.841 2.243
38.260 1.465 2.122
38.175 1.174 2.019
37.802 0.971 1.950
37.628 0.851 1.912
37.533 0.748 1.865
37.383 0.642 1.830
37.684 0.535 1.786
37.403 0.408 1.741
37.376 0.382 1.755
37.355 0.340 1.709
37.330 0.296 1.700
37.180 0.255 1.674
37.643 0.214 1.659
37.497 0.175 1.639

1 Selective
Exec. Mark Sweep

43.477 5.475 2.886
39.549 3.034 1.634
38.000 2.089 1.147
37.420 1.696 0.920
37.260 1.359 0.748
36.276 1.116 0.633
36.316 0.977 0.577
36.167 0.861 0.476
35.975 0.751 0.428
36.006 0.615 0.351
35.660 0.479 0.276
36.065 0.443 0.252
35.758 0.390 0.226
35.769 0.345 0.199
35.845 0.299 0.170
35.914 0.246 0.147
36.060 0.204 0.120

Heap Colls.
10 79

Table 1: Execution times for -202-jess.

12 36
14 25
16 19
18 16
20 14
22 12
24 11
26 10
28 9
30 8
35 7
40 6
45 6
50 5
55 5
60 4
65 4
70 4
75 4
80 4
90 3

‘100 3

Traditional
Exec. Mark Sweep

53.952 10.411 6.097
44.420 4.385 3.149
42.457 2.805 2.383
41.216 2.082 2.010
40.373 1.715 1.830
39.881 1.424 1.687
39.504 1.538 1.538
40.010 1.035 1.497
40.106 0.828 1.396
39.292 0.751 1.359
39.317 0.678 1.320
38.703 0.466 1.220
39.437 0.386 1.174
39.744 0.407 1.179
39.420 0.306 1.144
39.258 0.305 1.137
38.032 0.095 1.028
40.077 0.141 1.051
40.111 0.161 1.062
40.191 0.158 1.062
40.354 0.160 1.062
40.444 0.086 1.024
40.747 0.085 1.024

Selective
Exec. Mark Sweep

76.079 16.084 22.765
53.341 6.664 9.503
48.520 4.324 6.140
44.977 3.184 4.523
43.206 2.630 3.724
42.110 2.167 3.109
41.093 1.716 2.447
40.988 1.604 2.272
40.562 1.265 1.768
40.740 1.151 1.577
40.137 1.028 1.425
39.376 0.697 0.942
39.786 0.578 0.792
39.499 0.582 0.790
39.280 0.473 0.670
38.548 0.463 0.671
37.238 0.136 0.169
39.457 0.206 0.246
39.474 0.238 0.320
39.581 0.237 0.314
39.719 0.237 0.315
39.585 0.124 0.154
39.913 0.124 0.154

Table 2: Execution times for -227mtrt.

388

Heap Colis.
4 117
6 52
8 36

10 27
12 22
14 18
16 16
18 15
20 13
25 11
30 9
35 8
40 7
45 7
50 6
55 6
60 5

Heap Colls.
10 79
12 36
14 25
16 19
18 16
20 14
22 12
24 11
26 10
28 9
30 8
35 7
40 6
45 6
50 5

Traditional Selective
Exec. Mark Sweep Exec. Mark Sweep

49.116 3.190 2.326 49.995 3.634 2.161
46.604 1.430 1.665 46.721 1.627 0.996
46.341 1.182 1.532 46.536 1.351 0.786
45.767 0.891 1.427 45.730 0.997 0.582
45.543 0.731 1.406 45.326 0.827 0.495
45.032 0.498 1.275 44.858 0.547 0.319
45.282 0.548 1.311 44.994 0.616 0.377
45.362 0.498 1.300 45.099 0.586 0.365
45.259 0.414 1.263 44.809 0.463 0.290
45.181 0.335 1.233 44.758 0.381 0.242
45.027 0.283 1.256 44.759 0.312 0.207
45.063 0.243 1.205 44.906 0.283 0.187
45.114 0.196 1.177 44.761 0.213 0.140
45.381 0.221 1.194 44.984 0.240 0.163
45.300 0.174 1.182 45.048 0.192 0.137
45.406 0.166 1.174 44.010 0.184 0.132
45.474 0.122 1.154 43.990 0.135 0.103

Table 3: Execution times fc 3r -22% jack.

l/64
Exec. Mark Sweep

58.170 13.839 7.015
46.646 6.033 3.691
43.899 4.039 2.774
42.213 3.068 2.181
41.044 2.596 1.909
42.559 2.225 3.032
41.642 1.736 2.374
41.359 1.623 2.222
40.222 1.276 1.720
40.511 1.168 1.569
40.094 1.041 1.429
39.040 0.708 0.924
39.878 0.597 0.776
39.004 0.612 0.779
38.593 0.469 0.629

Table 4: Adaptive ! s

Exec
55.909
45.342
43.229
41.525
41.001
40.520
40.540
39.934
39.837
39.915
38.728
39.144
39.824
39.596
38.978

l/128
Mark

12.145
5.247
3.530
2.657
2.262
1.928
1.574
1.470
1.207
1.107
0.999
0.697
0.587
0.589
0.467

Sweep
6.130
3.113
2.369
1.945
1.764
1.738
1.514
1.432
1.278
1.166
1.046
0.824
‘0.776
0.779
0.628

l/512
Exec. Mark Sweep

54.924 10.919 6.139
45.228 4.567 3.117
43.262 3.003 2.363
41.924 2.219 1.958
41.381 1.843 1.767
40.840 1.543 1.649
40.874 1.248 1.486
40.499 1.179 1.450
40.497 0.940 1.367
40.392 0.860 1.282
40.641 0.774 1.175
39.739 0.548 1.083
40.086 0.470 1.013
40.485 0.483 1.113
39.919 0.386 0.912

Neeping times for -227mtrt.

389

