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Abstract—In Industrial Control Systems (ICS/SCADA), ma-
chine to machine data traffic is highly periodic. Previous work
showed that in many cases, it is possible to create an automata-
based model of the traffic between each individual Programmable
Logic Controller (PLC) and the SCADA server, and to use the
model to detect anomalies in the traffic. When testing the validity
of previous models, we noticed that overall, the models have
difficulty in dealing with communication patterns that change
over time. In this paper we show that in many cases the
traffic exhibits phases in time, where each phase has a unique
pattern, and the transition between the different phases is rather
sharp. We suggest a method to automatically detect traffic phase
shifts, and a new anomaly detection model that incorporates
multiple phases of the traffic. Furthermore we present a new
sampling mechanism for training set assembly, which enables the
model to learn all phases during the training stage with lower
complexity. The model presented has similar accuracy and much
less permissiveness compared to the previous general DFA model.
Moreover, the model can provide the operator with information
about the state of the controlled process at any given time, as
seen in the traffic phases.

I. INTRODUCTION

A. Background

Industrial Control Systems (ICS) are used for monitoring
and controlling numerous industrial systems and processes
such as chemical plants, electric power generation, transmis-
sion and distribution systems, oil and gas systems, water
distribution networks, and waste-water treatment facilities.
ICS is a general term that encompasses several types of
control systems, including Distributed Control Systems (DCS),
Supervisory Control And Data Acquisition (SCADA) systems,
and other control system configurations [33]. An automation
system managed by a single vendor is usually referred to as a
DCS, while SCADA systems usually refer to different stations
distributed over large geographical areas.

ICS typically incorporate sensors and actuators that are
controlled by Programmable Logic Controllers (PLCs), and
which are themselves managed and monitored by a SCADA
server or a Human Machine Interface (HMI).

ICS have a strategic significance due to the potentially
serious consequences a fault or malfunction can cause to
our critical infrastructures. ICS were originally designed for
serial communications, and were built on the premise that all
the operating entities would be legitimate, properly installed,
perform the intended logic, and follow the protocols of the
system. As recent attacks have shown, it is no longer safe
to assume that all devices in an ICS are trusted, therefore,

deploying an anomaly detection system in an ICS network is
an important defensive measure.

B. Related work

1) Attacks: The susceptibility of ICS systems to attacks
has been known for more than a decade. Byres et al. [6]
illustrated different attack trees on SCADA systems using
the Modbus/TCP industrial network protocol. They found that
compromising the slave (PLC) or the master (HMI) gives
the attacker the highest impact on the SCADA system. For
instance, an attacker that gains access to the HMI could change
set points of operation and other values in the PLCs. Alter-
nately, an attacker can perform a Man In The Middle attack
between a PLC and HMI and “feed” the HMI misleading data,
allegedly coming from the PLC.

More recently, at BlackHat USA 2015 Klick et al. [20]
demonstrated injection of malware into a SIMATIC S7-300
PLC without service disruption. In a follow on work, [32]
demonstrated the feasibility of a PLC worm. The worm
spreads internally from one PLC to another. During the
infection phase the worm scans the network for new targets
(PLCs).

Digital attacks that cause physical destruction of equipment
are also becoming more common. Perhaps most notably is
the attack on an Iranian nuclear facility in 2010 (Stuxnet)
to sabotage centrifuges at a uranium enrichment plant. The
Stuxnet malware [13], [21] implemented an attack by changing
centrifuge operating parameters in a pattern that damaged the
equipment—while sending normal status messages to the HMI
to hide the fact that an attack was underway. In a more recent
event, attackers struck an unnamed steel mill in Germany by
manipulating and disrupting control systems to such a degree
that a blast furnace could not be properly shut down, resulting
in “massive”—though unspecified—damage [23].

2) Anomaly Detection: Given the relatively few examples
of attacks targeting industrial control systems (compared to the
vast number of attacks present in corporate networks), and the
fact that adversaries may be well-funded nation-states that will
not reuse attacks, the focus on intrusion detection for control
systems has been on anomaly detection (rather than signature-
based detection). Surveys of techniques related to learning and
detection of anomalies in critical control systems can be found
in [1], [34].

Different kinds of anomaly-based IDS models have been
suggested for SCADA systems [36], [2], [9], [37], [17], [15],
[11]. Model-based anomaly detection for the Modbus/TCP
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industrial network protocol was first studied by Cheung et
al. [10]. They designed a multi-algorithm intrusion detection
appliance for Modbus/TCP with pattern anomaly recogni-
tion, Bayesian analysis of TCP headers and stateful protocol
monitoring, complemented with customized Snort rules [28].
Subsequent work [35] incorporated adaptive statistical learning
methods for traffic patterns among hosts and traffic patterns in
individual flows. Later, Briesemeister et al. [5] integrated these
intrusion detection technologies into the EMERALD event
correlation framework [27].

Several of these learning-based models have difficulties
in explaining the reasoning behind each alert. Sommer and
Paxson [30] discuss the surprising imbalance between the
extensive amount of research on machine learning-based
anomaly detection, and the lack of operational deployments
of such systems. They argue that one of the reasons for
this, is that machine learning-based anomaly detection systems
lack the ability to bypass the “semantic gap”: The system
“understands” that an abnormal activity has occurred, but it
cannot help the operator differentiate between an abnormal
activity and an attack. One of the goals of our anomaly
detection tools is to produce models that not only detect
suspicious activity, but that can inform operators why the
activity is being reported and why it is important.

3) Automata-based models: The periodicity of industrial
control networks has been documented in several studies [3],
[4], [19]. This periodicity can be captured by automata-based
models, where requests and responses of industrial control
networks are modeled as jumps between recurrent states. In
addition, Automata-based models can be used to explain the
behavior of industrial networks to operators.

