
The RISC BLAS: A Blocked
Implementation of Level 3 BLAS for RISC
Processors

MICHEL J. DAYDÉ
ENSEEIHT-IRIT
and
IAIN S. DUFF
CERFACS and Rutherford Appleton Laboratory

We describe a version of the Level 3 BLAS which is designed to be efficient on RISC
processors. This is an extension of previous studies by the authors and colleagues on a similar
approach for efficient serial and parallel implementations on virtual-memory and shared-
memory multiprocessors. All our codes are written in Fortran and use loop-unrolling, blocking,
and copying to improve the performance. A blocking technique is used to express the BLAS in
terms of operations involving triangular blocks and calls to the matrix-matrix multiplication
kernel (GEMM). No manufacturer-supplied or assembler code is used. This blocked implemen-
tation uses the same blocking ideas as in our implementation for vector machines except that
the ordering of loops is designed for efficient reuse of data held in cache and not necessarily for
parallelization. All the codes are specifically tuned for RISC processors. The software also
includes a tuned version of GEMM. A parameter which controls the blocking allows efficient
exploitation of the memory hierarchy on the various target computers. We present results on a
range of RISC-based workstations and multiprocessors: CRAY T3D, DEC 8400 5/300, HP
715/64, IBM SP2, MEIKO CS2-HA, SGI Power Challenge 10000, and SUN UltraSPARC-1
model 140. This implementation of the Level 3 BLAS is available on anonymous FTP, and we
welcome input from users to improve and extend our BLAS implementation.

Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Soft-
ware; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms
and Problems—Computations on matrices; G.1.0 [Numerical Analysis]: General—Numerical
algorithms; G.1.3 [Numerical Analysis]: Numerical Linear Algebra—Linear systems (direct
and iterative methods)

General Terms: Algorithms, Measurement, Performance

Additional Key Words and Phrases: Blocking, Level 3 BLAS, loop-unrolling, matrix-matrix
kernels, RISC processors

Part of this study was funded by Conseil Régional Midi-Pyrénées under project DAE1/RECH/
9308020
Authors’ addresses: M. J. Daydé, ENSEEIHT-IRIT, 2 rue Camichel, Toulouse Cedex, 31071,
France; I. S. Duff, Rutherford Appleton Laboratory, Oxon, OX11 0QX, England.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0098-3500/99/0900–0316 $5.00

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999, Pages 316–340.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F326147.326150&domain=pdf&date_stamp=1999-09-01

1. INTRODUCTION

The Level 3 BLAS are a set of computational kernels targeted at matrix-
matrix operations with the aim of providing efficient and portable imple-
mentations of algorithms on high-performance computers. The linear alge-
bra package LAPACK [Anderson et al. 1995], for example, makes extensive
use of the Level 3 BLAS.

This article describes a version of single- and double-precision Level 3
BLAS computational kernels [Dongarra et al. 1990a; 1990b] called the
RISC BLAS, designed to be efficient on RISC processors. It is based on the
use of the matrix-matrix multiplication kernel GEMM. We show that this
implementation is portable and efficient on a range of RISC-based comput-
ers.

This version of the Level 3 BLAS is an evolution of the one described by
Daydé et al. [1994] for MIMD vector processors. They report on experi-
ments on a range of computers (ALLIANT, CONVEX, IBM, and CRAY) and
demonstrate the efficiency of their approach whenever a tuned version of
the matrix-matrix multiplication is available. They conclude by saying that
similar ideas could be used to design a tuned uniprocessor Level 3 BLAS for
computers where the processor accesses data through a cache, since block-
ing would also be beneficial.

The availability of powerful RISC processors is of major importance in
today’s market, since they are used both in workstations and in the most
recent parallel computers. Because of the success of RISC-based architec-
tures, we have decided to study the design of a version of the Level 3 BLAS
that is efficient on RISC processors. This tuned version of the Level 3 BLAS
uses the same blocking ideas as in Daydé et al. [1994], except that the
ordering of loops is designed for efficient reuse of data held in cache. Thus,
all the codes are specifically tuned for RISC processors, and the software
includes a tuned version of GEMM.

Our basic idea in the design of the Level 3 BLAS is to partition the
computations across submatrices so that the calculations can be expressed
in terms of calls to GEMM and operations involving triangular matrices.
All the codes we are using are written in Fortran and are tuned using
blocking, copying, and loop-unrolling. We believe these codes provide an
efficient implementation of the Level 3 BLAS on computers where a highly
tuned version is not available. In this article, the timings for the non-
GEMM blocked kernels are for versions using our own blocked GEMM code.
We note, that, in cases when the vendor supplies a more efficient version of
GEMM, it is trivial for us to use this in these other kernels (see Section 9).
By doing so, we can often do far better than the vendor-supplied versions of
these other kernels. At this time, we are very concerned with portability
and so have only included a few specific tuning techniques that are crucial
on some computers. Additionally, our experiments often use nonideal—
critical—leading dimensions for the matrices involved in the calculations
(e.g., powers of two). On some machines the times would be better for other
values. We would be happy to discuss with users and vendors the possibil-

The RISC BLAS • 317

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

ity of designing more highly tuned, but less portable, kernels for specific
machines. We also hope to receive input and comments from users to
improve this software.

The implementation of the kernels using both blocking and loop unrolling
is described in Sections 3 to 8 (examples of codes are included); more details
on this implementation are reported by Qrichi Aniba [1994]. We only
consider the implementation of the real and the double-precision Level 3
BLAS kernels.

This implementation of the Level 3 BLAS is available on anonymous
FTP, and we welcome input from users to improve and extend our BLAS
implementation. More details and more experiments can be found in Daydé
and Duff [1996] and Daydé and Duff [1997].

2. BLOCKED IMPLEMENTATION OF LEVEL 3 BLAS FOR RISC
PROCESSORS

2.1 RISC Processors

Vector processors are commonly used in supercomputers. Recently, very
fast RISC processors, which can also process vectors efficiently, have come
on to the market. They are usually more efficient than vector processors on
scalar applications. The main reason for their success in the marketplace is
their very good cost-to-performance ratio. They are used as a CPU both in
workstations and in most of the current MPPs (DEC Alpha on CRAY T3E,
SPARC on CM5 and PCI CS2, HP PA on CONVEX EXEMPLAR, and
RS/6000 on IBM SP1 and SP2).

We report results from uniprocessor executions on a range of RISC-based
computers (in practice, we have performed experiments on a larger set of
machines):

(1) CRAY T3D (1 node) located at IDRIS

(2) DEC 8400 5/300 located at RAL

(3) HP 715/64 located at ENSEEIHT

(4) IBM SP2 (1 thin node) located at CNUSC

(5) MEIKO CS2-HA (using a HyperSparc processor) located at CERFACS

(6) SGI Power Challenge 10000 using a MIPS R10000 processor located at
CERFACS

(7) SUN UltraSPARC-1 model 140 located at ENSEEIHT

2.2 Efficient Exploitation of the Memory Hierarchy

The ability of the memory to supply data to the processors at a sufficient
rate is crucial on most modern computers. This necessitates complex
memory organizations, where the memory is usually arranged in a hierar-
chical manner. The minimization of data transfers between the levels of the

318 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

memory hierarchy is a key issue for performance [Gallivan et al. 1987;
1988].

