
CACTUS: Automated Tutorial Course Generation for
Software Applications

Federico Garcia
Escuela Tknica Superior de lngenieria InformZitica

Universidad Aut6noma de Madrid (UAM)
Cantoblanco, 28049, Madrid (Spain)

Phone: +34 91 348 22 91

Federico.GarciaQii.uam.es

ABSTRACT

Novice users often face many difficulties in mastering current
highly interactive systems. In this paper we describe CACTUS,
an interactive system used to develop tutorial courses for
software applications. CACTUS tutorial courses provide more
adequate and more dynamical explanations than currently
existing teaching components, since they are task-oriented and
provide just-in-time context-dependant explanations. These
tutors are also able to follow-up the user activity and act
according to what they perform. CACTUS is an environment that
uses the model-based design technology. In particular,
CACTUS uses declarative hierarchical task-models to derive
guidance instructions. Additionally, CACTUS releases tutorial
course designers tirn part of the intensive workload of
developing tutor programs as these guidance components are
currently developed. This system helps to generate application
tutorial courses based on a metaphor that represents the
contents of the courses as if they were textbooks, so that
learning an application is assimilated to reading a book on
certain subject and performing some activities.

Keywords
Tutorial Course Generation, User-Task Models, Programming
by Demonstration.

1. INTRODUCTION
Current graphic interfaces enclose a complexity that was
unthinkable not many years ago. These systems have in many
cases hundreds of commands, often operating in a different way
depending on the context. Thus, only few advanced users can
take advantage of a high percentage of the power of these
systems. However, these tools rarely come together with
systems that let the users learn systematically how to use their
applications. This fact is especially dramatic in the case of
novice users.

In this paper we introduce CACTUS, which stands for Creating
Application Courses about Tasks Using Scenarios, an
environment aiming to palliate the problems related to current
systems for software tutoring. CACTUS offers an integrated
environment to design tutorial courses for interactive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for prolit or commercial advantage and that
topics bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IL’1 2000 New Orleans LA USA
Copyright ACM 2000 I-581 13-134~8/00/1...$5.00

applications, and includes the necessary support to allow the
system to follow up the pupils during the tutorial course
execution.

From the point of view of the tutorial courses generation,
CACTUS offers a framework for the development of teaching
activities. This framework allows designers to create and
modify easily the courses in a fully interactive way, by using
both visual and demonstrational techniques [4]. This permits
the specification for the tutorial course by using the same
application for which we are creating it.

The produced tutorial courses are supported by the
development technology based on declarative interface models
[18], that provide many benefits in the application
development [15], as model reuse, rapid application
prototyping, and so on. Furthermore, the information in those
models makes it possible for application-external tools to
reason about the application state at run-time, in order to
modify the interface behavior. In this case, these models make it
possible for CACTUS to give the final users, the pupils, the
fundamental feature of receiving feedback from the following-up
of their activity and the evaluation of their knowledge on the
explained tasks.

The CACTUS environment has been tested to generate tutorial
courses for some applications. First, it has been proved with
interactive interfaces to teach continuous digital simulation
systems such as the solar system and Volterra equations [l]. It
has also been tested to generate a tutorial course to teach OOPI-
TEISKAD, an object-oriented computer aided design
environment based on the prototype/instance paradigm.
Furthermore, tests have taken place on an electronic agenda
and, finally, we have tested our tool to generate a course for
Schoodule, an application that uses a database and a constraint
solver to generate school schedules.

This paper is structured as follows. First, we provide the
motivation for the system by putting it into context. Then, the
system architecture will be introduced, describing the
subsystems CACTUS is based on. Afterwards, we will give a
more detailed description of CACTUS tutorial courses and their
operation, both during the course design and the execution.
Finally, we will provide some conclusions and future research
lines.

2. CONTEXT AND RELATED WORK
Even today, the most common guidance systems are based on
hypermedia explanations, describing how to access each
command and the functidns they are supposed to perform. This
format has serious drawbacks [3]. First, the explanations are

113

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325737.325798&domain=pdf&date_stamp=2000-01-09

given at a very low level, only referring graphic interface -- _
objects, and they never refer to higher conceptual level tasks.
Second, there is an isolation of the guidance component with
respect to the application, and there is no interconnection
between both components. Third, the processes are fully
explained before the user begins to carry out the task, so s/he
has to switch between the application and the help windows
to read the explanations and perform the task in parallel.
Finally, there is no feedback from the help system towards the
user to indicate when any accomplished step is not a correct
one. As a consequence, the guidance component is passive and
unable to correct the user.