In one of the first papers on the topic, Goldenberg &
Wool [16] developed a model-based approach (the GW model)
using a Deterministic Finite Automata (DFA) to represent the
cyclic nature of the commands exchanged in Modbus traffic.
Subsequently Kleinmann et al. [18] demonstrated that this
methodology is also successful in other network industrial
protocols like Siemens S7.

Caselli et al. [7] proposed a probabilistic Discrete-Time
Markov Chain (DTMC) model to capture sequences of
SCADA messages. Based on data from three different Dutch
utilities, the authors found that only 35%-75% of the possible
transitions in the DTMC were observed. This strengthens
the observations of a substantial sequentiality in SCADA
communications [3], [16], [18]. However, unlike [16], [18]
they did not observe clear cyclic message patterns. The authors
hypothesized that the difficulties in finding clear sequences is
due to the presence of several threads in the HMI’s operating
system that multiplex requests on the same TCP stream.

Kleinmann et al. [19] introduced a modeling approach for
such SCADA streams, using Statechart DFAs: the Statechart
includes multiple DFAs, one per cyclic pattern. Each DFA is
built using the learning stage of the GW model. Following this
model, incoming traffic is de-multiplexed into sub-channels
and sent to the respective DFAs. Kleinmann et al. showed that
if the correct DFAs are known, the Statechart model drastically

reduces both the false-alarm rate and the learned model size
in comparison with the naive single-DFA model.

Recently, Faisal et al. [12] analyzed a large data corpus
from an industrial network, collected from a water facility
in the U.S, and showed that the GW model performs quite
poorly on this data set: only 28% of the channels exhibited
clear cyclic patterns. Following this research, Markman et
al. [24] observed that data packets tend to be sent in bursts
of packets, and that the bursts have an internal structure.
Following this observation, Markman et al. suggested a new
Burst-DFA model that learns the structure of the bursts, builds
a directed graph for each channel (according to the order of the
packets in the bursts), and provides a highly accurate model
of the traffic.

C. Contributions

Our starting point is the work of Markman et al. [24]. Our
first contribution is a new method for “fingerprinting” traffic
patterns in a given period of time. This enables us to introduce
a measure of similarity between traffic patterns at different
points in time.

Our second contribution is demonstrating that the traffic pat-
terns in the data channels have phases—there are stable traffic
patterns followed by sudden changes into a different but stable
traffic patterns. This observation explains the deterioration of
the average accuracy of previous models over time [24].

Furthermore, we introduce a method to automatically detect
these traffic phase shifts. Our algorithm is based on clustering
the different time periods using our measure of similarity. This
enables us to describe the traffic in a channel as a sequence of
phases in time—potentially bridging (some of) the semantic
gap that exists in anomaly detection models.

Our fourth contribution is the introduction of an anomaly
detection model that is phase aware, and the introduction of
a sampling method to assure that the training set contains
samples from the different phases in the channel. The sampling
mechanism ensures that the model learns traffic patterns from
the different phases.

Finally, we introduce a permissiveness measure for the new
model, developed by adjusting the measure of [24].

We conducted an extensive evaluation of our new model on
the water facility data corpus [12], and our model, together
with the sampling mechanism we suggested, improves the
accuracy of previous models, while lowering the measure of
permissiveness: i.e., the model has fewer false alarms, and is
more specific.

II. PRELIMINARIES

A. Adversary model

We assume the adversary can take over the SCADA server
or HMI, and issue control messages to devices in the field.
The objective of the adversary is to manipulate the SCADA
network to achieve an impact on the physical world.

Currently, most SCADA protocols do not include crypto-
graphic algorithms such as ciphers and hash functions. Our
adversary model assumes that if and when such security



measures are deployed, their associated cryptographic keys
will be known to (or can be broken by) the adversary. We
further assume that the adversary has in-depth knowledge of
the architecture of the SCADA network and the various PLCs,
as well as sufficient knowledge of the physical process and
the means to manipulate it via the SCADA system. Thus the
adversary has the ability to fabricate messages that would
result in real-world physical damage.

One example of a semantic adversary is described by Fovino
et al. for a system with a pipe in which high pressure steam
flows [15]. The pressure is regulated by two valves. An
attacker capable of sending packets to the PLCs can force
one valve to close, and force the other to open. Each of these
ICS commands is perfectly legal when considered individually,
however when sent in an abnormal order they can bring the
system to a critical state. In another example a system-wide
water hammer effect is caused simply by opening or closing
major control valves too rapidly [25]. This can result in a large
number of simultaneous damages.

Fundamentally these attacks work by injecting mes-
sages into the communication stream—possibly legitimate
messages—on an attacker-selected pattern and schedule.
Hence a good anomaly detection system needs to model not
only the messages in isolation but also their sequence and
timing.

In our model, the network sensor needs to be located in
a segment where it can passively monitor traffic that can be
modified by the adversary, and just before the PLC. The sensor
is not located inline, so it does not affect the normal network
operation (e.g., port mirroring or a similar mechanism is used
to instruct the switch to send copies of the network traffic to
the anomaly detection system).

Note that our anomaly detection approach does not distin-
guish between malicious events and faulty events.

B. The GW model

The GW model [16] was developed and tested on Modbus
traffic. Modbus is a simple request-response protocol widely
used in SCADA networks. A typical Modbus packet carries
information about the message type, the function code speci-
fying the service (e.g., read or write), and the memory address
range of data items. After the PLC processes the request, it
sends a response back to the HMI.