Most of the RISC-based architectures have a memory hierarchy involving
a cache. The cache memory is used to mask the memory latency (typically
the cache latency is around 1–2 clocks, while it is often 10 times higher for
the memory). The code performance is high so long as the cache hit ratio is
close to 100%. This may happen if the data involved in the calculations can
fit in cache or if the calculations can be organized so that data can be kept
in cache and efficiently reused. One of the most commonly used techniques
for that purpose is called blocking, and examples of this are reported in the
following sections. Blocking enhances spatial and temporal locality in
computations. Unfortunately, blocking is not always sufficient, since the
cache miss ratio can be dramatically increased in quite an unpredictable
way by memory accesses using a stride greater than 1 [Bodin and Seznec
1994].

Some strides are often called critical because they generate a very high
cache miss ratio (i.e., when referencing cache lines that are mapped into
the same physical location of the cache). These critical strides obviously
depend on the cache management strategy. For example, assuming a(i) is
one word and assuming the cache line length is equal to four words
(assuming that the cache is initially empty), when executing the loop

do i 51,n,4
temp 5 temp 1 a(i)

enddo

then each read of a(i) causes a cache miss.
Copying blocks of data (e.g., submatrices) that are heavily reused may

help to improve memory and cache accesses (e.g., by avoiding critical
strides). Since it may induce a large overhead, it is, however, not always a
viable technique (e.g., when the number of memory references required by
the copy is the same order as the number of flops involved in the calcula-
tion to be performed). We illustrate copying in our blocked implementation
of the BLAS. Note that blocking and copying are also very useful in limiting
the effect of TLB (Translation Lookaside Buffer) misses or memory paging.

2.3 Motivations and Design of the RISC BLAS

We have previously implemented full and sparse linear solvers on comput-
ers where a tuned version of the BLAS was not available (or was not
available without cost), or where the tuning of some of the BLAS kernels
was not done efficiently. Because the performance of the Level 3 BLAS is
crucial to most of our work, we decided to invest some time in the tuning of
the Level 3 BLAS kernels.

Our main goal when designing the RISC BLAS was to provide reasonable
performance with very simple software, on a range of computers. Our
interest in RISC processors arose from the fact that they are used in
workstations and parallel computers where a well-tuned version of the
BLAS was often not available.

The RISC BLAS • 319

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

We considered the blocking of the triangular solver from the Level 3
BLAS—TRSM—in Daydé and Duff [1989]. Then, we developed a blocked
version of the Level 3 BLAS for MIMD vector multiprocessors [Amestoy
and Daydé 1993; Daydé et al. 1994]. At the same time, we also studied the
development of a parallel version of the Level 3 BLAS for Transputers
[Berger et al. 1991]. Some of the ideas in the Transputer parallel version
and in the blocked version for MIMD vector processors were used to design
the serial and parallel versions of the Level 3 BLAS for the BBN TC2000
[Amestoy et al. 1995]. Note that the BBN TC2000 used a RISC processor:
the Motorola 88100. The serial version developed for the BBN was ex-
tended and modified to be portable and efficient on a wide range of RISC
processors [Daydé and Duff 1996; Qrichi Aniba 1994]. The corresponding
software—Version 0—was made available in 1995 and was installed in
various places. The version we refer to in the present article is Version 1.0.

The RISC BLAS differs from the blocked version of the Level 3 BLAS for
MIMD vector multiprocessors in the following ways:

—The loop ordering is dictated by consideration of efficient cache reuse
rather than parallel implementation.

—The codes are now tuned for RISC processors rather than for vector
processors, and, additionally, we provide a tuned GEMM code.

—SYMM and SYR2K are blocked in a different way and only make use of
GEMM (as described in Ling [1993] and suggested implicitly in Sheikh
and Liu [1989]).

Our basic idea for efficient implementation of the BLAS on RISC processors
is to express all the Level 3 BLAS kernels in terms of subkernels that
either perform GEMM operations on square submatrices of order NB or
perform operations involving triangular submatrices. Additionally, all the
calculations in these subkernels are performed using tuned Fortran codes
with loop-unrolling. Copying is occasionally used. Of course, the relative
efficiency of this approach depends on the availability of a highly tuned
GEMM kernel. Our approach is relatively independent of the computer:
only the NB parameter, corresponding to the block size, and in some cases
the loop-unrolling depth need to be set according to the characteristics of
the target machine. NB is determined by the size of the cache (see Section
3.1) and the loop-unrolling depth by the number of scalar registers. The
value of NB is set within the installation makefile by selecting an architec-
ture name.

Note that Kågström et al. [1998a; 1998b] use similar ideas. Using their
terminology, the RISC BLAS is a GEMM-based BLAS. In fact, most of the
manufacturers develop BLAS in that way [Sheikh and Liu 1989].

The main differences between the RISC BLAS and the work by Kågström
et al. are the following:

—The RISC BLAS only makes use of Level 3 BLAS operations. These
operations are effected using the tuned Fortran codes included in our

320 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

software. A lot of effort has been made to provide tuned building blocks
(using blocking, copying, and loop-unrolling) for all the kernels including
GEMM.

—The GEMM-based BLAS does not provide a tuned implementation of
GEMM and relies on the one available on the computer. It is based on the
use of GEMM and Level 1 and Level 2-based operations.

—The RISC BLAS is still a on-going effort. Version 2.0 will be delivered
soon: some improvements in the GEMM design (e.g., multilevel blocking)
have been implemented, and complex versions of GEMM will be included.

—We incorporate some specific optimizations in our software that appear
to be crucial on some processors (e.g., we have a version tuned for the
SGI Power Challenge 10000), but we have not included all possible
optimizations, in order to keep the code simple (our intention is not to
provide the best possible implementation on a particular processor but a
good one over a range of processors). We will certainly distribute sepa-
rately tuned versions of the RISC BLAS for specific processors in the
future.

The installation makefile provided in our software offers default options
for a wide range of computers (including those used in our experiments).
Basically, the user has only to select an architecture name (e.g., RS6K64
for an IBM RS6000 Power with a 64KB cache or SPARC10 for SUN
workstations using a SPARC 10 processor), the corresponding organization
of operations (TRIADIC or NOTRIADIC for the IBM RS6000 and the SUN,
respectively) according to the recommendations in the makefile, and the
compiler and linker options (we provide default options). Examples when
using GEMM are included in Section 3.1. We use the C preprocessor as the
main mechanism to generate the version of the RISC BLAS for a particular
processor. Our software has been tested on a wide range of RISC processors
running the UNIX operating system. We have not yet studied extensions
for non-UNIX systems, but generating a Fortran version (without C prepro-
cessor directives) before porting the code is straightforward.

Modifying the software to add a new processor is extremely simple: only
the block size (which depends on the cache size) has to be set using a very
simple calculation rule as explained in Section 3.1. The TRIADIC organiza-
tion of operations is almost always the best choice.