A few applications deliver tutor systems to guide the users
through the application learning. These tutors have some
drawbacks that make them difficult to be widely used. First,
those tutors usually simulate the application behavior so that
the users have the feeling that they are using the real system,
not a simulated one. Even though this application clone
replicates only some system behaviors, its development
implies very high costs. Second, those tutors do not usually
teach by using each user’s work context, but they teach by
means of predelined examples. Although the provision of these
examples may help in some cases, many times users want to use
their own work contexts. Finally, there are high maintenance
costs, since each change in the application should be reflected
in the tutor component to guarantee the soundness of the
explanations.

according to what s/he needs to perform at each moment. The
most novel feature of this system is its ability to offer graphical
feedback, by highlighting application graphical objects. This
feedback indicates relevant information about what has been
previously done and what is still to be done. HATS is based on
the task models used by ATOMS [6][16], a system that manages
user-task models at run-time and permits the tasks to
incorporate and manage contextual information, in the form of
parameters.

3. ARcHITE-
The general architecture of the environment introduced in this
paper is shown in Error! Unknown switch argument.. This
figure shows how CACTUS takes advantage of a refinement of
the HATS help system, a tutoring system called Advanced-
HATS, and a scenario execution module, to provide course
designers with an environment with which, at the lowest
costs, they provide novice users with tutorial courses for their
applications. Both modules, Advanced-HATS and the scenario
execution module, are built on top of the ATOMS run-time task
management system in order to get task-oriented support. As it
will be show in Section Error! Unknown switch argument.,
the nature of the indications provided for the users is task-
oriented, so they get information that is more comprehensible
for them that it would be if they were based on other nature
models. CACTUS allows the designers to specify the previous
scenarios that may be used as context for the teaching of user-

From the research point of view, in the last years a great effort
has been devoted to generate help, automatically or semi-
automatically, for interactive applications using different
paradigms. Some systems such H3 [lo] are data oriented. Some
others, such the works based on Petri nets [12] are
application-state oriented, and others are action-oriented [171.
We believe that these kinds of guidance are not adapted
enough from the user’s point of view. Moreover, the type of
guidance provided by these systems is not adequately
structured to be assimilated by novice users in general.
Nevertheless, hierarchical user-task models give us the
possibility of both incorporating the user’s point of view
about the application and structuring the explanations in an
understandable way. Next, we will remark the most relevant
task-oriented guidance systems.

Pangoii and Paterno [13] were pioneers in offering help from
user task models. Thus, the information the user receives has
great semantic power. However, the work they propose does
not follow-up user activity, and it does not offer feedback
about the task accomplishment.

Teach me While 1 Work [2], TWIW, also produces task-oriented
guidance, including not only help but teaching capabilities. In
this sense, it is able to filter incorrect user interactions and
provide users with feedback about their actions. One of the
biggest limitations of this system is that the task model it is
based on does not include any contextual information.
Moreover, this system is mostly oriented to users who have
some familiarity with the applications they want to learn, but it
is not intended to be used by novice users.

Finally, Help for ATOMS Task System, HATS [5], is a help
system that uses user-task models to generate the explanations.
It has been later endowed with similar teaching capabilities to
those of TWIW, as we will see when we describe the
Advanced-HATS tutoring system. In particular, HATS provides
the user with dynamic help, updating the help messages

tasks.

Figure Error! Unknown switch argument.: System
architecture

3.1 Managing Tasks: ATOMS - -
ATOMS, Advanced Task-Oriented Management System, is a
run-time user task-model management system. It is not a system
aimed to design application user-interfaces from scratch, either
by automating the generation or by specifying the interfaces,
but it is aimed to allow other processes to request to be
notified when tasks are completed and invoke application
tasks. These facilities support the constructions of agents that
can assist users in various ways.

114

ATOMS-based applications define hierarchical representations
of the user-tasks they provide support to. These
representations, called user-task models, are composed of the
application user-tasks and rules linking those tasks.

There are two kinds of tasks: atomic ones and composed ones.
The atomic tasks model the actions a user can accomplish
directly by interacting with the application user interface, that
is, these tasks are linked to the application by means of
descriptions of the corresponding abstract interaction
objects. The role of the composed ones is to allow the
modeling of high-level abstract tasks. Both types of tasks may
have associated parameters, acting as contextual information for
them. On the other hand, each rule relates a particular
composed task with certain set of atomic and composed tasks.
Furthermore, each rule includes some information such as the
execution relationship between subtasks -sequence, parallel,
xor-, the parameter flow between tasks -how low-level task
parameter values are converted into high-level parameter
values-, which tasks may be optional and/or multiple and
under which conditions, and which pre- and post-conditions
must hold for a subtask execution. In this sense, tasks and rules
in this system act as Unification Grammars in Natural
Language Processing systems [9].