In the GW model, the key assumption is that traffic is peri-
odic, therefore, each HMI-PLC channel is modeled by a Mealy
Deterministic Finite Automaton (DFA). The DFA for Modbus
has the following characteristics: (a) A symbol is defined
as a concatenation of the message type, function code, and
address range, totaling 33-bits; (b) A state is defined for each
message in the periodic traffic pattern. The DFA represents the
precise order of the symbols in the cyclic pattern. The GW
model has two stages: An unsupervised learning stage, and
an enforcement stage. In the learning stage a fixed number
of messages is captured (the learning phase assumes that
the sniffed traffic is benign), the pattern length is identified,
and a Mealy DFA is built for each HMI-PLC channel. The

channel’s input-symbols are divided in two groups: Known
and Unknown. The Known group consists of all the input
symbols that were observed during the learning phase, and
have a matching DFA state. The Unknown symbols are those
not observed in the learning phase. In the enforcement stage,
we monitor traffic in each channel, and trigger anomalies when
the traffic is not recognized by its DFA. The model includes
3 types of anomalies: “unknown” symbol, not seen during the
training stage, “miss” for symbols that appear out of order,
and “retransmit” symbols.

C. The Burst-DFA model

The Burst-DFA model [24] was developed by Markman et
al. The research was done by analyzing a corpus of Modbus
traffic recorded at a large-scale water treatment plant in the
U.S, which was previously found to be poorly modeled by
cyclic-DFA models [12]. The research found evidence of
parallel TCP connections between the HMI and PLCs, so a
refined definition of a “channel” includes TCP port numbers;
in other words a channel is uniquely identified by the tuple
(HMI IP, PLC IP, Unit-ID, PLC’s port). A major finding of [24]
is that for each channel, the traffic exhibits bursty behavior—
the HMI sends queries in bursts with defined construction,
and with a relatively long time difference between consecutive
bursts. Further, the research showed that the bursts have
semantic meaning—the order within a burst depends on the
messages.

Based on these observations a new model was suggested,
which for each channel comprises a DFA that matches all
the bursts of that channel, including their beginning and
ending. For each channel, the burst-DFA learned the normal
bursts one expect to see—the methodology allows automatic
unsupervised learning of the individual channel traffic pattern.
The training stage was done by dividing the data into chan-
nels, splitting each channel packet stream into bursts of data
using the time difference between the packets, and building
a directed graph in the form of an adjacency matrix. In the
enforcement stage, the model uses the burst-DFA to evaluate
each data burst as it arrives, and ranks each query packet
according to its position in the burst using the adjacency
matrix. The Burst-DFA model uses the 3 anomaly indicators
from the GW model (unknown, miss, retransmit), and adds two
extra messages “bad-beginning” and “bad-ending” to indicate
that a burst doesn’t start or doesn’t end with a symbol that
was previously seen in these positions.

The study introduced a metric to evaluate the permissiveness
of the model—how strict or how general the model is. We
discuss this metric in section 7, when we introduce our new
model.

The burst-DFA model was evaluated on the water treatment
data corpus. The Burst-DFA model successfully explains be-
tween 95% to 99% of the packets in the data-corpus, when
the training set includes 50% of the data.



1 Total Packets 68,886,147
2 Duration 24h,3m,19s
3 Packets Per Second 795
4 Packet Loss 1.8%
5 #IPs 99
6 #Channels 935

TABLE I
DATA CORPUS STATISTICS

III. THE WATER TREATMENT PLANT DATA CORPUS AND
FORMAL DEFINITIONS

A. Overview

We used a one-day recording from a real-world operational
large-scale water treatment plant in the U.S. Since Modbus
is a Master/Slave protocol, we concentrate on modeling only
the query packets by the HMI (and not add a state for the
expected response). By only modeling the queries we can
simplify the model, while not lowering the degree of gener-
ality. Modeling only the queries in a Master/Slave protocol is
possible because for each query, there is a single response
packet whose meta-data is fully determined by the query.
Therefore modeling the responses does not add information in
a DFA-based model that focuses only on the meta-data. Table I
shows the statistics of the dataset. The packet-loss rate was
calculated using a built-in wireshark tcp-analysis capability
(tcp.analysis.lost_segment).

1) Channel Separation and Identification: In this research
we follow the definition of a channel from [24], and so we use
the 4-tuple (Master IP, Slave IP, Unit Identifier, Slave Port) to
define a channel. By “Slave Port” we mean the source port that
the HMI’s TCP connection uses when sending a query—note
that the “Master Port” is always 502 in Modbus. We found
935 channels that exchange more than 500 packets (covering
99.29% of the packet capture). In the rest of the study, the
numbering of the channels is arbitrary, made using MATLAB’s
“Unique” function over the 4-tupple (Master IP, Slave IP, Unit
Identifier, Slave Port), before removing channels with less than
500 packets overall - this is why there are channel numbers
above 935.

2) Deterministic Finite Automata: A classical DFA is a
5-tuple, (Q,

∑
, δ, q0, F ), consisting of: a finite set of states

(Q), a finite set of input symbols called the alphabet (
∑

), a
transition function (δ : Q×

∑
→ Q) , a “start” state (q0 ∈ Q)

and a set of “accept” states (F ⊆ Q).
3) Input Symbols and States: We follow the definitions of

the symbols from the GW model and the Burst-DFA model:
The states that are reached after a query message are called
Q-states. Respectively, states that are reached after response
messages are called R-states. We have chosen to only model
the sequence of queries in each channel due to the fact that
the communication is in a Master-Slave protocol. A Modbus
query consists of the following fields: Transaction Identifier
(T.ID), Function Code (FC), Reference Number (RN), and
bit/word count (Count). We define a symbol in the alphabet as
a 3-tuple (FC,RN,Count). We say that a symbol is a known-
symbol if it appears in the training set of the particular channel,

Fig. 1. Fraction of normal packets Vs time from the training stage

Fig. 2. Fraction of unknown packets Vs time from the training stage

and an unknown-symbol otherwise. For each symbol si, we
define a state Si, as the DFA state following the occurrence
of the symbol.

IV. BURST-DFA MODEL PERFORMANCE OVER TIME

In the Burst-DFA model [24], the training was done on the
first 50% of the data corpus, and the testing was done on
the remaining 50%. When evaluating the performance of the
model, we noticed that the accuracy deteriorates over time—on
average the model describes the traffic that came right after the
training data better than later traffic. Figures 1 and 2 show the
percentage of the “Normal” packets (packets that the model
explains correctly) and “Unknown” packets (packets that the
model sees for the first time during the test stage) every 7
minutes, as a function of time since the end of the training
data.