In the following sections, we describe the blocked implementation of the
real and double-precision Level 3 BLAS: GEMM, SYMM, TRSM, TRMM,
SYRK, SYR2K (all these names are prefixed by S or D depending on
whether the routine is single or double precision).

For each kernel there are a number of options, e.g., whether the matrix is
transposed or not. For the sake of clarity, we comment only on one of these
variants of the kernels, and we illustrate our blocking strategy on matrices
that are only partitioned into four blocks. In practice, the matrices are
partitioned into square blocks of order NB where NB is chosen according to
the machine characteristics.

The RISC BLAS • 321

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

3. BLOCKED IMPLEMENTATION OF GEMM

3.1 Description of the Blocked GEMM

GEMM performs one of the matrix-matrix operations

C 5 a op~A! op~B! 1 bC,

where a and b are scalars; A and B are rectangular matrices of dimensions
m 3 k and k 3 n, respectively; C is an m 3 n matrix; and op(A) is A or
AT.

We consider the following case (corresponding to op equal to “No trans-
pose” in both cases):

S C11 C12

C21 C22
D 4 aS A11 A12

A21 A22
DS B11 B12

B21 B22
D 1 bS C11 C12

C21 C22
D

DGEMM can obviously be organized in terms of a succession of matrix-
matrix multiplication on submatrices as follows:

(1) C11 4 bC11 1 aA11B11 (GEMM)

(2) C11 4 C11 1 aA12B21 (GEMM)

(3) C12 4 bC12 1 aA11B12 (GEMM)

(4) C12 4 C12 1 aA12B22 (GEMM)

(5) C21 4 bC21 1 aA21B11 (GEMM)

(6) C21 4 C21 1 aA22B21 (GEMM)

(7) C22 4 bC22 1 aA21B12 (GEMM)

(8) C22 4 C22 1 aA22B22 (GEMM)

The ordering of these eight computational steps is determined by consider-
ations on efficient reutilization of data held in cache. The submatrix of A,
because of the access by rows, leads to nonunit strides in the innermost
loops of the calculations. It is then multiplied by a and transposed into a
working array AA. AA is kept in cache as long as required. This is why we
have decided to organize the calculations in order to reuse the submatrices
of A as much as possible (thus, trying to amortize the cost of this copy), and
we perform all operations involving a submatrix before moving to another
one (see Figure 1). For our simple example, it means that we perform the
calculations as follows: Step 1, Step 3, Step 5, Step 7, Step 2, Step 4, Step 6,
and Step 8. This approach is similar to that used by Dongarra et al. [1991].

The blocked code is reported in Figure 1. We use two tuned Fortran codes
to perform calculations on submatrices (see Figure 2):

322 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

—DGEMML2X2_NN is a tuned code for performing matrix-matrix multipli-
cation on square matrices of even order.

—DGEMML_NN is a tuned code that includes additional tests over
DGEMML2X2_NN to handle matrices of odd order. It is occasionally
slightly less efficient than DGEMML2X2_NN.

Fig. 1. Blocked code for GEMM.

The RISC BLAS • 323

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

We have used two versions for all the tuned codes:

—the TRIADIC option for computers where triadic operations are either
supported in the hardware (e.g., the floating-point multiply-and-add on
IBM SP2) or are efficiently compiled

—the NOTRIADIC option for other computers.

The use of triadic operations should not normally degrade the performance
severely on processors that do not support these operations, since efficient
code generation can transform them into dyadic operations. However, in
early versions of SPARC compilers, we saw that there was sometimes such
a degradation. Thus we prefer to offer both options.

The tuned code DGEMML2X2_NN using the TRIADIC options is shown
on the left side of Figure 2, while the code corresponding to the NOTRI-
ADIC option is shown on the right side. The selection between the options
is effected using the C preprocessor that generates one of the two codes. All

Fig. 2. Tuned code for GEMM (left: TRIADIC option, right: NOTRIADIC option).

324 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

the tuned codes described in the rest of this article offer both options. In
Version 1.0 of the RISC BLAS, we use a 2-by-2 and a 4-by-2 unrolling in
double and single precision, respectively. In Version 2.0, the same loop-
unrolling depth will be used in both precisions on 64-bit processors such the
DEC, the IBM, and the MIPS processors.

There is some freedom for selecting an appropriate block size. Since the
elements of the working array AA that are used to store the transpose of
the submatrix of A, and the submatrix of B, are referenced several times in
the innermost computational loops (see Figure 2), NB should be chosen to
guarantee that these subarrays fit in cache. Additionally, the elements of C
that are updated should also fit in cache [Bodin and Seznec 1994; Gallivan
et al. 1988; Hennessy and Patterson 1996; Ling 1993].

If the leading dimension of an array is critical—e.g., a multiple of a
power of two—the effective space in the cache to hold a submatrix of that
array may be drastically reduced (typically, several elements of the subma-
trix are to be stored at the same cache location, increasing the number of
cache misses). It is then useful to detect these critical leading dimensions
[Ling 1993; Kågström et al. 1998a; 1998b]. One possibility is to decrease
NB in order to decrease the number of cache misses in an attempt to fit the
submatrix into the cache. Copying these blocks into a working array with a
favorable leading dimension is also very useful (as used in the RISC BLAS).
Note that avoiding powers of 2 as dimensions of a 2D array is not always
sufficient to prevent a catastrophic behavior of caches [Bodin and Seznec
1994].

Similarly to Bell [1991] and Dongarra et al. [1991], NB is selected for the
RISC BLAS in a simple way: it is chosen so that all the submatrices of A,
B, and C required for each submultiplication fit in the largest on-chip
cache, except for the MEIKO CS2-HA because the HyperSparc only pos-
sesses an external cache on that computer. On some machines, access to
off-chip caches has so low latency that we can improve performance by
using a larger block size. This is true, for example, on the SGI Power
Challenge. The most efficient use of multilevel cache machines is outwith
the scope of this article, but some multilevel blocking is implemented in
Version 2.0 of our software. Additionally in Version 2.0, the multiplication
of C by b is effected within the sectioning loops so that the submatrix of C
can be reused more efficiently. The way we manage critical leading dimen-
sions will be improved in future releases of the RISC BLAS.

Since all the computational kernels call GEMM, the block size NB is
always determined as the most appropriate block size for GEMM. That is,
we choose the largest even integer (even—to enhance loop-unrolling by
using the tuned codes such as DGEMML2X2 NN without needing addi-
tional tests to handle matrices with odd order) such that

3~NB!2prec , CS

The RISC BLAS • 325

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

where prec is the number of bytes corresponding to the precision used (four
bytes for single precision and eight bytes for double precision in IEEE
format), while CS is the cache size in bytes. For example, with a 64KB
cache, NB is set to 52 when using 64-bit arithmetic.

We show the block sizes used in our experiments in Table I. We also
include the cache organization (direct-mapped or set-associative). Note that
the DEC processor (DEC 21164) used on the DEC 8400 5/300 has two levels
of internal cache of size equal to 8KB and 96KB, respectively, and an
external cache of between 1MB and 64MB. We have tuned our codes with
respect to the second level of internal cache, since our experiments show
this is the most efficient. The SGI Power Challenge the using R10000
processor and the UltraSPARC-1 have an external cache of size equal to
1MB and 512KB respectively.