ATOMS task models are specified using a declarative modeling
language which incorporates inheritance both for tasks and
rule definitions, in order to improve the reuse of partial models.
Applying this inheritance concept, a task can be seen as a
prototype for other task instances, which may be more general
or more specific than their prototype. Rule inheritance allows
designers, starting from a certain relationship between several
tasks, to relax the conditions of such relationship or to turn
them more rigid according to their use context at each moment.
This specialization may have two goals: from a rule prototype,
we can define another one substituting thoroughly the first
one; or we can have a more specific rule that has preference over
its prototype to be applied, but that does not eliminate it for
the cases in which it could not be applied.

Figure Error! Unknown switch argument.: ATOMS

architecture

ATOMS functional core is composed by four main blocks (see
Error! Unknown switch argument.): the Parsing Engine, the
Dynamic Application Tasks, the Task Modeling Tool and the
Emulation module. The first module follows-up the user

activity while interacting with the application, in order to
recognize at any moment which tasks s/he is carrying out. The
Dynamic Applicafion Tasks represents both the state of the
active tasks and a task historic, in order to allow external tools
to reason about users performance and to anticipate their
actions. The third module is devoted to interactive generation
of ATOMS task models. For a detailed description of these
modules, see [7].

For our purposes, the most important module is the Emulation
one. This module executes tasks using animations, and it is
provided as a service for external value-added tools to modify
the application interface behavior at run-time. This module is
capable of emulating the user interactions by analyzing the
tasks and rules descriptions specified in the application task
model. Starting from the model, the requested task and the
provided parameter values, it decides which atomic tasks have
to be executed, the parameter values and their sequencing. For
example, this module could execute the instruction
SelectTeacher name “John Dale” using animations, as if the
user accomplished it. Emulation also executes requests where
some associated parameters do not have any value assigned.
Emulation treats this situation by indicating the user to
provide interactively the parameter values and, also, it offers
graphical feedback to the user on different available options, if
possible.

3.2 Managing Tutorial Courses: CACTUS
CACTUS is a system for the interactive development of tutorial
courses. CACTUS provides more adequate and more dynamical
explanations than currently existing tutors and follows user
activity to act accordingly. Additionally, CACTUS releases the
tutorial course designers from part of the intensive load of
developing the tutors. The CACTUS architecture is based on
two modules (see Error! Unknown switch argument.). The
first one, Advanced-HATS, is a tutoring system to teach the
users how to accomplish a certain task, while the second one,
the scenario execution module, prepares appropriate contexts
for the teaching activities.

Advanced-HATS is a refinement of the HATS help system,
whose main improvements are centered on the incorporation of
tutoring capabilities to the help ones mentioned in the
previous section. In addition to the HATS features, Advanced-
HATS may act with several degrees of flexibility. Thus, the
system decides when interactions are to be filtered and when to
force the user to follow a correct path, depending on the degree
of flexibility. Another feature of this subsystem is the
possibility of teaching parameterized tasks. Advanced-HATS
provides messages referring the task parameter values and
filters actions that are incorrect accordingly to the values
adopted by the task parameters, thus forcing the user to perform
the task having the indicated parameter values. A detailed
description on how HATS gives dynamic guidance and how it
uses the information in the task models to generate
automatically the messages can be found in [SJ.

The scenario execution module prepares appropriate contexts
to carry out the teaching of the tutorial course tasks. A
scenario is a procedural description of a process, including
references to application tasks, variables, conditional blocks,
loops, and so on, and it is interpreted by the scenario
execution module. For example, let us suppose that in a CAD
application we would like to teach a user how to lift a design
from 2D to 3D. Then, it would be reasonable to prepare a
scenario that would show the pupil the creation of a kitchen

115

floor, so that afterwards s/he would learn how to transform that
2D design into its corresponding 3D design. The task
references in these descriptions play the same role played by
system calls in other environments. That is, the interpreter,
basing on the ATOMS‘ Emulation module, executes the
referenced task by using animations.

Nevertheless, to provide designers with the highest flexibility,
CACTUS allows users to practice the tasks in their own work
context instead of using predefined scenarios. Thus, CACTUS
can be set with three different behaviors: always execute the
scenarios, never do it, or always ask pupils before executing a
scenario if s/he wants it to be executed.