Even though the overall accuracy of the model is good—
when looking at the accuracy Vs time in figure 1, it is easy
to see the deterioration.

A. The source of the decline in accuracy

A possible reason for the deterioration in accuracy could be
a steady decline in accuracy over time in many of the channels.
An alternate hypothesis is that the changes are abrupt. In order



Fig. 3. From top to bottom: Channel 10 Fraction of Normal Packets, Misses
and Wrong Beginning vs time

to check the validity of the abrupt-changes hypothesis, we
searched for channels in which the model experienced sudden
changes in false alarm rate.

B. Performance vs time - evidence of traffic phases

In order to find examples of channels where the traffic
exhibits phases, we divided the data set into 100 equal parts of
15 minutes each, and measured the performance of the Burst-
DFA model in each part separately. We then went through
all of the 935 channels, and searched for channels in which
in some part of the data set, one of the anomaly indicators
of the Burst-DFA model goes above 20% (unknown, miss,
retransmit, bad beginning/ending of a burst). This somewhat
naive search highlighted 180 suspicious channels out of the
total 935. Visually inspecting some of the channels showed
sudden changes in the model’s accuracy over time, in a way
that indicates a sudden change in the traffic pattern. For
example, Figure 3 shows the normal ratio (accuracy), misses
ratio and the number of bursts starting with the “wrong” state
in channel 10. The Figure shows that the change in accuracy is
very sudden, and that the accuracy returns to the higher values
after about 20 time units. We observed similar phenomena
in many other channels—this clearly indicates that indeed
there are “phases” in the traffic—at different times, the traffic
follows different rules and regularities.

V. TRAFFIC PHASES

After observing the existence of traffic phases by looking
at the accuracy level of the Burst-DFA model over time, we
turn our attention to detecting traffic phases directly, without
using the result of the Burst-DFA model as a proxy. We define
“traffic phases” as parts of the packet stream in a specific

Algorithm 1 Adjacency Matrix Formation
Require: B - a set of k Bursts with n unique symbols

1: function ADJMAT(B)
2: adj mat ← {0, ..., 0}
3: n ← #(unique symbols in the channel)
4: k ← #(number of bursts in B)
5: uStates ← {unique symbols in channel,q0, qend}
6: for i← 1 to k do
7: l ← length(burst(i))
8: curr state ← q0
9: for j ← 1 to l do

10: adj mat(curr state, Sj)++
11: curr state ← Sj

12: adj mat(curr state, qend) ← 1
13: return adj mat

channel that exhibit a distinct pattern or a distinct set of
possible packets.

A. Using Adjacency Matrices to identify phases in the data

The Burst-FDA model [24] builds an adjacency matrix
for each channel, incorporating the different possible bursts
of data—the possible set of packets and the possible order
of the packets. An adjacency matrix is a description of a
Deterministic Finite Automata (DFA), in which the nodes
are the rows and columns of the adjacency matrix (unique
packets), and the values of the matrix are the number of
transitions between the nodes (the frequency of packets). In
the next sections we describe the process of building the
adjacency matrices, and introduce a measure of similarity
(between adjacency matrices), that allows us to divide the
network traffic stream into different segments, similar to each
other. If two adjacency matrices are similar, they describe
similar traffic patterns, and if they are very different, the traffic
patterns are dissimilar, and therefore the traffic belongs to
different phases.

1) Building the adjacency matrix: We begin by separating
the traffic into different channels as described in section 2. We
then divide the packet stream in each channel to bursts of data,
as described in [24]. Algorithm 1 describes the construction of
the DFA’s vertex set and transition function (as an adjacency
matrix).

The resulting adjacency matrix represents a DFA, based on
the bursts given to the algorithm. We add an ε-transition to
qend at the end of each burst to mark the burst ending.

2) Computing the similarity between adjacency matrices:
Given two adjacency matrices, we wish to calculate a score
measuring their similarity. To do so we first reshape each
adjacency matrix into a vector shape. We then normalize each
vector to unit length by dividing it by its magnitude (using
the L2 norm), to ensure the similarity measure is based on
the transitions frequencies and not on the absolute number
of transitions. We now have two normalized vectors, and we



Fig. 4. Channel 10 distance between adjacency matrices from different times,
the blue (dark) color indicates low distance, and the green high distance

can use one of many methods to compute their similarity.
We tested the Euclidean distance between vectors, and the
correlation between vectors as possible measures of similarity,
and the two options gave similar results. From now on we
only discuss the Euclidean distance measure (a small distance
means similar adjacency matrices).

3) Using adjacency matrices to describe the data: We use
the idea of the adjacency matrices as descriptors of the data
stream in order to find the different phases in the traffic. We
use the following procedure:

1) Divide the data into channels.
2) For each channel, separate the data stream into bursts of

packets as in [24].
3) Separate the list of bursts into 100 equal parts.
4) Use algorithm 1 to build an adjacency matrix of size sXs

for each part, when s is the number of unique symbols
in the channel.

5) Vectorize and normalize each matrix.
6) Compute the Euclidean distance between each pair of

vectors.

B. Specific channel examples

After calculating the chosen similarity measure between
each pair of the 100 adjacency matrices, we plotted the
distance matrix for the channels and inspected them. For
instance, Figures 4 and 5 show the distance matrices between
the 100 parts of channels 10 and 130.

As can be seen from Figure 4, in channel 10 there are 3
main traffic phases:

1) from the first time unit to the 8th time unit.
2) from the 9th time unit to the 80th time unit except for the

44th and 45th time units. The same phase reappears from
the 91st time unit to the end of the recording.

3) The 44th and 45th time units, and from the 80th time unit
to the 91st time unit.

