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Abstract 

Mark and sweep garbage collectors are known for using time 
proportional to the heap size when sweeping memory, since 
all objects in the heap, regardless of whether they are live or 
not, must be visited in order to reclaim the memory occupied 
by dead objects. This paper introduces a sweeping method 
which traverses only the live objects, so that sweeping can 
be done in time dependent only on the number of live objects 
in the heap. 

This allows each collection to use time independent of 
the size of the heap, which can result in a large reduction 
of overall garbage collection time in empty heaps. Unfortu- 
nately, the algorithm used may slow down overall garbage 
collection if the heap is not so empty. So a way to select 
the sweeping algorithm depending on the heap occupancy is 
introduced, which can avoid any significant slowdown. 

1 Introduction 

Automatic management of memory at run time is called 
garbage collection [l, 21. Garbage collection eases the de- 
velopment of applications tremendously, as anyone who has 
had to chase down an obscure dangling pointer reference or 
memory leak can attest to. 

Mark and sweep garbage collection [3] is a simple and 
popular way to implement garbage collection. However, 
most implementations of mark and sweep collection suffer 
from the problem that when the heap size is greatly in- 
creased, the time spent in each garbage collection also in- 
creases by a similar factor, regardless of the amount of ob- 
jects that are actually live. This is because the sweep phase 
must visit every object in the heap, whether live or dead, in 
order to check if it was reached during the mark phase. 

This linear dependence of sweep time on the heap size 
poses a fundamental lower bound on the overall sweep time 
when using traditional mark and sweep garbage collection, 
since even though the collection frequency is inversely pro- 
portional to the heap size, the linear increase in time for 
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each individual sweep prevents any further decrease in over- 
all sweeping time. (That is, the time doesn’t decrease until 
the heap size becomes large enough so that garbage collec- 
tion doesn’t occur at all. We’ll pretend that the heap size 
will never grow that large.) 

This is one of the reasons why copying collection is some- 
times claimed to be better than mark and sweep collection, 
since the time spent by copying collection depends linearly 
on the amount of memory occupied by live objects instead 
of depending on the size of the heap. Because of this, when 
the heap is very large and the number df live objects is very 
small (such as is expected with the youngest generation of 
a generational garbage collector [4]), copying collection is 
usually much faster than mark and sweep collection [5]. 

On the other hand, copying collectors do have problems 
of their own. For example, they can only use half of the 
heap at any given time, regularly copy all live data during 
each collection, and require that all references be precisely 
identified (there are ways to work around some of these prob- 
lems [6, 71, but they add additional complexity to implemen- 
tations). Thus many systems use mark and sweep garbage 
collection instead. 

This paper shows that mark and sweep garbage collec- 
tion can also use time independent of the size of the heap 
using an algorithm which will be called selective sweeping. 
This partially offsets one of the disadvantages that mark and 
sweep garbage collection suffers against copying garbage col- 
lection. Since the algorithm can be slower than the tradi- 
tional sweeping algorithm when there are many live objects, 
a way to avoid this slowdown is also introduced. 

For simplicity, only simple non-incremental garbage col- 
lection is considered, and the heap is assumed to be con- 
tiguous. (It is a simple matter to extend the approach to a 
non-contiguous heap. It should also not be too difficult to 
integrate the approach with existing incremental mark and 
sweep garbage collectors, although whether this would be 
worthwhile is rather questionable.) 

The remainder of this paper is organized as follows. Sec- 
tion 2 gives an overview of traditional mark and sweep 
garbage collection. Section 3 introduces selective sweeping, 
and section 4 shows how to avoid any significant slowdown 
that might result from using this algorithm. Section 5 de- 
scribes an actual implementation and reports some empir- 
ical results. Section 6 gives pointers to other approaches 
that also work on reducing or hiding sweep time. Finally, 
section 7 concludes. 
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2 Traditional Mark and Sweep Collection 

This section introduces traditional mark and sweep garbage 
collection and its time complexity, and shows why there is 
a lower bound on the overall garbage collection time. 

2.1 The Algorithm 

In the simplest version of mark and sweep garbage collection, 
garbage collection is done by marking all the reachable ob- 
jects (called live objects, since they may eventually be used 
by the program) in the ma& phase, and then reclaiming 
memory occupied by unreachable objects (called dead ob- 
jects, since it is certain that they can never be used again) 
in the sweep phase. 

The mark phase is done by first marking the objects 
in the root set (the set of objects that can be referenced 
directly by the application, e.g. machine registers or global 
variables), and then continually marking unmarked objects 
that are referenced from marked objects, until there are no 
more objects to be marked. When the mark phase is done, 
all objects that can be reached from the root set would have 
been marked. 

Algorithm 1 is the typical way to mark all objects that 
are reachable from the root set. Prior to marking with this 
algorithm, all objects in the heap must have been unmarked 
(root objects will not be considered as part of the heap). 
Otherwise, a path to a still reachable object might not be 
completely traversed because of the existence of a marked 
object on the path. This can be ensured by unmarking all 
marked objects in the heap during the sweep phase of the 
previous garbage collection. 