Single-Precision Implementation on the IBM RS/6000 and IBM SP2.
Slight modifications [Dongarra et al. 1991] allow further improvement in
performance on the IBM Power and Power2 processors. The IBM FPU
performs its arithmetic using 64-bit operands. As a consequence, these
processors perform single-precision operations in the following way:

(1) Convert operands from single to double precision.

(2) Perform double-precision computation.

(3) Convert the double-precision result into single precision.

These conversions can be very costly and explain why the IBM is slower in
single precision than in double precision. Therefore, we have slightly
modified the tuned code SGEMML4X2 to convert operands within the
innermost loop once only. The matrix A is copied into a double-precision
working array in the blocked code, and the elements of arrays C and B are
stored in double-precision temporary scalars.

We have used this data conversion only in SGEMM on the IBM, but it
should be used everywhere else. Since IBM provides a tuned BLAS imple-
mentation in its scientific library, we have decided not to spend too much
effort on tuning our code for the IBM.

Table I. Block Size Used in the Blocked BLAS on the Target Computers

Computer

Cache
Characteristics Block Size

Organization of
Operations

Clock
(MHz)

Peak
Perf.Size Org. Single Double

CRAY T3D 8KB Direct 24 16 TRIADIC 150 150
DEC 8400 5/300 96KB 3-way 88 60 TRIADIC 300 600
HP 715/64 64KB Direct 72 52 TRIADIC 64 128
IBM SP2 64KB 4-way 72 52 TRIADIC 66 264
MEIKO CS2-HA 256KB 4-way 140 100 NOTRIADIC 100 100
SGI Power 10000 32KB Direct 42 36 TRIADIC 195 390
SUN Ultra-1 140 16KB Direct 36 24 NOTRIADIC 143 286

326 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

3.2 Numerical Experiments

We show in Table II the performance achieved on CRAY T3D, DEC 8400
5/300, IBM SP2, HP 715, MEIKO CS2-HA, SGI Power Challenge, and SUN
UltraSPARC-1. We also include the performance of the manufacturer-
supplied library version when available (we use -lblas on the SGI and the
HP, ESSL on the IBM SP2, SCILIB on the CRAY T3D, and -ldxml on the
DEC 8400). We only include the single-precision experiments for the CRAY
T3D, since single precision corresponds to 64-bit arithmetic on that ma-
chine (we proceed similarly for the other kernels). “Standard” in column 2
of Tables II, III, V, and VI refers to the standard Fortran version. The
performance reported is the average performance achieved on a set of 4
matrix-matrix multiplications where matrices are square of order 32, 64,
96, and 128. We also report, on the SGI Power Challenge, the performance
achieved using an increased block size corresponding to a cache size equal
to 64KB instead of 32KB (line: blocked (64KB)).

The blocked implementation of GEMM usually provides a gain of more
than 2 over the standard Fortran code when the matrices exceed the cache
size. Note that better performance can be achieved if the matrices are
already located (preloaded) in the cache, which is not the case in our
experiments. On the MEIKO CS2-HA, the KAP preprocessor that we use
performs extremely efficient optimizations (using loop-unrolling), and,

Table II. Average Performance in Mflop/s of the Blocked Implementation of DGEMM and
SGEMM on RISC Workstations (using square matrices of order 32, 64, 96, and 128)

op(A), op(B)

Processor DGEMM/SGEMM ‘N’, ‘N’ ‘N’, ‘T’ ‘T’, ‘N’ ‘T’, ‘T’

CRAY T3D standard /12 /12 /15 /8
blocked /49 /40 /49 /49
library /90 /66 /87 /71

DEC 8400 5/30 standard 95/105 98/108 76/77 61/65
blocked 216/246 208/267 215/239 211/258
library 335/412 327/388 345/416 318/395

HP 715/64 standard 15/18 16/18 20/22 22/24
blocked 29/55 30/59 30/55 34/56
library 52/81 47/63 46/71 51/81

IBM SP2 (thin node) standard 31/32 32/32 51/27 51/27
blocked 132/153 111/167 146/171 135/191
library 189/206 182/197 197/220 161/202

MEIKO CS2-HA standard 39/28 36/33 30/33 27/36
blocked 38/60 45/58 39/69 43/78

SGI Power 10000 standard 79/91 77/95 110/12 90/108
blocked 152/152 197/174 206/247 225/249
blocked (64KB) 206/271 194/261 200/264 186/266
library 136/152 168/173 198/247 209/249

SUN Ultra-1 140 standard 28/42 26/42 33/54 26/45
blocked 67/112 64/116 67/112 63/118

The RISC BLAS • 327

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

since the matrices are relatively small and fit in cache (the size of the
external cache is 256KB), the standard version of DGEMM when arrays are
not transposed is the same as our tuned version (optimization performed by
KAP and by hand are equivalent, since blocking has no effect). On the DEC
8400, the vendor-supplied library routines perform significantly better
than our blocked code, in both single and double precision, probably
because better use is made of the multilevel cache. The vendor-supplied
library GEMM routines on the SGI perform similarly in single precision
and are slightly worse in double precision than our blocked code. However,
if we increase the block size, we can improve the performance of the
blocked codes by more than 60% in some cases even though the submatrices
do not then fit in the on-chip caches (see SGI Power results).

We also report in Table III the average performance of DGEMM
(SGEMM on the CRAY T3D) when the inner dimension of the matrix-
matrix product is small (k equals 8 and 16), since it is of special interest for
sparse matrix calculations [Amestoy and Duff 1989; Amestoy et al. 1995;
Puglisi 1993]. We only consider the case where A and B are not transposed.

We show in Table IV the performance of the best version of DGEMM and
SGEMM available to us, i.e., we use either our implementation or a tuned
manufacturer-supplied version. We choose the option when both A and B
are not transposed and run on square matrices of order 500 and 1000 in
order to study whether we can get close to the theoretical peak perfor-
mance.

Table III. Average Performance in Mflop/s of the Blocked Implementation of DGEMM
(SGEMM on CRAY T3D) on RISC Workstations (where C is a square matrix of order 32, 64,

96, and 128 and inner dimension of the product, k, equal to 8 and 16)

k

Processor GEMM (64-bit) 8 16

CRAY T3D standard 15 15
blocked 37 24
library 73 44

HP 715/64 standard 17 16
blocked 23 25
library 38 42

IBM SP2 (thin node) standard 33 17
blocked 87 62
library 85 78

MEIKO CS2-HA standard 33 37
blocked 32 35

SGI Power 10000 standard 91 49
blocked 18 106
library 18 108

SUN Ultra-1 140 standard 32 17
blocked 51 31

328 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

The performance achieved by the tuned versions of GEMM is relatively
far from the peak performance for all the RISC processors except the IBM
SP2. On the IBM SP2, it is possible to reach peak performance by changing
the leading dimensions of the matrices [Agarwal et al. 1994].