Figure 5 shows a qualitatively similar situation in channel
130: we can visually identify 6− 9 distinct phases. From the
two examples shown above, it is clear that there are traffic
phases, and we can see that it is easy to visually detect the

Fig. 5. Channel 130 distance between adjacency matrices from different times

transition between the traffic phases. We can learn from the
two examples that the phases can last for several hours, and
we can see that some phases appear only at the end of the
recording.

C. Intermediate conclusions from the examples

Once we realize that channels exhibit phases in their traffic,
we can draw some conclusions: First, in order to model the
traffic pattern correctly, we need our training data to include
patterns from all of the traffic phases. It is clear from the
example in Figure 4 that if the training set in channel 10
consisted of the first 30% of the data, the training would have
missed the 3rd phase altogether, and the accuracy of the model
would have deteriorated. Second, if the traffic patterns have
phases, we can use this fact to create a better model - a model
that still has high accuracy, and that is less permissive than
the Burst-DFA model.

VI. ANALYZING THE TRAFFIC PHASES

When looking at Figure 4, we can visually detect the differ-
ent phases. We would like to detect the phases automatically
in order to check whether or not the traffic in a certain channel
is divided into phases, and in order to build a traffic model.

We want to segment the time series into different phases; in
order to do that we organize the time parts into clusters based
on the similarity between their adjacency matrices. To achieve
this time series segmentation, we use k-means clustering.

A. k-means clustering

k-means is a classical clustering algorithm which aims to
partition n observations (vectors) into k clusters, in which
each observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster [22]. The mean of a cluster
is defined as a vector in which the value of each coordinate is
calculated by averaging the values of the same coordinate in all
of the vectors in the cluster, i.e., calculating a coordinate-wise
average of the vectors in the cluster. The input to the algorithm
is a set of n samples, and a predefined number of clusters—k.
The algorithm works iteratively, when in each iteration every
sample is assigned to the cluster whose mean is closest to



Fig. 6. k-means cluster analysis of channel 10: the X axis is the time slot
t, the Y axis is the number of the cluster that is assigned to the adjacency
matrix at time t.

it, and the mean of each cluster is updated according to the
updated members of the cluster. The algorithm keeps iterating
until cluster assignments do not change, or the maximum
number of iterations is reached (we used the default number in
matlab—100 iterations). The initial centers of the clusters are
selected randomly, and so running the algorithm multiple times
with the same input may produce different results. In our case
we use the clustering algorithm on the 100 adjacency matrices
in each channel, and we treat the output clusters as the phases
of the channel—each cluster the algorithm outputs is a set of
all of the times in the recording with similar traffic pattern.
When using k-means clustering, it is a challenge to choose
the parameter k. We next bring an example of the result of
the clustering algorithm in a specific channel, and then we
describe our mechanism for choosing k automatically.

1) Example: To demonstrate the results of the clustering
algorithm, we continue with channel 10 we discussed previ-
ously. By looking at Figure 4 we observed that there are 3 main
phases, so in this example we manually chose k=5. We can see
in Figure 6 that the algorithm assigned the phases in a good fit
to our observation: there are 3 main phases, and the transitions
between the phases appear at the times we anticipated. After
convincing ourselves that the clustering mechanism describes
the phases correctly in various channels, we turn to the task
of automatically choosing the number of clusters—k.

B. Choosing k - the number of clusters

Determining the number of clusters in a data set is a
fundamental issue in clustering algorithms such as k-means,
in which the user needs to set the value of k. While there are
many different methods of choosing k, there is no definitive
answer to this problem [8] [26]. It is clear that the optimal
value of k depends on the distribution of the data, but it
also depends on the similarity measure used, and even on the
user resolution preferences - accuracy versus generality of the
model. In the extremes, choosing k = 1 results in a single
cluster with high variance between the elements of the cluster,
and choosing k = n results in a cluster for each data point
and no generality. The choice of k needs to reach a balance
between these extremes. We chose to use the silhouette method

Fig. 7. Channel 130 silhouette graph for k between 1 and 15. Each point
represents the average silhouette value over all 100 adjacency matrices for a
single run of k-means.

of determining k [29]. The silhouette of a data instance (in our
case, an adjacency matrix) is a measure of how closely it is
matched to other instances within its cluster and how loosely
it is matched to data instances of the closest neighboring
cluster—the cluster with the closest mean, i.e., the cluster
whose mean is closest to the instance when using L2 distance.
By averaging over all of the data samples it is possible to
appreciate the relative quality of the clusters. The silhouette
value for the ith instance, S(i), is defined as

S(i) =
(b(i)− a(i))

max(a(i), b(i))
(1)

where a(i) is the average distance from the ith instance to the
other instances in the same cluster as i, and b(i) is the average
distance from the ith instance to instances in the closest
cluster. The silhouette value ranges from −1 to +1, where
a high silhouette value indicates that the data instance is well-
matched to its own cluster, and poorly-matched to neighboring
clusters. If most instances have a high silhouette value, then
the clustering solution is appropriate and vice versa. The
silhouette is computed after performing the clustering, so
choosing the “best” k is done by trying different values in
different clustering iterations, and choosing the value of k that
gives the best results—the highest average silhouette value.

When applying the silhouette method on real data, we
noticed some variation in the results that prevents us from
just choosing the k value that gives the maximum silhouette.
Since the clustering algorithm includes a random seed, the
results of running the k-means algorithm twice with the same
k and the same data are usually not equal, and so the silhouette
values vary as well. Figure 7 shows the silhouette of channel
130, calculated on k values between 1 and 15. We can see
that the the graph is noisy—the silhouette value of k = 7 and
k = 9 are greater then the value for k = 8, which indicates
noise since we wish to find the “natural” number of clusters
in the data. This noise is the result of the random nature of the
algorithm and the distribution of the data. Furthermore, we can
learn from Figure 7 that in fact there is no clear optimal value



Fig. 8. Channel 60 phases in time - there is no continuous phase patterns,
with k = 12 possible phases

for k—the maximum value in the graph is for k = 12, but
the values for k = 5 up to k = 11 are similar, and therefore
may be appropriate. Understanding that the k-choosing task is
ambiguous, even when using a known scientific method, we
chose to to search for the maximum value of k 3 times, and
chose the minimum “optimal” k we got.