3.2.1 Features
CACTUS integrates designer oriented services, such as support
for creating, editing, testing and debugging tutorial courses,
and pupil-oriented services, such as support for the execution
of the courses. CACTUS has two operation modes: the execution
mode permits to execute, test and debug the courses, and the
edit mode allows to create interactively the tutorials and to
modify them.

In our system, a course is composed by units, each one
teaching a set of user tasks related by some criterion. Aithough
CACTUS courses can be specified through a programming
language, as we will explain later, the CACTUS edit mode
allows designers to create interactively the tutorial courses
and to modify them. To achieve this goal, CACTUS uses the
metaphor of representing a tutorial course as if it were an
interactive textbook, and associates the most important parts of
the tutorial course with representative parts of a book. Using
direct interaction procedures can modify these interactive
books, since CACTUS incorporates visual and demonstrational
techniques [4]. The general operation of CACTUS is shown in
Error! Unknown switch argument.. We can see that neither
users nor designers need to access directly the contents of the
tutorial courses, but they simply interact with the CACTUS
interface to do it.

Updates on
interface \

Edit, test,
debug Execution

Figure Error! Unknown switch argument.: CACTUS general
operation.

Along this section we will illustrate some CACTUS features
using examples from a course for Schoodule, a system that uses
a database and a constraint solver to help on the generation of
school schedules. &hood&e’s database essentially reflects
four entities and a relationship. The first entity corresponds to
schoolteachers. A second entity describes the different
subjects in the school. The information dealing with the
groups is reflected in another entity, and the last one deals
with the available classrooms. Finally, the assignment
relationship reflects which teacher imparts each subject for
each group of pupils. From all this information, Schoodule
generates a schedule proposal, indicating both the timetable
and the classrooms for each lecture.

3.2.2 Book Metaphor
CACTUS visualizes and allows the modification of the courses
through a representation of the tutorial courses as if they were
interactive textbooks. Most parts of the books are
automatically generated by CACTUS, and the designers only
have to include the desired contents for the pedagogical units.
The main feature in our courses with respect to those generated
with existing systems is the fact that our courses follow user
activity. This makes possible to provide users with context-
dependant explanations. Thus, the user does not learn by
reading the book contents, but s/he learns by executing them.
This is complemented by offering the use of predefined
scenarios as the context for the learning process, in addition to
using their own work context. Another important feature is the
automatic incorporation of hypertext links, so that it is easy to
navigate through the books and the designer does not need to
worry about navigation issues. Users can also navigate along

a book by using the classic Next and Previous commands. In
the rest of this section we will give a description of the
structure of a CACTUS book.

Figure Error! Unknown switch argument.: A tutorial course
book cover and index.

First, CACTUS generates a cover like the one shown in Error!
Unknown switch argument. (left). This cover includes the
course title and a general description to provide an overall
idea of the course purpose. Course designers can customize
these fields by in-place editing them.

Afterwards, CACTUS automatically generates an index of the
course pedagogical units using the same order the designer
follows to develop it, as shown in Error! Unknown switch
argument. (right). Each entry in the index contains a
customizable unit title and a short description of its contents.
For each entry, the system generates a hyperlink to the starting
page of the corresponding pedagogical unit. The contents of a
pedagogical unit will be explained later.

116

One of the main characteristics of a CACTUS tutorial course is
that it can be followed in several ways. In this sense, our
interactive books are similar to those textbooks used in
advanced courses, which usually have a predefined order to be
read, but they can be read following other orders, since the
matters covered do not have linear relationships. CACTUS
tutorial courses include this sequencing notion between the
different pedagogical units of the tutorial course. CACTUS
automatically manages the sequencing, and allows the user to
execute a unit depending on whether the previous units have
already been taught or not. The ability to follow user
interaction allows the system to manage automatically the unit
sequencing. The next two parts of the book are narrowly
related to this sequencing notion.

First, a directed graph representation of the tutorial course
structure is generated, as shown in Error! Unknown switch
argument. (left). Each node in the graph represents a
pedagogical unit, and its color represents its execution state.
The state of a unit indicates if it has been already executed, if
the unit has not been executed yet but it is possible for the user
to execute it, or if the unit is currently blocked because some of
its predecessor units have not been accomplished yet. An
arrow from node A to node B indicates that the unit associated
to A has to be performed before performing the unit associated
to B. The pedagogical unit states are automatically updated by
CACTUS as the user follows the tutorial course.

Figure Error! Unknown switch argument.: Tutorial course
book graph and proposal.