4. BLOCKED IMPLEMENTATION OF TRSM

TRSM solves one of the matrix equations

AX 5 aB, ATX 5 aB, XA 5 aB, or XAT 5 aB

where a is a scalar; X and B are m 3 n matrices; and A is a unit, or
nonunit, upper or lower triangular matrix. B is overwritten by X.

We consider the following case (corresponding to the parameters “Left,”
“No transpose,” and “Upper,” i.e., we solve for AX 5 aB where A is not
transposed, and upper triangular):

S A11 A12

0 A22
DS X11 X12

X21 X22
D 5 aS B11 B12

B21 B22
D

(1) Solution of A22X21 5 aB21 and B21 is overwritten by X21 (TRSM)

(2) Solution of A22X22 5 aB22 and B22 is overwritten by X22 (TRSM)

(3) B11 4 aB11 2 A12B21 (GEMM)

(4) B12 4 aB12 2 A12B22 (GEMM)

(5) Solution of A11X11 5 B11 and B11 is overwritten by X11 (TRSM)

(6) Solution of A11X12 5 B12 and B12 is overwritten by X12 (TRSM)

Table IV. Performance in Mflop/s of the Best Available Implementation of DGEMM and
SGEMM on RISC Workstations (A and B are not transposed)

Size

Processor Version Kernel 500 1000 Peak

CRAY T3D library SGEMM 102 103 150

DEC 8200 5/300 library DGEMM 334 313 600
SGEMM 431 418

HP 715/64 library DGEMM 35 35 128
SGEMM 71 68

IBM SP2 (thin node) library DGEMM 211 212 266
SGEMM 232 234

MEIKO CS2-HA blocked DGEMM 49 49 100
SGEMM 88 88

SGI Power 10000 blocked DGEMM 233 231 388
SGEMM 305 296

SUN Ultra-1 140 blocked DGEMM 66 64 286
SGEMM 124 122

The RISC BLAS • 329

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

Therefore, TRSM can be computed as a sequence of triangular solutions
(TRSM) and matrix-matrix multiplications (GEMM). The ordering of com-
putational steps is chosen so that each submatrix Ai, i on the diagonal of A,
involved in each solution step, is kept in the cache for as long as it can be
used. As for GEMM, we use two distinct versions of the tuned Fortran code
for the solution step: TRSML2X2 when the order of B is even and TRSML
otherwise.

As soon as the matrices are large enough compared with the block size,
GEMM represents a high percentage of the total number of floating-point
operations required by the blocked version of TRSM. For example, when
the triangular system is “Left,” assuming that NB divides m and n exactly
(so that the number of blocks is m/NB 3 n/NB), the percentage of opera-
tions spent in GEMM is equal to 1 2 NB/m. Note that the blocked
versions of the other kernels behave similarly.

We report, in Table V, the performance achieved on our range of RISC
workstations for all variants when A is unit and the system is left (the
performance is similar when A is nonunit and when the system is right).
The performance gain provided by the blocked implementation of DTRSM
compared with the standard Fortran version is close to a factor of 3 and is
more impressive than that obtained for DGEMM. In both single and double
precision, our blocked code outperforms the vendor code on the DEC 8400,
and would be even faster if we used calls to the vendor-supplied GEMM
routines from within our blocked code.

5. BLOCKED IMPLEMENTATION OF TRMM

TRMM performs one of the matrix-matrix operations

B 5 aAB, B 5 aATB
or

B 5 aBA, B 5 aBAT

where a is a scalar, B is an m 3 n matrix, A is a unit, or nonunit, upper or
lower triangular matrix.

We consider the following case (corresponding to the parameters “Left,”
“No transpose,” and “Upper,” i.e., B 5 aAB where A is upper triangular):

S B11 B12

B21 B22
D 4 aS A11 A12

0 A22
DS B11 B12

B21 B22
D

(1) B11 4 aA11B11 (TRMM)

(2) B11 4 B11 1 aA12B21 (GEMM)

(3) B12 4 aA11B12 (TRMM)

(4) B12 4 B12 1 aA12B22 (GEMM)

(5) B21 4 aA22B21 (TRMM)

(6) B22 4 aA22B22 (TRMM)

330 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

TRMM is expressed as a sequence of GEMM and TRMM operations. The
computations of the submatrices of B within the same block row are
independent. The GEMM operations can be combined. We use a tuned
Fortran code called TRMML2X2 for performing the multiplication of diag-
onal blocks of A.

We report in Table V the performance of the blocked version of TRMM in
the case where A is unit and when the system is left. Performance is
similar when the system is right. Our blocked code can be seen to be
usually more than twice as efficient as standard BLAS. Larger blocking on
the SGI does not help much on this kernel except in single precision. On
the DEC 8400, our blocked code performs consistently better than the
vendor code, particularly in single precision. The blocked code would be
even faster if we used the vendor-supplied GEMM routines. TRMM is
obviously not tuned at all in the SCILIB library that we have access to on
the CRAY T3D.

Table V. Average Performance in Mflop/s of the Blocked Implementations of DTRSM and
DTRMM (STRSM and STRMM on the CRAY T3D) on RISC Processors (using square

matrices of order 32, 64, 96, and 128)

Kernel

TRSM: “Left” TRMM: “Left”

‘U’ ‘L’ ‘U ‘L’ ‘U’ ‘L’ ‘U ‘L’
Processor Version ‘N’ ‘N’ ‘T ‘T’ ‘N’ ‘N’ ‘T ‘T’

CRAY T3D standard 12 12 16 16 12 12 13 13
blocked 38 38 35 34 47 48 36 36
library 87 86 82 81 12 12 16 16

DEC 8400 5/300 standard 40 73 70 72 84 81 74 70
blocked 204 187 199 231 194 180 183 184
library 184 182 176 183 175 174 178 175

HP 715/64 standard 12 12 20 19 16 15 21 20
blocked 30 28 31 31 30 29 33 31
library 33 34 34 31 41 41 41 39

IBM SP2 (thin node) standard 41 45 53 53 31 29 54 55
blocked 113 140 109 123 106 121 116 109
library 155 157 146 147 154 174 155 166

MEIKO CS2-HA standard 13 12 31 30 13 12 31 30
blocked 50 47 43 42 50 47 43 42

SGI Power 10000 standard 67 82 118 116 77 74 117 116
blocked 212 212 261 254 228 224 242 178
library 211 211 259 252 228 224 242 178

SUN Ultra-1 140 standard 22 22 34 33 24 25 34 34
blocked 57 57 57 57 64 64 64 57

The RISC BLAS • 331

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

6. BLOCKED IMPLEMENTATION OF SYMM

SYMM performs one of the following matrix-matrix operations

C 5 aAB 1 bC
or

C 5 aBA 1 bC

where a and b are scalars; A is an m 3 m symmetric matrix (only the
upper or lower triangular parts are used); and B and C are m 3 n
matrices.