C. Phase shift analysis

Once we have a clustering method to identify the phases, we
can study the behavior of the phases in the different channels.
We found that some of the channels exhibit clear multi-phase
behavior as seen in channels 10 and 130 described above
(recall Figures 4 5), but other channels do not exhibit any
such behavior—the distance matrix doesn’t look like a block
matrix, and there are no continuous phase patterns.

Channel 60 is an example of such a channel (see Figure 8).
The optimal k value was 12, but the assignment of phases to
adjacency matrices shows no clear temporal continuity; there
are many phase shifts, which contradict our intuition of what
a “phase” means.

After running the clustering algorithm on all channels, we
counted the number of phase shifts along the recording in order
to describe the overall behavior of the channels. Intuitively,
channels with only a few phase shifts exhibit phases, and
channels with many phase shifts (like channel 60) exhibit no
such behavior. Figure 9 shows the histogram of the number
of phase shifts over all of the channels. From the distribution
we can learn that 44% of the channels have 10 or less phase
shifts—those are channels that exhibit some kind of multi-
phase behavior. In fact the highest peak is at 5, showing that
around 140 channels exhibited 5 phase shifts over 24 hours:
a very reasonable number. Conversely, 38% of the channels
have more than 25 phase shifts, i.e., our analysis showed
no multi-phase behavior. Possibly some of the channels we
found to have many phase shifts may still have phases, but
our model didn’t fit these channels well enough (maybe other
choice of hyper-parameters or model would disclose multi-
phase behavior).

Fig. 9. Histogram of the number of phase shifts across all channels

We argue that automatic phase-shift detection may be of
value beyond anomaly detection in the traffic. We believe
that a traffic phase lasting many hours probably has semantic
meaning that is correlated with a phase in the controlled
process. As such, it may be labeled by the process engineer
(e.g., as “Chlorinating”/“Mixing” etc.) during the training
period, and displayed visually during the model enforcement.
This type of semantic labeling is similar to the approach of
[14] and may assist in reducing the semantic gap [31].

To illustrate the connection between the phase shifts and
the controlled process, we analyzed a particular phase shift
in channel 130 at the Modbus packets level. As can be seen
in Figure 5, there is a phase shift after about 25% of the
recording—about 6 hours into the recording. When looking at
the bursts assignment into phases (as described in section 7),
a new set of traffic patterns appears at that time. The set of
patterns includes a new query that was previously unseen—a
request to read the 2 bytes from a new register range (Modbus
Reference Number)—1186. This example implies that the
phase shifts are actually connected to a change in the operation
of the controlled system, and hence has the potential to bridge
some of the semantic gap.

VII. A PHASE AWARE ANOMALY DETECTION MODEL

After witnessing the existence of traffic phases, we suggest
a model that incorporates the phase detection capability, to
provide high accuracy while limiting the permissiveness of
the model. Our model creates a few sub-models during the
training stage, according to the different traffic phases, and
checks to see if the data fits one of the sub-models during
the enforcement stage. This is a reminiscent of the state-chart
approach of [18], but with a different construction method. We
begin by discussing the data collection process for the training
set, as the usual process of separating the data set into training
and test set by time may prove insufficient.



A. Training set assembly via burst-based sampling

As seen in Figure 6, traffic phases may only appear after
a long time from the beginning of the recording—more than
10 hours in this example. It is important to include samples
from all traffic phases in the training set in order to learn all
possible patterns and to have an high accuracy model. In the
Burst-DFA model [24] this resulted in taking the training set
to be 50% of the data, which resulted in an accurate but highly
permissive model. We suggest another option to assemble the
training set—burst-based sampling. The main idea is to collect
every nth burst of data and include it into the training set, while
skipping the rest. This way we can have a long training period
while reducing the amount of traffic we need to gather, and still
include all traffic phases. It is important to emphasize that we
sample bursts of data, and not individual packets. If we would
sample the packets instead we would lose the ability to use the
internal structure of the bursts, and the order of the packets in
the pattern. We use the sampling mechanism to demonstrate
the importance of the inclusion of all phases in the training
set. To evaluate the impact of burst-based sampling on a fixed
data corpus, we train the model on a non-**** sample of 1

n
of the bursts, and test the model on the remaining (1− 1

n ) of
the bursts.

B. The training stage

In the training stage we begin forming a training set of
bursts according to the steps discussed in section 5 and the
burst-based sampling method. By repeating the steps from
sections 5 and 6 on the training set we form 100 adjacency ma-
trices, each labeled by a number from 1 to k, according to the
cluster it is in. We now combine all of the adjacency matrices
in each cluster using logical OR (we ignore the frequency of
transitions), and we remain with k adjacency matrices (each
a union of adjacency matrices from a cluster) representing
the model—k DFA’s in total. The model is different from the
Burst-DFA model [24], that was made of one big adjacency
matrix, formed as a union of the 100 adjacency matrices from
our model.

C. The enforcement stage

Given k adjacency matrices, representing the k DFA’s for
a channel, we can compare the channel’s traffic to the model,
and flag anomalies in the enforcement stage. Similarly to the
model presented in [24], we evaluate finite bursts—we move
through the adjacency matrices from the starting state q0 of
each burst, and ensure we reach qend at the end of the burst.
Unlike [24], each burst of data is compared to all k DFA’s
from the training stage, in order to check for anomalies, and
in order to determine to which traffic phase the burst belongs.