Algorithm 1 Marking reachable objects 

M t {T : r is in root set} 
while M # 0 do 

a t some element of M 
M t M - {a) 
for each object b referenced by a do 

if b has not been marked then 
mark b, M t M U {b} 

end if 
end for 

end while 

M in algorithm 1 contains the set of marked objects 
whose children may or may not have been marked (this will 
be called the boundary set in this paper). It is in effect the 
boundary between marked objects whose children have also 
been marked and objects that have not been marked, as in 
figure 1. 

At any point after the initial stage is complete, i.e. after 
all the root objects have been put into the boundary set, 
any unmarked objects reachable from the root set must also 
be reachable from the boundary set. Thus when there are 
no more objects in the boundary set, there are no more 
unmarked objects reachable from the root set, and the mark 
phase is complete. 

Depending on the order objects are removed from the 
boundary set, the algorithm traverses objects in depth-first 
order using a mark stack (LIFO), or it may traverse objects 
in breadth-first order using a mark queue (FIFO). These are 
in fact the most common orderings used in mark and sweep 
collectors. 

Boundary set 

Unmarked objects 

Figure 1: An example snapshot of the marking process. 
Nodes are colored according to Dijkstra’s tricolor marking 
abstraction [8], where marked objects whose children have 
been marked are black, marked objects whose children might 
still be unmarked are grey, and unmarked objects are white. 

The sweep phase is when memory occupied by dead ob- 
jects is actually reclaimed. This is traditionally done by 
visiting each object in the heap one by one and reclaiming 
the memory occupied by an object if it is not marked, since 
only marked objects can be reached from the root set. Also, 
any marked object is unmarked in order to prepare for the 
next garbage collection, as can be seen in algorithm 2. 

Algorithm 2 naditional sweeping 

for each object a in the heap do 
if a is marked then 

unmark a 
else 

reclaim memory occupied by a 
end if 

end for 

2.2 Time Complexity 

During the mark phase, each live object is pushed and 
popped exactly once from the boundary set. Each refer- 
ence field of every reachable object is also visited exactly 
once. Thus if R is the total number of references in every 
live object and n is the number of live objects in the heap, 
O(n + R) time is used. If L is the amount of memory oc- 
cupied by live objects, then marking can be done in O(L) 
time, since R < L and n = O(L). 

During the sweep phase, every object is checked to see 
whether they are marked or not. If it is marked, it is then 
unmarked. If it is not marked, the memory occupied by 
the object is reclaimed. If each reclamation can be done in 
constant time (which is certainly possible, e.g. using segre- 
gated free lists [9]), then O(N) time is used during the sweep 
phase, where N is the total number of objects on the heap. 

When the sizes of objects in the heap are independent of 
the heap size, which will almost certainly be the case,’ then 
N will be proportional to the heap size. Thus sweep time is 
in O(H), where H is the size of the heap. 

When the memory occupied by live objects is a signifi- 
cant and constant fraction of the heap size, the time used by 

‘The only way object sizes can be dependent on the heap size is 
for them to vary as the heap size varies, but such programming styles 
are extremely rare. 
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the mark phase and the sweep phase are asymptotically sim- 
ilar, since O(L) z O(H) when L 0: H. In practice, marking 
time dominates in such cases. 

However, when the heap occupancy is low, sweep time 
dominates, since the sweep time increases linearly with the 
heap size while the marking time stays relatively constant. 
This is the main reason why increasing the heap size over 
a certain threshold does not help very much in reducing 
the overall time spent in garbage collection using traditional 
mark and sweep collection, since even though the frequency 
of collections depends inversely on the heap size, the time 
spent in each collection increases linearly with the heap size. 

This is in contrast to copying collection, where the fre- 
quency of collections depends inversely on the heap size 
while each collection takes relatively constant time, so that 
the overall garbage collection time is inversely proportional 
to the heap size [5]. 

(More accurately, the frequency of collections is inversely 
proportional to the size of the dead portion of the heap 
for both mark-sweep and copying collection. This does not 
change the above assertions for higher heap sizes, since the 
dead portion occupies most of the heap at such sizes.) 

3 Selective Sweeping 

As was pointed out in section 2.2, sweep time, which depends 
linearly on the size of the heap, dominates the garbage col- 
lection time when there are very few live objects compared 
to the size of the heap. This is because every object in the 
heap, regardless of whether they are live or dead, must be 
traversed so that memory occupied by unreachable objects 
can be reclaimed. 

However, if one knows that there are no live objects be- 
tween two given live objects, one can reclaim the space be- 
tween them in a single operation, instead of having to visit 
all the objects between them, since these objects are obvi- 
ously dead. 

This can also be done in traditional sweeping by checking 
if all objects between two marked objects are unmarked. If 
this is the case, then the memory occupied by the unmarked 
objects can be reclaimed in a single operation, instead of re- 
claiming memory for each dead object separately. However, 
since each object is still visited at least once, sweep time 
still depends linearly on the heap size. 

Unfortunately, it is difficult to avoid having to deal with 
every object in the heap when algorithm 1 is used as the 
marking algorithm, since it leaves behind no information 
about which objects are live, except for the marking that 
is done on the live objects. This forces one to check every 
object to see if they are marked. 

So as the first step in making sweep time independent of 
the heap size, instead of discarding objects that have been 
removed from the boundary set as in algorithm 1, a set 
consisting of all the objects that are reachable should be 
constructed. 