Second, a proposal of a sequencing of units for the course is
generated, as shown if Error! Unknown switch argument.
(right). In this proposal, when a node is visited all its
predecessors have already been visited, so that it will never be
the case that the user tries to access a blocked unit. This
proposal and the directed graph representation are
automatically generated and managed by CACTUS, so the
designer does not have to worry about them.

Afterwards, as many chapters as pedagogic units in the tutorial
course are presented, as shown in Error! Unknown switch
argument. (left). Each unit incorporates some task-tutoring
sessions and, probably, some examples and scenarios to
execute. The page layout includes explanations about the task-

tutoring sessions, the examples presented, the scenarios to be
executed, and images. These explanations, that indicate the
users the different things to do during the unit, are
automatically generated by CACTUS from the tasks to be taught,
the examples to be executed and the scenarios to be prepared,
as it will be explained later.

Figure Error! Unknown switch argument.: Tutorial course
book units and task glossary.

Finally, CACTUS automatically generates a task glossary at the
end of the book, as shown in Error! Unknown switch
argument. (right). In this glossary, an entry for each task being
taught in the course can be found. Each entry relates a task
with the list of units containing tutoring about it. Each item
includes a hyperlink to the unit page it refers to. Then, the
process of searching a certain task is reduced to a look-up
process in this glossary and to follow a hyperlink. This
glossary is managed by CACTUS transparently, so the designer
does not have to worry about updating it during the
development phase.

In the next two subsections CACTUS will be described
accordingly to its two operation modes: the execution mode
and the edit mode.

3.2.3 Tutorial Course Execution
In the execution mode, CACTUS allows executing some parts of
the interactive books to teach the user how to perform some
user tasks by means of an interactive software application.
Course designers can also use this mode to test and debug the
courses at development-time.

Some sections of the book have a group of instructions
associated. Instructions in this environment can be classified
in three groups. The first one includes those for specifying
task-teaching activities, telling the system to show an example
of a task, preparing suitable scenarios to practice with, and
showing users information about their performance. This kind
of instructions has an immediate feedback on the application
interface. The second ones do not have an immediate feedback
towards the user, and includes low-level specifications such as
variable assignments or instructions aiming to format the
course (unit descriptions, unit titles, images, and so on). This
group also includes control structures such as loops,
conditional blocks or random execution blocks. Finally, a
third group controls how the scenario execution module and
Advanced-HATS operate, including setting the degree of
flexibility for the tutoring module, the quantity of messages to
be shown during the teaching activities, the scenario
execution speed, the scenario execution refreshment rate, and
similar ones.

The executable sections of an interactive tutorial course book
are the pedagogical units and the proposal section.

The pages of the pedagogical units usually contain task-
teaching activities, examples of predefined tasks, scenario
preparation instructions and feedback messages for the users.
These kind of instructions are adequately related by the use of
different types of control structures.

For example, in our course for Schoodule there is a unit that
explains how to add a new teaching assignment. Let us see
which the contents of this unit are and what its dynamic
behavior is. In this unit, the first thing the tutorial course
includes is the preparation of a scenario. This scenario adds
some default teachers, subjects, groups and classrooms. In this

117

way, we are sure the user will not have any problem during the
practice, because of a lack of previous information in the
Schoodule database. Executing this first step of this unit will
cause CACTUS to ask the scenario execution module to prepare
the scenario, in order to add default information to the
application database. Of course, the user may choose to use
her/his own work context instead of preparing the scenario
provided by the designer. After this, the unit includes a
teaching activity. This will teach the user how to insert a new
teaching assignment to the Schoodule database. This teaching
activity will be done under the supervision of the Advanced-
HATS tutoring component, which will explain the task to the
user as explained in [5] and will tell her/him whether her/his
actions are correctly performed. Once the user would have
successfully inserted a new teaching assignment, the tutorial
course will give the user some feedback about the task that has
been just performed, by means of a feedback message that
includes the parameter values of the new teaching assignment
added. In addition, the unit provides the user with the
possibility of receiving examples about the add assignment
task, using different parameter values, at any moment. In this
area of examples, the designer includes as many examples as
s/he desires. These examples will be executed by using the
ATOMS’ Emulation module, that is, by using animations to
perform the tasks. Moreover, the user decides when s/he wants
the system to execute the proposed examples. The effects of
these examples may be undone if the application provides
support for the multiple undo feature.