We consider the following case (corresponding to the parameters “Left,”
“Upper,” i.e., C 5 aAB 1 bC where only the upper part of A is refer-
enced):

S C11 C12

C21 C22
D 4 aS A11 A12

A12
T A22

DS B11 B12

B21 B22
D 1 bS C11 C12

C21 C22
D

(1) C11 4 bC11 1 aA11B11 (SYMM)

(2) C12 4 bC12 1 aA11B12 (SYMM)

(3) C11 4 C11 1 aA12B21 (GEMM)

(4) C12 4 C12 1 aA12B22 (GEMM)

(5) C21 4 bC21 1 aA22B21 (SYMM)

(6) C22 4 bC22 1 aA22B22 (SYMM)

(7) C21 4 C21 1 aA12
T B11 (GEMM)

(8) C22 4 C22 1 aA12
T B12 (GEMM)

Therefore, SYMM can be expressed as a sequence of SYMM and GEMM
operations. The SYMM operations are used for the matrix-matrix multipli-
cation involving the blocks Aii (only the upper triangular part is stored,
since the submatrices are symmetric). A straightforward way of avoiding
the multiplication step involving these symmetric submatrices consists in
copying the submatrices Aii into a working array AA where both the upper
and the lower triangular part are stored as described in Ling [1993].
Therefore, instead of using a SYMM operation for multiplications using the
submatrices Aii, we can use a GEMM operation involving AA. The addi-
tional operations that we make are compensated by the performance gain
due to the use of GEMM.

Using this strategy, SYMM is expressed as a sequence of GEMM opera-
tions:

(1) Copy A11 into AA

(2) C11 4 bC11 1 aAA.B11 (GEMM)

332 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

(3) C12 4 bC12 1 aAA.B12 (GEMM)

(4) C11 4 C11 1 aA12B21 (GEMM)

(5) C12 4 C12 1 aA12B22 (GEMM)

(6) Copy A22 into AA

(7) C21 4 bC21 1 aAA.B21 (GEMM)

(8) C22 4 bC22 1 aAA.B22 (GEMM)

(9) C21 4 C21 1 aA12
T B11 (GEMM)

(10) C22 4 C22 1 aA12
T B12 (GEMM)

The GEMM operations on block rows of C can be combined. This allows
us to perform GEMM operations on longer vectors and decreases the
overhead due to subroutine calls.

We present in Table VI the performance of the blocked version of SYMM,
and we compare it with the performance of the standard Fortran version.
We see a big improvement over standard Fortran BLAS when using our
blocked version, usually a factor of 2 but occasionally nearly a factor of 8.
On the SGI, our blocked code and the manufacturer-supplied version
perform similarly. It seems clear that DEC has used a similar device to
ours on the DEC 8400, since the performance of their library code for
SYMM is close to their GEMM performance. SYMM is obviously not tuned
at all in the SCILIB library that we have access to on the CRAY T3D.

7. BLOCKED IMPLEMENTATION OF SYRK

SYRK performs one of the following symmetric rank-k operations

C 5 aAAT 1 bC
or

C 5 aATA 1 bC

where a and b are scalars; C is an n 3 n symmetric matrix (only the upper
or lower triangular parts are updated); and A is a n 3 k matrix in the first
case and a k 3 n matrix in the second case.

We consider the following case (corresponding to “Upper,” and “No
transpose,” i.e., we perform C 5 aAAT 1 bC where only the upper trian-
gular part of C is updated):

S C11 C12

0 C22
D 4 aS A11 A12

A21 A22
DS A11

T A21
T

A12
T A22

T D 1 bS C11 C12

0 C22
D

(1) C11 4 bC11 1 aA11A11
T (SYRK)

(2) C11 4 C11 1 aA12A12
T (SYRK)

The RISC BLAS • 333

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

(3) C12 4 bC12 1 aA11A21
T (GEMM)

(4) C12 4 C12 1 aA12A22
T (GEMM)

(5) C22 4 bC22 1 aA21A21
T (SYRK)

(6) C22 4 C22 1 aA22A22
T (SYRK)

The symmetric rank-k update is expressed as a sequence of SYRK for
updating the submatrices Cii and GEMM for the other blocks. The updates
of the submatrices of C can be performed independently. The GEMM
updates of off-diagonal blocks can be combined. Note that we could perform
the update of the diagonal blocks of C using GEMM instead of SYRK, at the
price of extra operations.

Note that it is more efficient to perform the multiplication of matrix C by
b before calling GEMM rather than performing this multiplication within
GEMM. In Table VI the performance of the standard Fortran code and of
the blocked implementation are compared for all the variants. For this
kernel, our gains over using standard BLAS are significant, usually by a
factor of close to 2. On the SGI, the vendor code and the blocked version
perform similarly. Using a larger block size on the SGI improves perfor-

Table VI. Average Performance in Mflop/s of the Blocked Implementations of DSYMM,
DSYRK, and DSYR2K (SSYMM, SSYRK, and SSYR2K on the CRAY T3D) for RISC

Processors (using square matrices of order 32, 64, 96, and 128)

SYMM SYRK SYR2K

‘L’ ‘L’ ‘R ‘R’ ‘U’ ‘L’ ‘U’ ‘L’ ‘U’ ‘L’ ‘U ‘L’
Processor Version ‘U’ ‘L’ ‘U’ ‘L’ ‘N’ ‘N’ ‘T’ ‘T’ ‘N’ ‘N’ ‘T ‘T’

CRAY T3D standard 4 7 11 11 11 11 16 16 7 7 5 5
blocked 45 45 48 48 39 38 44 42 42 42 47 48
library 4 7 11 11 11 11 16 16 7 7 5 5

DEC 840
5/300

standard 87 96 91 90 81 82 74 78 83 89 82 82
blocked 188 183 180 183 172 162 182 189 187 181 191 198
library 315 310 300 300 82 86 100 85 106 103 130 127

HP 715/64 standard 4 4 16 16 17 15 24 24 5 5 2 2
blocked 28 28 30 31 26 23 32 31 33 31 34 35
library 44 45 45 46 16 16 28 27 5 5 3 3

IBM SP2
(thin node)

standard 52 51 34 34 31 30 60 60 42 41 81 89
blocked 116 114 113 121 106 99 115 109 113 103 123 128
library 156 165 141 168 169 179 177 174 146 161 169 177

MEIKO
CS2-HA

standard 15 15 40 38 20 20 37 36 15 17 10 10
blocked 37 36 40 42 44 44 40 40 44 44 46 46

SGI Power
10000

standard 44 37 98 97 73 70 139 137 40 37 40 39
blocked 241 237 226 220 192 182 192 184 208 204 219 215
library 241 237 220 214 198 198 199 197 210 216 254 251

SUN Ultra-1
140

standard 26 25 26 26 24 24 36 36 29 29 26 26
blocked 61 61 62 62 61 63 69 70 62 61 64 65

334 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

mance by up to 40% in double precision. Our blocked code is substantially
better than the vendor kernel on the DEC 8400 and would be even faster if
we used the vendor-supplied GEMM. The CRAY SCILIB code is obviously
not tuned.

8. BLOCKED IMPLEMENTATION OF SYR2K

SYR2K performs one of the following symmetric rank-2k operations

C 5 aABT 1 aBAT 1 bC
or

C 5 aATB 1 aBTA 1 bC

where a and b are scalars; C is an n 3 n symmetric matrix (only the upper
or lower triangular parts are updated); and A and B are n 3 k matrices in
the first case and k 3 n matrices in the second case.