1) The transition tunction for a single adjacency matrix:
The transition function in a single DFA is a transformation
that for each (BaseState, InputSymbol) tuple returns a
(DestState, Operation) tuple. The transition function im-
plements the behavior predicted by the model. According to
previous studies we define six types of transitions, one Normal,

and five anomalous: Unknown, Miss, Retransmit, Wrong-
Beginning and Wrong-Ending (see [16] [24] for details).

2) Single burst phase assignment: Each burst of data in
the test stage is compared to all k DFAs from the training
stage—for each one a vector of the counters of the different
categories is formed (Normal, Miss, Unknown, Retransmit,
Wrong-Beginning, Wrong-Ending). We choose to assign the
burst to one of the k phases by choosing the adjacency
matrix that minimizes the Unknowns for the burst. If more
than one adjacency matrix gives the same minimal number of
unknowns, we take the one that results in the lowest number
of overall anomalies (Miss, Retransmit, Wrong-Beginning,
Wrong-Ending). The output for each burst is the phase it is
assigned to, and the vector of transition function categories.

3) Enforcement stage output: The enforcement stage of
a particular channel is made by evaluating all of the bursts
in the test set according to the k DFA’s provided by the
training stage. For each channel, the result of the enforcement
stage is a vector of counters of the different transition func-
tion categories: Normal, Miss, Unknown, Retransmit, Wrong-
Beginning, Wrong-Ending. The values are the sum of the
counters for all of the bursts in the channel’s test set. Al-
gorithm 2 summarizes the implementation of the enforcement
process on each burst.

D. Analyzing the Permissiveness of the Model

It is important to understand how constrained or how
permissive our model is. In the extreme, a channel with a
single burst pattern will generate a single linear DFA with
only one path from q0 to qend—a very constrained model.
Conversely, if all s symbols are observed in every one of
the b positions in the burst, then the model will allow all sb

paths through it—a permissive model. In [24] we introduced
the Rperm measure to describe the level of permissiveness
of the model. The permissiveness measure is a normalized
ratio between the number of paths the model “allows”, and the
number of potential paths allowed through the most permissive
model. We need to further develop this measure to incorporate
the structure of the new model.

1) Permissiveness of a single DFA - k=1: This is a recap
from [24]. Conveniently, calculating the number of paths of
length l in a directed graph, using one adjacency matrix, is
well known: if A is the adjacency matrix, then after raising A
to the power of l, Alij counts the number of paths of length l
from vertex i to vertex j. In our model, each burst starts with
q0 and ends with qend, and in between there are b states, where
b = burst length. Therefore, the number of paths from q0 to
qend when k=1 can be calculated by looking at the (q0, qend)
cell in the matrix A(b+1). We raise to the power of b + 1 to
allow for the ε-transition edges to qend.

With this, we define the permissiveness of a single DFA,
for burst-length b over s symbols to be:

Rperm =
b

√
#allowed-paths

sb
=

b
√

#allowed-paths
s

(2)



Algorithm 2 Analyze Single Burst
Require: Denote the symbols of the burst by {s1,...sb}

1: function ANALYZESINGLEDFA(adj mat, burst)
2: Normal Counter ← 0
3: Miss Counter ← 0
4: Unknown Counter ← 0
5: Retransmit Counter ← 0
6: Wrong Beginning Counter ← 0
7: Wrong Ending Counter ← 0
8: if (adj mat(q0, S1)>0 then
9: Normal Counter++

10: else
11: Wrong Beginning Counter++
12: for i← 1 to (burst len− 1) do
13: current state ← Si
14: next symbol ← si+1

15: if (next symbol is unknown) then
16: Unknown Counter++
17: else if (current state = Si+1) then
18: Retransmit Counter++
19: else if (adj mat(Si, Si+1) then
20: Normal Counter++
21: else
22: Miss Counter++
23: if (adj mat(Sb−1, qend) > 0) then
24: Normal Counter++
25: else
26: Wrong Ending Counter++
27: return All Counters
28: function ANALYZEBURST(adj mat[k], burst)
29: res vec[k] ← 0
30: res for order[k][2] ← 0
31: for i← 1 to k do
32: res vec[i]← analyzeSingleDFA(adj mat[i], burst)
33: res for order[i][1] ← unknown
34: res for order[i][2] ←

sum(anomaly indicators)

35: index ← sort(res for order,1,2) . sort by the first
column and then by second column

36: return index, res vec[index]

In [24] we showed that:
1

s
≤ Rperm ≤ 1 (3)

When Rperm of the model in a specific channel is close to the
lower bound, we can say that our model is very constrained,
and when Rperm is close to 1 we would say that the model
is permissive.

2) Extension to k DFAs - calculating the number of unique
paths in a group of graphs: In order to expand the definition
of Rperm to our case, we need to change the way we count
the number of paths allowed by our model. We can count the
number of paths in any single DFA (adjacency matrix) using

the method described above, but simply adding the number of
the paths from the k DFAs is insufficient since some paths
(bursts) may be allowed in more than one DFA, which will
result in over counting. A naive approach is to simply list all
of the possible paths from each sub-model, and then count the
unique paths, but this can be very inefficient, up to Ω(k · sb)
work. We would like to use graph theory and set theory in
order to complete this task. Suppose k = 2, and we have 2
DFAs, we can count the number of paths in each sub model
and sum the results, but we need to subtract the paths that
appear in both DFAs. We perform this task using the fact that
the paths that exist in both graphs appear in the intersection
of the two graphs. We can get the graph that represent the
intersection between the two graphs by performing logical
AND on the two adjacency matrices describing the graphs,
and the resulting matrix represents a graph with all of the
nodes, and only the edges that appear in both sub-model. We
can generalize this method into every value of k using De
Morgans laws of inclusion-exclusion principle:∣∣∣∣∣

k⋃
i=1

Ai

∣∣∣∣∣ =
∑

φ6=J⊆{1,2,...,k}

(−1)|J|−1

∣∣∣∣∣∣
⋂
j∈J

Aj

∣∣∣∣∣∣ (4)

where the intersection calculation is performed using the
generalization of the adjacency matrices intersection for k > 2.
This approach works faster than the naive method when k
is relatively small and sb is large. In our experiments we
restricted ourselves to k ≤ 15.

