
NaturalJava: A Natural Language Interface for
Programming in Java

David Price, Ellen Riloff, Joseph Zachary, Brandon Harvey
Department of Computer Science

University of Utah
50 Central Campus Drive, Room 3190

Salt Lake City, UT 84112 USA
+l 801 581 8224

(deprice,riloff,zachary,blharvey}@cs.utah.edu

ABSTRACT
NaturalJava is a prototype for an intelligent natural-language-
based user interface for creating, modifying, and examining Java
programs. The interface exploits three subsystems. The
Sundance natural language processing system accepts English
sentences as input and uses information extraction techniques
to generate case frames representing program construction and
editing directives. A knowledge-based case flame interpreter,
PRISM, uses a decision tree to infer program modification
operations tiom the case thunes. A Java abstract syntax tree
manager, TreeFace, provides the interface that PRISM uses to
build and navigate the tree representation of an evolving Java
program. In this paper, we describe the technical details of each
component, explain the capabilities of the user interface, and
present examples of NaturalJava in use.

We have created NaturalJava, a prototype for an intelligent,
natural-language-based user interface that allows programmers
to create, modify, and examine Java programs. With our
interface, programmers describe programs using English
sentences and the system automatically builds and manipulates
a Java abstract syntax tree (AST) in response. When the user is
finished, the AST is automatically converted into Java source
code. The evolving Java program is also displayed in a separate
window during the programming process so that the
programmer can see the code as it is being generated.

Keywords
Intelligent user interfaces, information extraction, natural
language processing, computer program editors, programming
environments.

1. INTRODUCTION

The NaturalJava user interface has three components. The tirst
component is Sundance, a natural language processing system
that accepts English sentences as input and uses information
extraction techniques to generate case frames representing
programming concepts. The second component is PRISM, a
knowledge-based case Came interpreter that uses a decision
tree to infer high-level editing operations from the case frames.
The third component is TreeFace, an AST manager that
provides the interface used by the case tiame interpreter to
manage the syntax tree of the program being constructed.

Grappling with the syntax of a programming language can be Figure t illustrates the dependencies among the three modules
frustrating for programmers because it distracts Corn the and the user. PRISM presents a command line interface to the
abstract task of creating a correct program. Visually impaired user, who enters an English sentence describing a program
programmers have a difficult time with syntax because construction or editing directive. PRISM passes the sentence
managing syntactic details and detecting syntactic errors are to Sundance, which returns a set of case frames that classify the
inherently visual tasks. As a result, a visually impaired key concepts of the sentence. PRISM analyzes the case l?ames
programmer can spend a long time chasing down syntactic and determines the appropriate program construction and
errors that a sighted programmer could have found instantly. editing operations, which it carries out by making calls to
Programmers suffering from repetitive stress injuries can have a TreeFace. TreeFace maintains an internal AST representation of
difficult time entering and editing syntactically detailed the evolving program. After each operation, TreeFace
programs l?om the keyboard. Novice programmers often transforms the syntax tree into Java source code and makes it
struggle because they are forced to learn syntactic and general available to PRISM. PRISM displays this source code to the
programming skills simultaneously. Even experienced user, and saves it to a tile when the session terminates. Figure
programmers may be hampered by the need to learn the syntax 2 shows the user input and program display windows ti-om a
of a new programming language. NaturalJava session.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IUI 2000 New Orleans LA USA
Copyright ACM 2000 I-581 13-l 34-8/00/l . ..$5.00

(3) Case fkmes (4) AST
--+L,.A”

(2) Sentence

(1) English (6) Java source code
command line w

r-l
User

Figure 1. Architecture of NaturalJava

207

http://crossmark.crossref.org/dialog/?doi=10.1145%2F325737.325845&domain=pdf&date_stamp=2000-01-09

n&lic Camparable deq() f
int i = 1;
int minfndex = 0;
Camparable minvalue =

(Caparable)eleinents.firstElement();
while (i<elements.size()) {

Comparable c=
(Cmnparable)elements.elem0ntAt(i);

if (c.le(minValue)) {
minIndex = i;
m&Value = c;

I
1

JaturalJavD Call elements’ removeElementAt ant
pass it minIndex.

Figure 2. NaturalJava’s program display and user input
windows, created using first 11 steps of script from Figure

5.

2. NATURALJAVA USER INTERFACE
The goal of the NaturalJava interface is to allow programmers to
write computer programs by expressing each command in
natural language. For example, a user might ask the system to
“create a for loop that iterates from 1 to 10.” This form of
interaction allows the programmer to give instructions
without having to know the exact syntax required by the
programming language.