We consider the following case (corresponding to “Upper,” and “No
transpose,” i.e., C 5 aABT 1 aBAT 1 bC where only the upper triangu-
lar part of C is updated):

S C11 C12

0 C22
D 4 aS A11 A12

A21 A22
DS B11

T B21
T

B12
T B22

T D
1 aS B11 B12

B21 B22
DS A11

T A21
T

A12
T A22

T D 1 bS C11 C12

0 C22
D

(1) C11 4 bC11 1 aA11B11
T 1 aB11A11

T (SYR2K)

(2) C11 4 C11 1 aA12B12
T 1 aB12A12

T (SYR2K)

(3) C12 4 bC12 1 aA11B21
T (GEMM)

(4) C12 4 C12 1 aB11A21
T (GEMM)

(5) C12 4 C12 1 aA12B22
T (GEMM)

(6) C12 4 C12 1 aB12A22
T (GEMM)

(7) C22 4 bC22 1 aA21B21
T 1 aB21A21

T (SYR2K)

(8) C22 4 C22 1 aA22B22
T 1 aB22A22

T (SYR2K)

SYR2K is expressed as a sequence of SYR2K for updating the triangular
submatrices Ci, i, and GEMM on the other blocks. The update of the
submatrices of C can be effected simultaneously. There is no need to
compute both aABT and aBAT (since it is the same matrix but transposed).
Thus, only one of the two operations is performed, and the result is stored
into a working array called CC. This can be done using GEMM as described
in Ling [1993].

The RISC BLAS • 335

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

Using these remarks SYR2K is computed in the following way:

(1) CC 4 aA11.B11
T (GEMM)

(2) CC 4 CC 1 aA12.B12
T (GEMM)

(3) C11 4 bC11 1 CC 1 CCT

(4) C12 4 bC12 1 aA11B21
T (GEMM)

(5) C12 4 C12 1 aB11A21
T (GEMM)

(6) C12 4 C12 1 aA12B22
T (GEMM)

(7) C12 4 C12 1 aB12A22
T (GEMM)

(8) CC 4 aA21.B21
T (GEMM)

(9) CC 4 CC 1 aA22.B22
T (GEMM)

(10) C22 4 bC22 1 CC 1 CCT

As for SYRK, with a larger number of blocks, the GEMM updates of the
off-diagonal blocks can be combined. We report, in Table VI, the results
obtained using our blocked implementation of SYR2K. Our blocked code is
substantially better than the vendor kernel on the DEC 8400 and would be
even faster if we used the vendor-supplied GEMM. SYR2K is not tuned on
the CRAY T3D.

9. USE OF THE MANUFACTURER-SUPPLIED GEMM

In Table VII, we show the effect of using a tuned version of GEMM—the
manufacturer-supplied version—within our RISC BLAS. We only show the
performance of one of the variants for each Level 3 BLAS kernel. It is
compared with the manufacturer-supplied library kernel.

The performance of the RISC BLAS is substantially increased when
using the tuned vendor code for GEMM within our blocked version. We
achieve better performance than the manufacturer-supplied library on the
HP except for SYMM and TRMM. On the IBM SP2, we are still far from the
ESSL performance on TRSM, TRMM, and SYRK, while we outperform the
vendor code for SYMM and the single-precision SYR2K. On the CRAY T3D,
except for TRSM which is tuned in the manufacturer-supplied library, we
outperform the vendor codes.

10. CONCLUSION

We have described an efficient and portable implementation of the Level 3
BLAS for RISC processors.

The Level 3 BLAS are expressed as a sequence of matrix-matrix multipli-
cations (GEMM) and operations involving triangular blocks. The combina-
tion of blocking, copying, and loop unrolling allows efficient exploitation of
the memory hierarchy, and only the blocking parameter and the loop-

336 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

unrolling depth are machine dependent. Both the performance of GEMM
and the performance of the kernel dealing with triangular matrices are
crucial.

We have shown here that significant Megaflop rates can be achieved,
only using tuned Fortran kernels. Although our primary aim is not to
outperform the vendor-supplied libraries, our portable implementation
compares well with the manufacturer-supplied libraries on the IBM SP2,
the HP 715/64, the DEC 8400 5/300, and the SGI Power Challenge. It is
interesting that, although the vendor-supplied GEMM routines are better

Table VII. Comparison of the Average Performance in Mflop/s of the RISC BLAS Using the
Manufacturer-Supplied GEMM with the Manufacturer-Supplied Library (using square

matrices of order 32, 64, 96, and 128)

Computer Kernel Variant Version
64

Bits
32

Bits

CRAY T3D TRSM “Left,” “Upper,” “No transpose,” “Unit” blocked 57 —
SCILIB 87 —

SYMM “Left,” “Upper” blocked 87 —
SCILIB 4 —

TRMM “Left,” “Upper,” “No transpose,” “Unit” blocked 54 —
SCILIB 12 —

SYRK “Upper,” “No transpose” blocked 42 —
SCILIB 11 —

SYR2K “Upper,” “No transpose” blocked 58 —
SCILIB 7 —

HP 715/64 TRSM “Left,” “Upper,” “No transpose,” “Unit” blocked 41 54
-lblas 35 53

SYMM “Left,” “Upper” blocked 40 69
-lblas 46 79

TRMM “Left,” “Upper,” “No transpose,” “Unit” blocked 35 54
-lblas 43 64

SYRK “Upper,” “No transpose” blocked 30 58
-lblas 16 20

SYR2K “Upper,” “No transpose” blocked 41 68
-lblas 5 5

IBM SP2 TRSM “Left,” “Upper,” “No tranpose,” “Unit” blocked 114 115
ESSL 155 223

SYMM “Left,” “Upper” blocked 175 209
ESSL 156 193

TRMM “Left,” “Upper,” “No transpose,” “Unit” blocked 129 127
ESSL 154 178

SYRK “Upper,” “No transpose” blocked 117 90
ESSL 169 185

SYR2K “Upper,” “No transpose” blocked 163 175
ESSL 146 192

The RISC BLAS • 337

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

than our blocked version of GEMM on the DEC 8400 5/300 and the CRAY
T3D, many of our blocked versions of the other kernels are better than the
vendor-supplied equivalents, sometimes by a large margin. We have also
demonstrated that the availability of a highly tuned version of the matrix-
matrix multiplication kernel GEMM improves the performance figures of
our blocked code substantially. For example, when using the manufacturer-
supplied version of DGEMM within our blocked version of DTRSM, we
achieve a close or marginally better performance than that of the DTRSM
kernel available in the vendor-supplied library on the HP 715/64. It is the
same for DSYMM on the IBM SP2. We suggest that some vendors could
easily increase the performance of their non-GEMM Level 3 BLAS kernels
by using the techniques described in this article. Finally, for some ma-
chines, performance could be enhanced by judiciously selecting appropriate
leading dimensions of the matrices (e.g., avoiding powers of 2), although we
do not consider this because it is dependent on the machine architecture
and cache management strategy.