Algorithm 3 is able to construct the set of marked ob- 
jects while marking all the live objects. It is an adaption of 
Cheney’s scanning algorithm [lo], which is typically used in 
copying collectors. 

Algorithm 3 essentially works like algorithm 1. Unlike 
algorithm 1, which only maintains the boundary set (the 
set of marked objects which may still refer to objects that 
have not yet been marked), algorithm 3 also maintains the 

Algorithm 3 Constructing set of live objects 
sto,tt-1 
for each root object r do 

tct+1,mttr 
end for 
while s 5 t do 

for each object a referenced by m, do 
if a has not been marked then 

mark a, t t t + 1, mt t a 
end if 

end for 
ststl 

end while 
{mi : 0 5 i 5 t} is set of live objects 

set of marked objects which are known to refer only to other 
marked objects. 

Comparing the algorithm to algorithm 1, we see that 
the set {mi : 0 5 i < s} is the set of marked objects which 
are known to refer only to other marked objects, and that 
the set (mi : s 5 i < t} is the boundary set. When the 
algorithm completes, the boundary set is empty and the set 
{mi : 0 < i 5 t} contains all the objects reachable from the 
root set. 

Each object is pushed into and popped from the bound- 
ary set exactly once, and each reference in every live object 
is also visited exactly once, as in algorithm 1. So obtaining 
the set of live objects takes the same time as marking all 
the live objects, which is in O(L), where L is the amount of 
memory occupied by the live objects. 

However, the set of live objects alone does not allow one 
to check the nonexistence of live objects between two given 
live objects in constant time, because without checking all 
the objects in the set, one cannot be sure if there are no live 
objects between two given live objects. This is because the 
order which the objects were entered into the set is indepen- 
dent of the order which they are positioned in the heap. 

In order to make this possible, we can sort the objects’ 
by address. Since it is guaranteed that there are no live 
objects between two consecutive objects in the sorted set, it 
is now possible to sweep the heap without looking at every 
object in the heap, as in algorithm 4 (which will be called 
selective sweeping in order to distinguish it from traditional 
sweeping). 

The second and last conditional statements in algo- 
rithm 4 are required so that the boundaries of the heap 
are properly dealt with. These statements can be removed 
if there are dummy objects, considered live at sweep time, 
at the start and end of the heap, which would act as sen- 
tinels. Using such sentinels would also absolve of the need 
for handling the special case where there are no live objects, 
since such a case could never happen. 

Algorithm 4 can reclaim the memory in each gap between 
the live objects in constant time (assuming that the recla- 
mation operation itself takes constant time, of course). This 
is in contrast to traditional sweeping, where reclaiming the 
memory for each gap takes time proportional to the number 
of dead objects that reside in them (see figure 2). Since there 
can be at most n + 1 gaps when there are n live objects, the 
time taken to reclaim all the memory is proportional to the 
number of live objects. 

Since the set of live objects is maintained separately, the 
sweep phase does not need to check whether each object 
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(a) With traditional sweeping (b) With selective sweeping 

Figure 2: Object traversal during sweeping. Shaded nodes denote live objects. 

Algorithm 4 Selective sweeping 

M is the set of live objects 
if M = 0 then 

free all memory in heap 
else 

sort M so that me, . , m, E A4 are in order of address 
unmark me 
if me does not start at beginning of heap then 

free memory before me 
end if 
for 15 i 5 n do 

unmark rni 
if mi-i and mi are not adjacent then 

free memory between m;-1 and rni 
end if 

end for 
if m, does not end at end of heap then 

free memory after m, 
end if 

end if 

is marked or not (in fact, it is guaranteed that only the 
objects it does visit are marked). In this case, marking is 
required only by the mark phase in order to avoid redundant 
traversals, unlike in traditional mark and sweep, where it is 
also required by the sweep phase in order to check whether 
each object is reachable from the root set. 

Selective sweeping takes O(n) time when reclaiming 
memory, where n is the number of live objects and assum- 
ing that each reclamation operation takes constant time. 
However, since the set of live objects must be sorted by ad- 
dress prior to reclaiming memory, sweeping time will be in 
O(n + f(n)) time, where O(f(n)) is the time required for 
sorting n objects. 

Since comparison sorts such as merge sort or heap sort 
take O(n log n) time to sort n objects, sweeping can also be 
done in O(n log n) time, which is independent of the size of 
the heap. Or a distribution sort such as radix sort [ll] could 
be used, which has a O(nlogH) worst case time bound, 
where H is the size of the heap, but is much faster than 
comparison sorts at large n and in fact can be done in O(n) 
time on average. 

These worst case time bounds are asymptotically worse 
compared to the O(H) time bound of traditional sweeping 
when n oc H, where n is the number of live objects and H 
is the heap size.’ However, when n is a very small fraction 
of H, i.e. when the heap is nearly empty of live objects, the 
time spent in sweeping with the selective algorithm would 

‘Certain implementations could use O(n log n) time or worse when 
freeing memory [12, 131, in which case this statement would not apply. 

be insignificant compared to the time spent in sweeping with 
the traditional algorithm. 