When the user adequately accomplishes the pedagogical
contents of a unit, CACTUS automatically updates the state of
that unit, then enabling the access to its succeeding chapters, if
appropriate. When a unit is disabled, CACTUS will not permit
pupils to execute it, they can only inspect the contents.
CACTUS shows under each unit title its state: ‘Blocked unit,
‘Already Performed ‘, ‘Accessible Unit ’ or ‘Being Performed ‘.
During the execution of a unit, CACTUS highlights at each
moment the instruction being accomplished, so that the user
always knows how much s/he has already performed and how
much remains to be accomplished.

As previously mentioned, the proposal page is also executable,
and its execution means the successive execution, according to
the order being shown, of the pedagogical units in the course.
By executing the proposal page, CACTUS makes the unit
precedence graph transparent to the user, so that s/he will
never try to execute a unit whose execution is blocked.

CACTUS also has the option of saving the execution state of a
course to reload it later on.

3.2.4 Interactive Creation and Modification
The CACTUS edit mode aims to help designers on creating
tutorial courses from scratch and to modify existing ones.

From the pupils’ point of view, our courses are just like
interactive books including advanced features that teach them
how to perform some user tasks and follow their
accomplishment of those activities. This is the same case for
novel course designers, who only deal with CACTUS interface
when they want to create a course.

A CACTUS course is defined in a text file through a
programming language, executed by an interpreter when the
system gets into the execution mode. Thus, only advanced
tutorial course designers need to access this textual tutorial
course representation.

CACTUS is in charge of the layout of the interactive books,
including not only the automatic generation of most parts of
the books, but also the general layout of their pages. The
system generates the interactive books and, by default, adjusts
the different parts of the pages in order to wrap words around
figures, scale images, update dynamic graphics or generate
hypertext links.

This section aims to describe how CACTUS courses are built.
The operations to specify the courses can be reduced to
addition and deletion of instructions. To eliminate
instructions, the designer selects the parts to be eliminated and
presses the Supr key. To add new ones, it depends on the type
of instructions, as it will be seen in this section.

We can insert tutoring activities in two ways. The first one
uses the ‘Insert tutoring session’ command. Then, the designer
selects the desired task from a list of all the tasks in the model.
After that, the designer will be asked if s/he wishes that some
parameter values make a particular condition held. The formulas
to compute these conditions may include constant values,
runtime computed expressions or random values generated by
CACTUS. For example, the designer can select the AddTeacher
task and force the user to add a teacher named ‘John ‘. The other
way of adding a tutoring session is to use the ‘Insert tutoring
about...’ command, once the application is started. This
command makes CACTUS watch and record every task the
designer performs on the application. During the process,
CACTUS inserts as many task tutoring instructions as tasks are
performed by the designer until s/he uses the ‘Finish inserting
tutoring’ command. For example, if the designer adds a new
teacher, CACTUS will automatically generate a tutoring
instruction for the AddTeacher task.

It is worth mentioning that there is independence between the
procedures used by the designer to specify the tasks and the
procedures that the pupils choose to perform those tasks
during the learning process. For example, the designer may use
a menu command as a part of a higher-level user task, but the
user will be able to push a button to perform the same task.
This is due to the fact that CACTUS deals with high-level tasks,
not just sequences of atomic ones.

The procedures for adding examples to pedagogical units are
similar to the ones used to add tutoring activities.

To introduce a scenario execution instruction, the designer
may use the ‘Insert scenario already made... ’ command, whi&h
will allow him/her to select the scenario to be prepared from
any scenario library. Alternatively, s/he may use the ‘Insert
scenario to be defined...’ and ‘Finish inserting scenario’
commands. These commands will make CACTUS start watching
and recording tasks in a new scenario, and finish registering
them, respectively. Then, CACTUS inserts a reference to the
scenario in the course. For example, the designer may add some
teachers, classrooms, groups and subjects and CACTUS will
include a scenario which, when executed, will fill the database
with some values.

For other language structures like conditionals or loops, the
designer will select the construction to be inserted and,
depending on the construction, will provide some parameters
on CACTUS requirement. CACTUS analyses the instructions at
tutorial course creation time. In this way, most mistakes are
identified when they are introduced, thus saving quite an effort
to the designer. The rest of the instructions includes pop-up
messages with graphical references, static and dynamic images,
variable assignments, instructions to control the Advanced-

118

HATS and the scenario execution module operation, and
control-flow structures. The static images correspond to
bitmaps, while the dynamic ones are instances of application
graphical objects and are dynamically updated by CACTUS
during the tutorial course execution. Among the instructions
to control Advanced-HATS and the scenario execution
module, it is worth mentioning those that affect the Advanced-
HATS flexibility degree, the amount of messages displayed by
the tutor, the scenario execution speed and the scenario
execution refreshment rate. Finally, the control-flow structures
include loops, conditionals and random blocks.