2.1 Motivation and Background
Natural language (NL) interfaces can be plagued with two
types of problems: natural language specifications can be
ambiguous and incomplete, and natural language processing
can be fragile because complete NL understanding is still
beyond the state of the art. We addressed the first problem by
limiting the role of inference in our system. NaturalJava
recognizes NL commands that, while very similar to actual
programming constructs, are expressed in English. This level of
specification is relatively well defined, yet genera1 enough that
the programmer can focus on programming rather than syntax.
The interface can detect when a command is incomplete (e.g.,
the terminating condition of a loop is missing) and prompt the
user, but the role of inference in NaturalJava is mainly limited
to the disambiguation of genera1 verbs (e.g., “add” can refer to
arithmetic or insertion).

We addressed the second problem of fragile natural language
processing by using information extraction technology
supported by a partial parser. Partial parsers are typically more
robust and flexible than full parsers, which try to generate a
complete parse tree for each sentence. Full parsers often fail on
sentences that are ill-constructed or ungrammatical. Partial
parsers are more robust because they do not have to generate a
complete parse structure, but instead generate a flat syntactic
representation of sentence fragments.

A few NL interfaces have been previously developed for
programming (e.g., [1,7]). Perhaps the biggest difference
between NaturalJava and previous systems is that NaturalJava
allows users to generate and manipulate source code in a real
programming language using an AST. Both MOON [7] and
NLC [I] take immediate actions in response to natural

language commands and do not maintain any internal
representation of source code.

2.2 Understanding Commands Using IE
Information extraction (EE) is a form of natural language
processing that involves extracting predefined types of
information tiom natural language text. The goal is to identify
information that is relevant to the task at hand while ignoring
irrelevant information. Information extraction systems have
been built for a variety of domains, including Latin American
terrorism [4,5], joint ventures [.5], microelectronics [5], job
postings [2], rental ads 163, and seminar announcements [3].

For the NaturalJava interface, we used IE techniques to extract
information related to Java programming constructs from the
user’s input. The natural language engine used by NaturalJava
is a partial parser called Sundance, which was developed at the
University of Utah. Sundance generates a flat syntactic
representation of sentences and also can activate and
instantiate pattern-based templates, or case frames. For the
NaturalJava task, we manually designed 400 case frames to
extract information about relevant programming constructs.

As an example, consider the sentence “Create a for loop that
iterates from 1 to 10.” Sundance begins by deriving a partial
parse for this sentence, which involves part-of-speech
disambiguation, syntactic bracketing, clause segmentation,
and syntactic role assignment. Sundance then instantiates all
active case frames to extract information from the sentence. The
case &imes represent local linguistic expressions revolving
around verbs and nouns. Each case frame has a trigger word
and an activating function that determines when it is
applicable. For example, a case i?ame might be triggered by the
word “iterates” when it appears as an active verb form A case
frame also has a type, which represents its genera1 concept, and
an arbitrary number of slots that extract information from local
syntactic constituents.

Example 1 shows a case l%ame triggered by the verb “iterates.”
It contains four slots that extract information from the subject of
the clause and loom three prepositional phrases. For example,
the subject of the clause will be extracted as the
CONTROL-FLOW construct, while objects of the preposition
“from” will be extracted as the start condition for the loop. The
prepositional phrases may appear in any order, and any subset
of these slots may be instantiated, depending on the input

iterates
(active-verb iterates)
type control flow -
I

construct SUBJECT
loop-start PREP (PREP=EROM)
loop-end PREP(PREP=TO)
exit-condition PREP (PREP=WHILE)

I
Examule 1. ExamDIe case frame temulate.

sentence.

The final output of Sundance for the example sentence is shown
in Example 2. Two case frames are generated, representing a
CREATE concept and a CONTROL-FLOW concept. The
CREATE case frame indicates that a for loop should be created,
and the CONTROL-FLOW case &me specifies the control
conditions for the loop. The CONTROL-FLOW case tinme is
instantiated from the template in Example 1. Notice that

208

Sundance did not extract an exit condition because there was
no prepositional phrase for the preposition “while” in the
sentence.

> Create a for loop that iterates from
to 10.

Caseframe CREATE-Ol(CREATE)
CREATE-TYPE: "a FOR IQOP" -

Caseframe ITERATES-Ol(CONTROL-FLOW)
CONSTRUCT: "a FOR LOOP"
LOOP-START: W&&J" -

MOP END: "&&lO"

Examole 2. Case frames generated bv Sundance.