Also, since the time spent in sweeping is now indepen- 
dent of the heap size, overall garbage collection time is now 
inversely proportional to the heap size. This is because each 
individual garbage collection takes relatively constant time, 
while the collection frequency is inversely proportional to 
the heap size. This is in contrast to traditional mark and 
sweep collection, where there is a lower bound to the over- 
all sweep time because of the linear increase of sweep time 
along with the size of the heap. 

4 Adaptive Mark and Sweep Collection 

When the number of live objects is insignificant compared to 
the number of all the objects in the heap, it is quite obvious 
that sweep time can be reduced significantly using selective 
sweeping. However, when the number of live objects is a 
significant fraction of the total number of objects, traditional 
sweeping would probably be better, since it is linear on the 
heap size and requires no extra step (such as the sorting 
step in selective sweeping) before making only a single pass 
through the heap. Also, traditional sweeping typically will 
use much less memory during the marking phase, since it 
does not have to keep track of all the live objects. 

Therefore it can be advantageous to select the sweeping 
algorithm depending on the number of live objects in the 
heap. 

4.1 Adaptive Marking 

It is possible to use traditional sweeping to reclaim dead 
objects even when algorithm 3, which constructs the set of 
live objects, is used in the mark phase. However, it would be 
a waste of memory, since algorithm 1, which only maintains 
the boundary set, can mark all the live objects with the same 
efficiency. It is also much more prone to overflows when a 
fixed array is used to maintain the set of live objects. 

On the other hand, using the traditional algorithm for 
marking does not help much to reduce sweep time for a 
heap with few live objects. So it might be better if there 
were some way to select the marking algorithm to be used 
depending on the number of live objects. 

This is not simple to do before starting the mark phase, 
since the number of live objects is not known One possi- 
ble solution would be to predict the number of live objects 
based on the detected number of live objects during previ- 
ous garbage collections. This would be akin to the adaptive 
tenuring policy in a generational garbage collector as pro- 
posed by Ungar and Jackson [14], which adjusts the tenur- 
ing threshold based on the number of tenured objects during 
past minor collections. 
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Unlike their adaptive tenuring policy, however, there is 
no need to obtain the actual number of live objects, but 
only to detect whether the number of live objects exceeds 
some certain threshold. This can be done very simply in the 
marking phase itself. 

This can be done by checking whether the number of live 
objects go over a certain threshold when inserting objects 
into the set of live objects with algorithm 3. If at a certain 
point this threshold is exceeded, the marking algorithm is 
switched to algorithm 1, which does not construct the set of 
live objects. 

This is possible because the boundary set of algorithm 3, 
{mi : s 2 i 2 t}, can be used without any change as the 
boundary set for algorithm 1, since both have exactly the 
same roles (they are both the set of marked objects which 
may refer to unmarked objects). 

Also, detecting whether the number of live objects be- 
comes greater than some threshold does not need to intro- 
duce any additional overhead, since it can use the same 
mechanism used to detect stack overflows when marking 
with an explicit array-based mark stack (e.g. using explicit 
checks or using a guard page [15]), which would have been 
used anyways in order to maintain correctness. (When 
marking with other methods, such as with a list-based mark 
queue, marking would already be expensive enough that 
maintaining a simple count would be a negligible overhead.) 

With these techniques, it is now possible to select the 
sweeping algorithm based on the number of live objects in 
the heap without wasting too much memory in the mark 
phase. 

4.2 Adaptive Sweeping 

When the number of live objects is a significant fraction of 
the total number of objects in the heap, it would be better to 
use traditional sweeping, whereas when there are very few 
live objects, it would be better to use selective sweeping, 
which only traverses the live objects. 

However, when using selective sweeping, there is the issue 
of what kind of sorting algorithm to use when sorting live 
objects by address. 

Using radix sort with a large enough radix, sweeping 
can be done in time practically linear on the number of 
live objects (see section 5.1). But when the number of live 
objects is small enough, comparison sorts might be better 
since radix sort does multiple passes, and the difference in 
the complexity is less important for smaller instances. 

Thus, when using selective sweeping, a comparison sort 
should be used when the number of live objects is very small, 
and a distribution sort such as radix sort should be used 
when the number is much larger (though still small com- 
pared to the size of the heap). 

The exact range of the number of live objects where se- 
lective sweeping with a comparison sort, selective sweeping 
with a distribution sort, and traditional sweeping is best 
will depend on the application and system. It may be the 
case that there is no range where selective sweeping with 
a distribution sort is better than selective sweeping with a 
comparison sort, or vice versa. But it is certain that selec- 
tive sweeping will be much better than traditional sweeping 
when the heap occupancy is very low. 

5 Actual Case Study 

This section outlines the implementation of a garbage collec- 
tor used in a real system, which uses selective and adaptive 
sweeping, and gives some experimental results showing that 
the algorithms actually do work in practice. 

5.1 Implementation 

A garbage collector using the algorithms described in this 
paper was implemented for LaTTe [16]. LaTTe is a freely 
available Java virtual machine with a JIT compiler for the 
UltraSPARC. The JIT compiler uses a novel register al- 
location algorithm [17] and does many optimizations such 
as common subexpression, loop invariant code motion, cus- 
tomization, etc. It uses lightweight monitors [18] and does 
on-demand translation of exception handlers [19]. There is 
also a limited adaptive compilation framework, which in- 
cludes a reasonably fast bytecode interpreter [20]. 