The designer can also add or eliminate pedagogical units, and
interactively edit the sequencing relationships between them.
These operations make CACTUS modify some parts of the course
book: index, precedence graph, sequence proposal, and
glossary, to maintain the consistency along the book parts.

Finally, let us explain how CACTUS automatically generates
the explanations in the unit book pages from the contents of
the pedagogical units in the course specification. CACTUS
generates context-dependant descriptions only for tutoring
activities, example executions and scenario preparation
instructions, and allows editing them interactively. However,
the system does not generate descriptions about, for example,
setup instructions or control structures, because they are too
low-leveled instructions from the user’s point of view. For
task teaching activities, descriptions are generated like ‘Next,
you will have to ’ canned with the task description, obtained
from the task model. CACTUS describes the examples in the
units by canning ‘Show me how to ’ with the description of the
task involved in the example. For references to scenario
preparation instructions, the description is obtained by
canning the message ‘Preparing scenario to ’ with the
scenario description, extracted from the scenario specification.
Since the automatically generated descriptions use information
obtained from some sources, they are rarely appropriate to be
directly delivered to the pupil. These generated explanations
are usually close to useful descriptions, but often include
grammatical inadequacies. Thus, CACTUS allows designers to
interactively edit them directly on the book interface, and
afterwards save the modified ones. Subsequently, CACTUS
offers maximum flexibility and lowest cost, since the
automatically generated descriptions release the designers from
a great workload.

CACTUS offers a debug window with several capabilities,
ranging from tracing the course to allowing a step-by-step
tutorial course execution, in order to make the design easier.
The designer can also inspect and modify the variable values.

CACTUS also reduces the course maintenance costs to almost
the task model maintenance ones, whose specification is
accomplished through visual and demonstrational techniques
in ATOMS [7]. In addition, CACTUS manages which tasks in the
application task mode1 are taught in the course being created
and which are not, and it notifies when a unit should be
modified because it teaches a task unspecified in the current
task mode1 version, and which tasks remain to be taught in the
course.

4. CONCLUSIONS AND FUTURE WORK
We have described how the user interface design technology
based on declarative models can be used to generate tutorial
courses for interactive applications. CACTUS tutorial courses
overcome many of the main problems related to the creation of
the guidance component of interactive applications with

current technologies. CACTUS represents the tutorial courses
by assimilating them with interactive textbooks, and uses
hyperlinks to make them intuitive and easy to use for the
pupils. Furthermore, the tutorial courses add to the textbook
capabilities the power of the Advanced-HATS tutoring system
in which CACTUS is based on. Thus, the courses are completely
interactive and able to follow-up pupils activity. The costs of
generating tutorial courses are reduced to the minimum because
their development is based on model-based technology and
because designers can use an interactive environment with
support for programming by demonstration techniques for
building them.

CACTUS offers an integrated framework for the development and
execution of tutorial courses. This framework includes tutorial
course creation oriented services, such as programming by
example techniques or support for the course content
management; and it also includes execution-oriented services,
such as tracing and debugging facilities. CACTUS and all the
subsystems it is based on are thoroughly coded in C++. The
system implementation uses the AMULET framework [ll],
which includes an object-oriented system based on the
prototype/instance inheritance paradigm. Moreover, a
distributed version of the ATOMS subsystem has been
implemented for managing work-flows models [8], and a Java
version of the system is partially available. This work aims to
facilitate the development of tutorial courses for distributed
interactive tasks through Internet.

As future work, we are also interested in studying how
CACTUS can take advantage of the use of user profile
declarative models. This kind of models have been used within
some Model-Based Interface Development Environments (MB-
IDES) such as MASTERMIND [19] or MOBY-D [141 to restrict
the access to some user tasks or to customize the user interface
depending on the profile of the current user. We aim to exploit
this kind of model to allow designers to develop tutorial
courses customized for each user profile.

This customization will extend the work to several levels. The
first one will be the addition of user profiles at the ATOMS
level to associate user-dependant restrictions to the task
management level. After that, the Advanced-HATS tutoring
system should be adapted to exploit user profiles, adapting the
messages and choosing different procedures to perform a task
depending on the current user profile. The scenario execution
module should automatically adapt the scenarios to the
current user profile. Thus, depending on his/her skill level, the
system should automatically decide how complex the scenario
should be, or it could even opt for not executing any scenario,
allowing him/her to practice directly with his/her own work
context.