2.3 Mapping Case Frames into Instructions
The Programming Instruction Synthesis Module (PRISM)
provides NaturalJava’s command line user interface. The user
enters commands as sentences or sentence fragments.
Commands can add new information to the abstract syntax tree
that represents the evolving Java program, delete information
from the AST, modify information in the AST, navigate through
the AST, or request information about the contents of the AST.
PRISM preprocesses the input by replacing special symbols,
such as math tokens, with appropriate words, and then passes
the resulting sentence to Sundance for information extraction.
Sundance instantiates and returns a set of case frames as
explained earlier.

Sundance generates 27 types of case Iiames; three
representative types are summarized in Figure 3. The type of a
case frame indicates the nature of the user’s request or the type
of information found within the case frame’s extracted strings.
For example, case frames of type CREATE are triggered by
verbs such as “create” and “declare.” If these words occur as
the primary verb, they indicate the need to create a method,
class, or variable. Similarly, case frames of type NAVIGATION
are triggered by verbs such as “move” and “go,” and indicate
the need to move the editing focus within the AST.

PRISM divides the of the case frame processing into two tasks:
determining the type of action the user desires, and retrieving
the necessary information from the case frames to carry out that
request. Two assumptions simplify the task of determining the
action to be taken. First, PRISM assumes that each request by
the user contains only one type of action. Second, PRISM
assumes that the first verb in the request provides the
information necessary to determine the type of action desired
by the user. For example, “assign x plus y to z” is a valid
request, but “add x to y and assign it to z” will not be
processed correctly.

PRISM uses a decision tree to convert the case frames extracted
by Sundance into actions to be taken on the AST. The first
level in this decision tree sorts the case frames into action
types-such as declarations and requests for

information--based on the type of the primary case frame.
PRISM deals with verbs that can be used in more than one type
of command, such as “make” and “give,” with an action
disambiguation method. This method examines information in
the extracted strings to determine the proper action to take. For
example, PRISM determines that “make a double called
my-double” is a variable declaration but that “make my-name

Type: Example triggers: Example sentences:

create create Create a class.
declare I would like to declare a

method.
want parameter I want a parameter.

math plus x plus y.
subtract Subtract a from b.
increment Increment count.

multi add Add a parameter.
purpose Add 3 to x.

make Make a class called C.
Make C public.

Figure 3. Example case frame types.

public” changes a property of a data member. If the primary case
frame does not contain the necessary information, then PRISM
discards it and examines subsequent case frames. For example,
given “make x equal to y,” PRISM discards the “make” case
tie and examines the next case time for “equal,” which
suggests that the command is an assignment.

Subsequent levels of the decision tree examine the primary case
frame’s trigger word and extracted strings to further subdivide
the command. PRISM often uses the current editing context of
the AST to further constrain the nature of the user’s request.

2.4 Creating and Manipulating ASTs
TreeFace is a Java class that is used by PRISM to create and
manipulate objects that encapsulate AST representations of
Java source files. TreeFace provides constructors that create
empty ASTs and that initialize ASTs by parsing Java source
files. TreeFace also provides methods that navigate through,
add content to, perform generic editing operations on, and
return information about an AST. In response to instantiated
case frames produced by Sundance, PRISM composes
appropriate sequences of TreeFace constructor and method
invocations.

A TreeFace object also keeps track of the current editing
context. PRISM uses this context to determine where in an
AST a particular editing operation should take effect. The user
must often change the editing context, much as the user of a
standard editor must often change the current selection. Since
the editing context is always some subtree of an entire AST,
changes to the editing context are expressed in terms of motion
through a tree. TreeFace’s navigation methods include
methods to push into and pop out of the body of a compound
construct, and methods to move to the siblings of the
constituents of a compound construct.

TreeFace provides content creation methods that create new
classes and interfaces, member variables, methods, local
variables, compound statements such as loops and
conditionals, and simple statements such as assignments and
returns. It also provides methods that allow the user to change
certain attributes of existing constructs. For example, the user
can make a member private.

TreeFace’s generic editing operations allow the user to delete
the current selection and to undo recent modifications to the
AST. TreeFace also provides operations that report the state of
the AST. These operations allow the user to request

209

1. Create a public method called deq that returns a
Comparable.

2. Declare an int called i and initialize it to 1.
3. Declare an int called minbtdex and initialize it to 0.

4. Declare a Comparable called minvalue and initialize it to
elements’ firstElement cast to a Comparable.

5. Create a loop that iterates while i is less than elements’ size.
6. Declare a Comparable called c and initialize it to elements’

elementAt applied to i cast to Comparable.
7. Create an if statement controlled by c’s le applied to

minvalue.
8. Assign i to minIndex.
9. Assign c to minvalue.
10. Leave this loop.
11. Invoke elements’ removeElementAt with minmdex as a

parameter.
12. Return minvalue.

information about the AST, such as the list of variables
currently in scope. PRISM uses this capability to answer
questions posed by the user.