The non-incremental garbage collector uses mark and 
sweep and is partially conservative. Small and large ob- 
jects are maintained separately, where a small object is an 
object with size less than a kilobyte. Allocation of small ob- 
jects are done with pointer increments [21]. This allocation 
scheme causes small objects with widely differing sizes to be 
adjacent to each other, so the mark bits are bundled with 
the objects instead of using a separate mark bitmap. 

Marking functions for each object type, which mark 
other objects referenced by an object, are generated at run- 
time. These are then called directly to mark objects refer- 
enced by an object, instead of using descriptor fields which 
describe the fields of an object. This approach is also used 
in other systems such as SmallEiffel [22]. 

The mark phase uses an explicit array-based mark stack 
when marking with the traditional algorithm. This mark 
stack is also used for storing the set of live objects. 

For this experiment, enough memory is reserved for the 
mark stack so that overflows never occur. For actual use, a 
garbage collector which uses only selective sweeping would 
not be practical since there might not be enough memory 
to store the set of live objects. A garbage collector which 
chooses the sweeping algorithm adaptively, on the other 
hand, can use the same methods that traditional systems 
use to handle stack overflows [23]. 

Selective and adaptive sweeping are done only on the 
small object area, which is the portion of the heap which 
contains small objects. For this reason, the term “heap size” 
in this section actually means the size of the small object 
area. In addition, garbage collection is never triggered while 
allocating large objects. 

For the sorting algorithm used by selective sweeping, 
radix sort based on counting sort was used. It uses a radix 
of 2048, and always does three passes to sort the set of live 
objects. Since with three passes we can deal with an address 
range of 204g3 bytes, or 8 gigabytes, we can always sort an 
arbitrary set of 32 bit pointers, since a 32 bit pointer has an 
address range of only 4 gigabytes. 

Also, since each pass takes time in O(n), where n is the 
number of elements to sort, and we always do three passes, 
the sorting algorithm used in this implementation takes time 
linear on 71. 

More details on LaTTe’s memory management will be 
described in Chung et al. [24]. 

31n fact, management of large objects had not yet been properly 
implemented at the time of writing. 
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5.2 Experimental Results 

For the test programs, -202-jess, -227mtrt, and -228-jack 
from the SPECjvm98 benchmark suite [25] were used. 
-2OO_check, -201-compress, -209_db, -and -222mpegaudio 
were not used since they do almost no garbage collection, 
while -213-javac was not used because the number of live 
objects during its execution is so large such that selective 
and adaptive sweeping would do little to shorten garbage 
collection time within the memory available. 

The test machine was a 270MHz UltraSPARC with 
256MB of RAM running Solaris 2.6. The overall sweep times 
used by traditional and selective sweeping are compared in 
figure 3. (The actual timings from which the graphs were 
obtained are listed in the appendix.) 

Most objects in -202-jess and -228-jack die quickly, so 
the amount of live objects is typically small (about 1MB). 
This is reflected in the results shown in figure 3, where selec- 
tive sweeping is in fact always faster than traditional sweep- 
ing. 

On the other hand, the amount of live objects is much 
larger for -227_mtrt (about 8MB). So at lower heap sizes, 
and hence higher heap occupancies, traditional sweeping is 
much faster, while at higher heap sizes, and hence lower 
heap occupancies, selective sweeping is much faster. This 
indicates that we should select the sweeping algorithm ac- 
cording to the heap occupancy. 

Since each individual sweeping time for traditional 
sweeping is proportional to the size of the heap, while that of 
selective sweeping as implemented in this experiment is lin- 
ear on the number of live objects, we can expect the thresh- 
old, under which selective sweeping would be better and over 
which traditional sweeping would be better, to be a constant 
fraction of the size of the heap. (This of course would not 
apply if a sorting routine which uses non-linear time were to 
be used.) 

It would not be difficult to determine this fraction em- 
pirically. A good value for LaTTe would not apply to other 
systems that might use adaptive sweeping, of course, but 
it would give some insight on how adaptive sweeping would 
behave. 

Since -227mtrt was the benchmark that would bene- 
fit from adaptive sweeping, it was used to estimate a good 
value for the fraction. Figure 4 shows the sweeping times for 
the fractions 0 (equivalent to traditional sweeping), l/512, 
l/128, l/64, and I (equivalent to selective sweeping). 

It should be noted that these fractions are not the ratio 
between the the amount of live memory and amount of total 
memory, but rather the ratio between the number of live 
objects and the amount of total memory. For example, if 
the average size of an object is 16 bytes (which is actually 
the practical minimum size for objects), then a fraction of 
l/128 actually means that selective sweeping should be used 
only when the amount of live memory is less than an eighth 
of the size of the heap. (It might be better to use the ratio 
between the number of live objects and the number of all 
objects, but the memory allocator in LaTTe does not keep 
track of the number of allocated objects.) 

As can be seen from figure 4, too large a fraction, such 
as l/64 in this case, would cause selective sweeping to be 
used even when it would be much slower, so that adaptive 
sweeping is slower than traditional sweeping at low heap 
sizes. 