5. ACKNOWLEDGMENTS
Special thanks to Roberto Moriyon for his extensive remarks
on the ideas of this paper. I would also like to thank the
anonymous reviewers who contributed in a great deal for the
quality of this presentation. This work has been partially
supported by the Plan National de Investigacibn, project
numbers TIC96-0723-C02-Oh02 and TEL97-0306.

6.
111

REFERENCES
Alfonseca, M., Garcia, F., de Lara, J., and Moriyon,
R. “Generacibn Autom&tica de Entornos de
Simulaci6n con Interfaces Inteligentes”, Revista de
Ensefianza y Tecnologia, ADIE, no 10. December 1998.

119

[2] Contreras, J. and Saiz, F. “A Framework for the
Automatic Generation of Software Tutoring”. In
Proceedings CADUI'96, Computer-Aided Design of User
Interfaces, Eurographics, Belgium, June 1996.

[3] Contreras, J. “A Framework for the Automatic
Generation of Software Tutoring”. Phd. Thesis,
Universite RenbDescartes, Paris, 1998.

[4] Cypher, A. “Watch What I do, Programming by
Demonstration”. MIT press (ed. A. Cypher),
Cambridge, Ma., USA, 1993.

[S] Garcia, F., Contreras, J., Rodriguez, P. and Moriybn,
R. “Help Generation for Task Based Applications with
HATS". In Proceedings EHCI'98, Creta (Greece),
September 1998.

[6] Garcia, F., Rodriguez, P., Contreras, J., and Moriyon,
R. “Gestion de Tareas de Usuario en ATOMS". IV
Jornadas de Tecnologia de Objetos, JJOO'98, Bilbao
(Spain), October 1998.

[7] Garcia, F., “Towards the Generation of Tutorial
Courses for Applications”. 5th ERCIM Conference on
User-Interfaces for All. Dagstuhl (Germany), November
1999.

[8] Garcia, F. and Moriybn, R.: “A Framework for
Distributed Task Management”. In Third Argentine
Symposium on Object Orientation, AS00'99,
September 1999.

[9] Maxwell, J.T. and Kaplan, R. M. “The Interface
between Phrasal and Functional Constraints”,
Computational Linguistics, no. 4, 1994.

[lo] Moriybn, R., Szekely, P. and Neches, R.: “Automatic
Generation of Help from Interface Design Models”. In
Proceedings of CHI’94, ACM Press, 1994.

[I l] Myers, B.A., McDaniel, R.G., Miller, R.C, Ferrency,
A.S., Faulting, A., Kyle, B.D., Mickish, A.,
Klimovitski, A. and Doane, P. “The AMULET
Environment: New Models for Effective User Interface

Software Development”. IEEE Transactions on Software
Engineering, Vol. 23, no. 6. June, 1997. pp. 347-365.

[12] Palanque, A., Bastide, R. and Dourte, L.: “Contextual
Help for Free with Formal Dialog Design”. In 5th
International Conference on Human-Computer
Interaction, Orlando, Florida, USA. 8-13 August
1993.

[131 Pangoli, S. and Patemb, F. “Automatic Generation of
Task-oriented Help”. In Proceedings UIST'95,
Pittsburgh, ACM Press, 1995.

[141 Puerta, A.R. , “A Model-Based Interface Development
Environment”. IEEE Software, 14(4), July/August
1997, pp. 41-47.

[15] Puerta, A.R. “Supporting User-Centered Design of
Adaptive User Interfaces Via Interface Models”. First
Annual Workshop On Real-Time Intelligent User
Interfaces For Decision Support And Information
Visualization, San Francisco, January 1998.

[161 Rodriguez, P., Garcia, F., Contreras, J. and Moriyon,
R. “Parsing Techniques for User-Task Recognition”.
5th International Workshop on Advances in Functional
Modeling of Complex Technical Systems, Paris
(France), July 1997.

[17]Sukaviriya, P. and Foley, J.D: “Coupling a UI
Framework with Automatic Generation of Context-
Sensitive Animated Help”. UIST’90, pp. 152-166,
1990.

[18] Szekely, P., Luo, P. and Neches, R. “Beyond Interface
Builders: Model-Based Interface Tools”. Proceedings
OflNTERCHI'93, 1993,~~. 383-390.

[19] Szekely, P., Sukaviriya, P., Castells, P.,
Muthukumarasamy, J. and Salcher, E. “Declarative
Interface Models for User Interface Construction Tools:
the MASTERMIND Approach”. In Engineering for
Human-Computer Interaction, L. Bass and C. Unger
(eds), pp. 120-150. Chapman & Hall, 1996.

120