VIII. MODEL RESULTS

We introduced two main concepts in our model: 1. Burst-
based sampling the training data (section 7). 2. Using k DFAs
to evaluate the bursts in each channel. In this section we
present the results in comparison with the Burst-DFA model
[24], and we show the results with and without the sampling
mechanism. The k-phase model permits fewer transitions
between states compared to the Bursrt-DFA model, So given
the same training set, we expect the accuracy of the model to
be slightly worse than that of the Burst-DFA model. However,
we expect the new model to be less permissive. Having said
that, the sampling mechanism should improve the accuracy of
the model, so a success will be a combination of the sampling
mechanism and the new model thats result in better accuracy
and less permissiveness than the Burst-DFA model without
sampling. We demonstrate the results using a training set that
is 33% of the data set. We describe the accuracy of the model
by the percentage of normal queries:

normal

total queries
(5)

And the percentage of queries that are either normal, miss, or
retransmit:

normal +miss+ retransmit

total queries
(6)

In addition to these measures of success, we also checked the
Wrong-Beginning and Wrong-Ending ratio (out of all bursts),
to understand how well we model the structure of the bursts.



TABLE II
RESULTS SUMMARY

model\accuracy ratio normal ratio normal+miss+
retransmit ratio

k-phase 88.2% 99.7%
k-phase+sampling 98.9% 99.99%
Burst-DFA 92.8% 99.7%
Burst-DFA +sampling 99.0% 99.99%

TABLE III
BURST STRUCTURE ACCURACY

model\accuracy ratio Bad beginning Bad ending
k-phase 1.03% 1.43%
k-phase+sampling 0.013% 0.018%
Burst-DFA 0.67% 0.53%
Burst-DFA +sampling 0.008% 0.006%

A. Model Accuracy

Table II summarizes the accuracy results of the k-phase
model compared to the previous Burst-DFA model. We can
learn from the table that using burst-based sampling mecha-
nism drastically improves the accuracy of both models, and
that the k-phase model is slightly less accurate than the Burst-
DFA model when using sampling. If we do not use sampling,
the Burst-DFA model is more accurate than the k-phase model.

Table III summarizes the percentage of bad beginning and
bad ending of the k-phase model, compared to the Burst-
DFA model. We see that using burst-based sampling improves
the accuracy in those two parameters dramatically, and that
the difference between the models when using sampling is
less significant than the difference when not using sampling.
When inspecting the difference between the accuracy of the
model with or without sampling, we can see that in both cases
the model can describe the traffic patterns in most channels
accurately, but there are channels in which the traffic pattern
is only described accurately when using sampling. Figure
10 shows the CDF of the ratio of the anomaly measures
(Unknown+Miss+Retransmit) over all of the channels, with
and without sampling. We can see from the figure that when
using burst-based sampling there are much fewer channels
with significant number of anomalies—the distribution “tail”
is thinner.

B. Model Permissiveness

As mentioned, we expect the permissiveness of the k-phase
model to be lower than the permissiveness of the Burst-
DFA model, since our model has more restrictions on the
traffic pattern. Figure 11 shows Rperm for all of the channels
with average burst length of 4, for the k-phase and burst-
DFA models, with burst-based sampling. We can see that as
expected, the level of permissiveness improves by 14% on
average compared to the Burst-DFA model.

IX. CONCLUSIONS AND FUTURE WORK

In our research, we analyzed a large corpus of Modbus
traffic recorded at a large scale water treatment plant in the

Fig. 10. The total anomalies CDF for our model over all of the channels,
with and without training set sampling

Fig. 11. Permissiveness ratio Rperm for channels with average burst length
of 4, with training set sampling

U.S. Previous research on this data corpus suggested a DFA-
based model to describe the traffic; however these models did
not achieve the accuracy necessary to maintain a high-fidelity
system with low false alarms. In this work we showed how to
improve the model fidelity to the traffic in the network while
maintaining low permissiveness (detecting anomalies).

To achieve this we showed how the network traffic has
different phases over time. Based on this observation, we
developed a method to describe the traffic patterns at different
points in time using adjacency matrices, and introduced a
measure of similarity between the traffic patterns. Then we
developed a method to automatically assign the traffic into
clusters based on the similarity metric introduced—i.e., an
algorithm to detect the different traffic phases automatically.
Next, we introduced a novel burst-based training set sampling
method, which allows for training set assembly from the entire
duration of the recording. The burst-based sampling method
comes to ensure training on traffic from all traffic phases. We
then developed a new k-phase model that incorporates the
different traffic phases, by creating a unique DFA for each
traffic phase detected. We also suggest a modified metric for
the permissiveness of the model, that includes a method to
count the unique number of walks across a set of directed



graphs. The new k-phase model achieves a low False Alarm
Rate, while limiting the permissiveness of the model. Finally,
we showed that when using the new model, together with the
burst-based sampling method, we can improve the accuracy
and lower the permissiveness compared to previous models.
We can achieve up to 98.9%-99.99% accuracy when using
the burst-based sampling, and the k-phase model improves the
permissiveness by approximately 14%.

Furthermore, the automatic identification of phase changes
in the traffic has value beyond anomaly detection. Labeling
these phases can help the operator understand the different
states of the controlled equipment, and has the potential to
bridge the semantic gap that exists in anomaly detection
models.

Future work includes testing our model on other large scale
datasets, testing it on longer recordings, and also testing the
model’s performance during true attacks on the network. We
are also interested in exploring the connection between the
traffic phases and the actual tasks the controlled equipment is
performing and the connection between the statistical charac-
teristics of the phase shifts and the type and designation of
the controlled equipment.
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