A too small a fraction such as l/512, on the other hand, 
would cause traditional sweeping to be used even when it 
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Figure 3: Comparison of sweep times. 
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is the slower algorithm, so adaptive sweeping is slower than 
selective sweeping at high heap sizes. It is faster than tra- 
ditional sweeping, though, so it might be better than using 
a too large a fraction. 

However, with a fraction of l/128, we can see that adap- 
tive sweeping is never significantly slower than both tradi- 
tional and selective sweeping. This is to be expected with a 
good value for the threshold, since at high heap occupancies 
traditional sweeping is used, while at low heap occupancies 
selective sweeping is used. 

It is interesting to note that at intermediate heap oc- 
cupancies, adaptive sweeping with a good threshold is no- 
ticeably faster than both traditional and selective sweeping. 
This is because the heap occupancy actually varies some- 
what between each collection, so that the sweeping algo- 
rithm which is faster also varies. With a good threshold 
(such as l/128 in figure 4), the faster of the two algorithms 
are used in each collection, so that adaptive sweeping ends 
up faster overall than either traditional or selective sweep- 
ing. Of course, this does not happen with a bad thresh- 
old (such as l/64 or l/512 in figure 4), so choosing a good 
threshold is important. 

These results show that selective sweeping indeed results 
in much larger reductions in sweep time at low heap occu- 
pancies, and that choosing the sweeping algorithm at run 
time according to the heap occupancy can avoid the slow- 
down experienced by selective sweeping at high heap occu- 
pancies. In fact, doing so can result in shorter collection 
times than either just using traditional or selective sweep- 
ing. 

6 Related Work 

Sahlin [26] introduced an O(n log n) time algorithm for mark 
and compact garbage collection, which is also generally 
known as taking time proportional to the heap size. He 
uses an idea very similar to the one outlined in this paper, 
with a couple of important differences. 

First, the implementation was for a mark and compact 
garbage collector, not a mark and sweep garbage collector, 
so some of the algorithms are substantially different. 

Second, a separate gathering phase is done to construct a 
linked list of non-garbage memory blocks, which is basically 
a repetition of the mark phase with a few modifications. 
This is done separately so as to identify the garbage cells 
in which the links can be stored, which cannot be identi- 
fied before completing a mark phase. With this method, no 
memory need be reserved for storing the set of live objects. 
This is important for a collector which uses pointer reversal 
for marking [27], since the whole point of using pointer re- 
versal is to avoid having to reserve extra space for auxiliary 
data structures, such as a mark stack or a set of live objects. 

This is in contrast to the approach used in this paper, 
where marking and construction of the set of live objects are 
done concurrently. On the other hand, memory for storing 
the set of live objects must be reserved separately, though 
this memory can be shared with the mark stack when an 
explicit array-based mark stack is used during marking. 

Boehm [28] pointed out that comparisons of asymptotic 
complexity between garbage collection algorithms should 
also take allocation time into account, not just garbage col- 
lection time. When mark-sweep and copying collection is 
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compared in this way, they both turn out to have a time 
complexity of O(H), where H is the size of the heap. 

This is very apparent in garbage collectors that do lazy 
sweeping, where only enough sweeping is done during alloca- 
tion in order to find an appropriate free memory chunk [29]. 
In this case, there appears to be no time spent in sweep- 
ing during garbage collection. However, sweeping done dur- 
ing allocation is still work that is being done, and selective 
sweeping could help reduce this work.when the heap occu- 
pancy is low. 

Reducing sweep time is also possible with mark bitmaps, 
since a fixed number of objects can be reclaimed in a single 
operation, using the fact that it is possible to check in a 
single operation whether the bits in a word, i.e. the mark 
bits in that portion of the mark bitmap, are all set to zero, 
i.e. all the objects in that portion are dead. 

However, with mark bitmaps there is only a linear reduc- 
tion in sweep time (albeit a large one), so there is still a the- 
oretical lower bound on the overall garbage collection time. 
Marking also becomes more expensive instruction-wise than 
when the mark bits are bundled with the objects. On the 
other hand, the improvements in cache effects and sweeping 
time make it unclear whether the approach outlined in this 
paper would be better. In any case, there should be no se- 
rious difficulties in combining the two approaches, although 
whether this would be worthwhile is also unclear. 

Baker [30] introduced the ultimate algorithm for sweep 
time reduction: mark-sweep using a doubly-linked list 
(which he called the treadmill), where the sweeping is done 
in constant time. Unfortunately, all objects must be of the 
same size for it to be usable, so its usefulness in general- 
purpose systems is limited. 

Wilson and Johnstone [31] extended Baker’s algorithm 
to multiple object sizes using segregated storage. However, 
unlike Baker’s algorithm, where sweeping can be done in 
constant time, their algorithm required that each dead ob- 
ject be processed before being reused, so sweeping still uses 
time linear on the heap size (although they do sweep each 
dead object in a lazy manner during allocation). 

These list-based mark and sweep garbage collectors are 
inappropriate as non-incremental garbage collectors, how- 
ever, since list manipulation is typically much more expen- 
sive than using a simple array-based mark stack. They were 
designed as real-time garbage collection algorithms, though, 
so this is not a problem in their intended domain. 

7 Conclusions 

Mark and sweep garbage collection traditionally required 
time proportional to the heap size in order to sweep the 
heap. This is in contrast to copying collection, where copy- 
ing takes time proportional to the amount of live memory, 
which is independent of the size of the heap. 