3. USER INTERFACE EXPERIMENTS
The prototype interface is fully implemented and can be used to
produce Java code. During a programming session, the system
displays one window that accepts program editing commands
and another that displays the Java source code as it is being
generated. One of our main goals was to allow flexibility in
natural language input, so two of the authors used NaturalJava
to write exactly the same program. The first user defined a
priority queue class, and the second user tried to generate
exactly the same source code while using different natural
language sentences. Excerpts Tom the transcripts of the user
sessions are shown in Figures 4 and 5, and the Java code that
resulted is shown in Figure 2.

4. LIMITATIONS AND FUTURE WORK
There are a number of limitations that we hope to address in
future research. Two that will be relatively easy to rectify are to
generalize PRISM to eliminate the two assumptions described
in Section 2.3 and to add more case tnunes to increase the
vocabulary of Sundance.

NaturalJava supports a large but incomplete subset of Java. It
does not support array declarations, for example, because we
have not yet added the required case frames and associated
logic to Sundance and PRISM. Similarly, it does not support
nested classes because we have not yet built the required AST
support into TreeFace. Such limitations are a result of our
depth-first development strategy, and will be addressed in
future versions.

We plan to do more extensive experiments with NaturalJava to
get experience with a wider variety of users. Our preliminary
experiments, for example, have highlighted the need for
compiler and debugger feedback to be coordinated with the
AST interface.

The current implementation of NaturalJava is best suited for
writing new source code and doing local, statement-level
editing. Expression-level editing, direct navigation to distant
sections of source code, and global program modifications are

1. I would like to define a public method that is named deq
and that returns a Comparable.

2. Declare an int variable named i that is initialized to 1.
3. Declare an integer variable named minIndex that has an

initial value of 0.
4. Add a Comparable variable named minvalue which is

equal to elements’ firstElement but that is cast to a
Comparable.

5. Declare a loop and have it iterate while i < elements’ size.
6. Add a Comparable named c, initialize it to elements’

elementAt, pass in i, and cast to a Comparable.
7. If c’s le when passed minvalue.
8. minIndex gets i.
9. minvalue gets c.
10. Exit the loop.
11. Call elements’ removeElementAt and pass it minIndex.

12. Please return minvalue.

Figure 5. Excerpt from second user’s script

unsupported, For example, the only way to modify an
expression is to delete and replace the statement that contains
it. Moving the editing focus to a distant source code location
can require a long sequence of AST traversal operations.
Renaming a variable requires editing its declaration as well as
every occurrence of it. The major thrust of our future research
will center on addressing these issues.

We believe that our approach is sufficiently general that our
interface could be easily modified to support other
programming languages. We hope to demonstrate this once
NaturalJava is more fully developed. The most useful future
development would be to base the user interface on spoken, as
opposed to written, natural language. This is, of course, a
significant research challenge.

5. ACKNOWLEDGMENTS
We wish to thank David Bean and Jeff Lorenzen for help with
Sundance and JNI. This research was supported under NSF
grants IRI-9509820 and IRI-9704240.

6.
111

PI

131

[41

iSI

[cl

REFERENCES
Biermann, A., Ballard, B., and Sigmon, A. An
Experimental Study of Natural Language Programming.
International Journal of Man-Machine Studies, Vol. 18,
pp. 71-87, 1983.

Califf, M. E. Relational Learning Techniques for Natural
Language Information Extraction. Ph.D. Dissertation,
Tech. Rept. AI98-276, Artificial Intelligence Laboratory,
The University of Texas at Austin, 1998.

Freitag, D. Multistrategy Learning for Information
Extraction, In Proceedings of the Fzifteenth International
Conference on Machine Learning, 1998.

Riloff, E. Automatically Generating Extraction Patterns
horn Untagged Text. In Proceedings of the Thirteenth
National Conference on Art$cial Intelligence, 1996.

Riloff, E. An Empirical Study of Automated Dictionary
Construction for Information Extraction in Three Domains.
Artificial Intelligence 85:101--l 34. 1996.

Soderland, S. Learning Information Extraction Rules for
Semi-structured and Free Text. To appear in Machine
Learning, 1999.

210

[7] Wonisch, M. Ein objektorientierter interaktiver
Interpreter fur naturalichsprachliche Programmierung.

Diploma Thesis. Lehrstuhl fCx MeBtechnik, RWTH
Aachen, June 1995.

211