We demonstrated in Daydé et al. [1994] how this blocked version could be
used to parallelize the Level 3 BLAS. A preliminary version was success-
fully used for developing both serial and parallel tuned versions of the
Level 3 BLAS for a 30-node BBN-TC2000 [Amestoy et al. 1995; Daydé and
Duff 1995]. We are currently experimenting on other shared and virtual
shared memory machines in order to develop tuned serial and parallel
implementations for them.

11. AVAILABILITY OF CODES

The codes described in the present article are available using anonymous
FTP at ftp.enseeiht.fr. The software is located in pub/numerique/BLAS/
RISC. A compressed tarfile called blas_risc.tar.Z contains the following
codes:

—A set of test routines that check the correct execution and compute the
Megaflop rates of the blocked implementation compared with the stan-
dard version of the Level 3 BLAS.

—The blocked implementation of the Level 3 BLAS.

We advise the user to check the availability of tuned serial codes (manufac-
turer-supplied library) before using our blocked implementation.

ACKNOWLEDGMENTS

We are grateful to Nick Hill of the Rutherford Appleton Laboratory for his
advice on the DEC 8400, to Andrew Cliffe of AEA Technology, Harwell for
performing the runs on the SGI Power Challenge.

We acknowledge the support of CNUSC and IDRIS for providing accesses
to the IBM SP2 and the CRAY T3D respectively.

338 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

REFERENCES

AGARWAL, R. C., GUSTAVSON, F. G., AND ZUBAIR, M. 1994. Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms. IBM J. Res. Dev. 38, 5 (Sept.
1994), 563–576.

AMESTOY, P. R. AND DAYDÉ, M. J. 1993. Tuned block implementation of Level 3 BLAS for the
CONVEX C220 and RISC processors. Distributed implementation of LU factorization using
PVM. Tech. Rep. RT/APO/93/3 Toulouse, France.

AMESTOY, P. R. AND DUFF, I. S. 1989. Vectorization of a multiprocessor multifrontal code. Int.
J. Supercomput. Appl. High Perform. Eng. 3, 3, 41–59.

AMESTOY, P. R., DAYDÉ, M. J., DUFF, I. S., AND MORÈRE, P. 1995. Linear algebra calculations
on a virtual shared memory computer. Int. J. High Speed Comput. 7, 1, 21–43.

ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., DUCROZ, J., GREENBAUM, A.,
HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. 1995. LAPACK Users’
Guide. 2nd ed. SIAM, Philadelphia, PA.

BELL, R. 1991. IBM RISC System/6000 NIC tuning guide for Fortran and C. Tech. Rep.
GG24-3611-01, IBM International Technical Support Centers.

BERGER, P. AND DAYDÉ, M. J. 1991. Implementation and use of Level 3 BLAS kernels on a
Transputer T800 ring network. Tech. Rep. TR/PA/91/54, CERFACS.

BODIN, F. AND SEZNEC, A. 1994. Cache organization influence on loop blocking. Tech. Rep.
803, IRISA, Rennes, France.

DAYDÉ, M. J. AND DUFF, I. S. 1989. Use of Level 3 BLAS in LU factorization on the CRAY-2,
the ETA 10-P, and the IBM 3090 VF. Int. J. Supercomput. Appl. High Perform. Eng. 3, 2,
40–70.

DAYDÉ, M. J. AND DUFF, I. S. 1995. Porting industrial codes and developing sparse linear
solvers on parallel computers. Comput. Syst. Eng. 4, 5, 295–305.

DAYDÉ, M. J. AND DUFF, I. S. 1996. A blocked implementation of Level 3 BLAS for RISC
processors. Tech. Rep. RAL-TR-96-014. Rutherford Appleton Lab., Didcot, Oxon, United
Kingdom. Also ENSEEIHT-IRIT Tech. Rep. RT/APO/96/1 and CERFACS Rep. TR/PA/96/06.

DAYDÉ, M. J. AND DUFF, I. S. 1997. A block implementation of Level 3 BLAS for RISC
processors, revised version. Tech. Rep. RT/APO/97/2, ENSEEIHT-IRIT.

DAYDÉ, M. J., DUFF, I. S., AND PETITET, A. 1994. A parallel block implementation of Level-3
BLAS for MIMD vector processors. ACM Trans. Math. Softw. 20, 2 (June 1994), 178–193.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I. 1990a. Algorithm 679: A set of
level 3 basic linear algebra subprograms: Model implementation and test programs. ACM
Trans. Math. Softw. 16, 1 (Mar. 1990), 18–28.

DONGARRA, J. J., DU CROZ, J. J., HAMMARLING, S., AND DUFF, I. S. 1990b. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Softw. 16, 1 (Mar. 1990), 1–17.

DONGARRA, J. J., MAYES, P., AND RADICATI DI BROZOLO, G. 1991. LAPACK Working Note 28:
The IBM RISC System/6000 and linear algebra operations. Tech. Rep.
CS-91-130. Department of Computer Science, University of Tennessee, Knoxville, TN.

GALLIVAN, K., JALBY, W., AND MEIER, U. 1987. The use of BLAS3 in linear algebra on a
parallel processor with a hierarchical memory. SIAM J. Sci. Stat. Comput. 8, 6 (Nov. 1,
1987), 1079–1084.

GALLIVAN, K., JALBY, W., MEIER, U., AND SAMEH, A. H. 1988. Impact of hierarchical memory
systems on linear algebra algorithm design. Int. J. Supercomput. Appl. High Perform. Eng.
2, 1, 12–48.

HENNESSY, J. L. AND PATTERSON, D. A. 1990. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA.

KÅGSTRÖM, B. AND VAN LOAN, C. 1998. Algorithm 784: GEMM-based level 3 BLAS: portability
and optimization issues. ACM Trans. Math. Softw. 24, 3, 303–316.

KÅGSTRÖM, B., LING, P., AND VAN LOAN, C. 1998. GEMM-based level 3 BLAS: high-
performance model implementations and performance evaluation benchmark. ACM Trans.
Math. Softw. 24, 3, 268–302.

LING, P. 1993. A set of high-performance Level 3 BLAS structured and tuned for the IBM
3090 VF and implemented in Fortran 77. J. Supercomput. 7, 3 (Sept. 1993), 323–355.

The RISC BLAS • 339

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

PUGLISI, C. 1993. QR Factorization of large sparse overdetermined and square matrices using
the multifrontal method in a multiprocessor environment. Ph.D. Dissertation.

QRICHI ANIBA, A. 1994. Implémentation performante du BLAS de niveau 3 pour les
processeurs RISC. Tech. Rep. Rapport 3ème Année. Département Informatique et Mathé-
matiques Appliquées, ENSEEIHT, Toulouse, France.

SHEIKH, Q. AND LIU, J. 1989. Basic linear algebra subprogram optimization on the CRAY-2
system. CRAY Channels Spring.

Received: December 1996; revised: March 1998, February 1999, and April 1999; accepted:
April 1999

340 • M. J. Daydé and I. S. Duff

ACM Transactions on Mathematical Software, Vol. 25, No. 3, September 1999.