This paper has shown that by sorting the live objects by 
address and visiting only the live objects during the sweep 
phase, mark and sweep garbage collection can also be done 
in time independent of the heap size. Thus, instead of having 
a fixed lower bound in overall sweep time as in traditional 
sweeping, selective sweeping can decrease the overall sweep 
time almost arbitrarily by increasing the heap size, 

This allows mark and sweep garbage collection with se- 
lective sweeping to reduce overall garbage collection time by 
a much more significant factor than with traditional sweep- 
ing when the heap size is increased. In other words, selective 

sweeping uses much less time than does traditional sweeping 
when the heap occupancy is very low. 

A low heap occupancy is not a desired trait of mod- 
ern software, however. For one thing, even though memory 
prices have dropped dramatically, there has also been a cor- 
responding increase in memory usage. Another point is that 
applications typically share memory with other applications, 
so it would be a bad thing if applications indiscriminately 
increased their heap size in order to lower the heap occu- 
pancy. 

On the other hand, a low heap occupancy is a desired and 
expected trait of the youngest generation in a generational 
garbage collector. Thus selective sweeping can speed up 
minor collections for a generational garbage collector which 
uses only the mark and sweep algorithm. 

Also, since the sweeping algorithm can be selected ac- 
cording to the heap occupancy at garbage collection time, 
the slowdown that would be experienced by the selec- 
tive sweeping algorithm at high heap occupancies can be 
avoided. Thus selective sweeping is also useful in a sim- 
ple non-incremental mark and sweep garbage collector when 
the heap occupancy varies by large amounts, by using tra- 
ditional sweeping when the heap occupancy is high and se- 
lective sweeping when the heap occupancy is low. 
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Appendix 

Tables 1, 2, and 3 tabulate the execution times, marking 
times, sweeping times, and numbers of collections for each 
given heap size, using the selected benchmarks from the 
SPECjvm98 benchmark suite that were run on top .of the 
LaTTe Java virtual machine on a 279MHz UltraSPARC. 
The heap size, which is actually the size of the small ob- 
ject area as mentioned in section 5.1, is given in units of 
megabytes. The units for the times are in seconds. 

Looking at the tables, one might notice that the marking 
times are larger when constructing the set of the live objects 
(i.e. doing selective sweeping) than when just marking the 
live objects (i.e. doing traditional sweeping). This could be 
considered a little odd, since the instruction sequences for 
constructing the set of live objects and just marking the live 
objects are nearly identical. 

This is probably due to cache effects, since when con- 
structing the set of live objects, the location at which an 
object is pushed in and the location from which the ob- 
ject to walk is popped can be quite a distance apart, unlike 
when marking with the traditional algorithm, in which the 
object that is pushed into the mark stack is more likely 
to be popped immediately for walking. Also, algorithm 3, 
which is used to construct the set of live objects, does a 
breadth-first traversal, which tends to have lower locality of 
reference than depth-first traversal, as done when marking 
with an explicit mark stack. 

These differences may eventually be mitigated by using 
techniques such as prefetching or using a different algorithm 
to construct the set of live objects. 

However, this contributes only a constant multiplicative 
factor to the marking time, so it does not change the fact 
that each individual garbage collection can be done in time 
independent of the heap size with selective sweeping, and 
hence the overall garbage collection time is stili reduced by 
a much larger factor at high heap sizes when compared to 
traditional sweeping. 

Table 4 shows the times for -227-mtrt using adaptive 
sweeping, with the threshold set to the given constant frac- 
tions of the heap size. 
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Heap ColIs. 
125 4 

6 
8 

10 
12 
14 
16 
18 
20 
25 
30 
35 
40 
45 
50 
60 
70 

69 
48 
38 
31 
26 
23 
20 
18 
15 
12 
11 
10 

9 
8 
7 
6 

t 

Traditional 
Exec. Mark Sweep 

43.044 4.738 3.302 
40.065 2.651 2.600 
38.832 1.841 2.243 
38.260 1.465 2.122 
38.175 1.174 2.019 
37.802 0.971 1.950 
37.628 0.851 1.912 
37.533 0.748 1.865 
37.383 0.642 1.830 
37.684 0.535 1.786 
37.403 0.408 1.741 
37.376 0.382 1.755 
37.355 0.340 1.709 
37.330 0.296 1.700 
37.180 0.255 1.674 
37.643 0.214 1.659 
37.497 0.175 1.639 

1 Selective 
Exec. Mark Sweep 

43.477 5.475 2.886 
39.549 3.034 1.634 
38.000 2.089 1.147 
37.420 1.696 0.920 
37.260 1.359 0.748 
36.276 1.116 0.633 
36.316 0.977 0.577 
36.167 0.861 0.476 
35.975 0.751 0.428 
36.006 0.615 0.351 
35.660 0.479 0.276 
36.065 0.443 0.252 
35.758 0.390 0.226 
35.769 0.345 0.199 
35.845 0.299 0.170 
35.914 0.246 0.147 
36.060 0.204 0.120 

Heap Colls. 
10 79 

Table 1: Execution times for -202-jess. 

12 36 
14 25 
16 19 
18 16 
20 14 
22 12 
24 11 
26 10 
28 9 
30 8 
35 7 
40 6 
45 6 
50 5 
55 5 
60 4 
65 4 
70 4 
75 4 
80 4 
90 3 

‘100 3 

Traditional 
Exec. Mark Sweep 

53.952 10.411 6.097 
44.420 4.385 3.149 
42.457 2.805 2.383 
41.216 2.082 2.010 
40.373 1.715 1.830 
39.881 1.424 1.687 
39.504 1.538 1.538 
40.010 1.035 1.497 
40.106 0.828 1.396 
39.292 0.751 1.359 
39.317 0.678 1.320 
38.703 0.466 1.220 
39.437 0.386 1.174 
39.744 0.407 1.179 
39.420 0.306 1.144 
39.258 0.305 1.137 
38.032 0.095 1.028 
40.077 0.141 1.051 
40.111 0.161 1.062 
40.191 0.158 1.062 
40.354 0.160 1.062 
40.444 0.086 1.024 
40.747 0.085 1.024 

Selective 
Exec. Mark Sweep 

76.079 16.084 22.765 
53.341 6.664 9.503 
48.520 4.324 6.140 
44.977 3.184 4.523 
43.206 2.630 3.724 
42.110 2.167 3.109 
41.093 1.716 2.447 
40.988 1.604 2.272 
40.562 1.265 1.768 
40.740 1.151 1.577 
40.137 1.028 1.425 
39.376 0.697 0.942 
39.786 0.578 0.792 
39.499 0.582 0.790 
39.280 0.473 0.670 
38.548 0.463 0.671 
37.238 0.136 0.169 
39.457 0.206 0.246 
39.474 0.238 0.320 
39.581 0.237 0.314 
39.719 0.237 0.315 
39.585 0.124 0.154 
39.913 0.124 0.154 

Table 2: Execution times for -227mtrt. 

388 



Heap Colis. 
4 117 
6 52 
8 36 

10 27 
12 22 
14 18 
16 16 
18 15 
20 13 
25 11 
30 9 
35 8 
40 7 
45 7 
50 6 
55 6 
60 5 

Heap Colls. 
10 79 
12 36 
14 25 
16 19 
18 16 
20 14 
22 12 
24 11 
26 10 
28 9 
30 8 
35 7 
40 6 
45 6 
50 5 

Traditional Selective 
Exec. Mark Sweep Exec. Mark Sweep 

49.116 3.190 2.326 49.995 3.634 2.161 
46.604 1.430 1.665 46.721 1.627 0.996 
46.341 1.182 1.532 46.536 1.351 0.786 
45.767 0.891 1.427 45.730 0.997 0.582 
45.543 0.731 1.406 45.326 0.827 0.495 
45.032 0.498 1.275 44.858 0.547 0.319 
45.282 0.548 1.311 44.994 0.616 0.377 
45.362 0.498 1.300 45.099 0.586 0.365 
45.259 0.414 1.263 44.809 0.463 0.290 
45.181 0.335 1.233 44.758 0.381 0.242 
45.027 0.283 1.256 44.759 0.312 0.207 
45.063 0.243 1.205 44.906 0.283 0.187 
45.114 0.196 1.177 44.761 0.213 0.140 
45.381 0.221 1.194 44.984 0.240 0.163 
45.300 0.174 1.182 45.048 0.192 0.137 
45.406 0.166 1.174 44.010 0.184 0.132 
45.474 0.122 1.154 43.990 0.135 0.103 

Table 3: Execution times fc 3r -22% jack. 

l/64 
Exec. Mark Sweep 

58.170 13.839 7.015 
46.646 6.033 3.691 
43.899 4.039 2.774 
42.213 3.068 2.181 
41.044 2.596 1.909 
42.559 2.225 3.032 
41.642 1.736 2.374 
41.359 1.623 2.222 
40.222 1.276 1.720 
40.511 1.168 1.569 
40.094 1.041 1.429 
39.040 0.708 0.924 
39.878 0.597 0.776 
39.004 0.612 0.779 
38.593 0.469 0.629 

Table 4: Adaptive ! s 

Exec 
55.909 
45.342 
43.229 
41.525 
41.001 
40.520 
40.540 
39.934 
39.837 
39.915 
38.728 
39.144 
39.824 
39.596 
38.978 

l/128 
Mark 

12.145 
5.247 
3.530 
2.657 
2.262 
1.928 
1.574 
1.470 
1.207 
1.107 
0.999 
0.697 
0.587 
0.589 
0.467 

Sweep 
6.130 
3.113 
2.369 
1.945 
1.764 
1.738 
1.514 
1.432 
1.278 
1.166 
1.046 
0.824 
‘0.776 
0.779 
0.628 

l/512 
Exec. Mark Sweep 

54.924 10.919 6.139 
45.228 4.567 3.117 
43.262 3.003 2.363 
41.924 2.219 1.958 
41.381 1.843 1.767 
40.840 1.543 1.649 
40.874 1.248 1.486 
40.499 1.179 1.450 
40.497 0.940 1.367 
40.392 0.860 1.282 
40.641 0.774 1.175 
39.739 0.548 1.083 
40.086 0.470 1.013 
40.485 0.483 1.113 
39.919 0.386 0.912 

Neeping times for -227mtrt. 
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