
How Do You Release a Product Implemented in Ada?

Making Compatible Interface Changes with the BiiN T M Ada Compiler

David B. Kinder

BiiN
2111 NE 25th Avenue

Hillsboro, OR 97124-5961

INTRODUCTION

In a large Ada software development project, such as an
operating system, the effects of making a new product
release with changes to public interfaces can cause
significant recompilations of direct and indirect users of
this interface. This cascading recompilafion problem
seems inherent with a language such as Ada - - a
language that has well defined interface checking rules.
However, in a production environment, it is critical that
updates to delivered interfaces remain compatible with
existing customer's code. A product upgrade with
enhanced but upward compatible interfaces, should not
force users to recompile their applications.

This paper describes how an intelligent Ada recompila-
tion service was integrated into a large Ada development
project (over two million lines of production Ada code).
The paper also describes the uses of this service that go
well beyond simply reducing unnecessary compilation,
wherein it becomes a critical tool in the product develop-
ment, generation, and customer release cycle.

THE PRODUCT RECOMPILATION PROBLEM

Despite the claims and goals of top-down, object-
oriented, and data-abstracted designs, interfaces do
change during the lifetime of a software project. Not only
do interface changes cause delays in the work of the
software developer, they can have an unacceptable
effect upon the deliverable products of value added sup-
pliers.

BiiN TM and BiiN/OS TM are trademarks of BiiN Partners.

For example, consider the simple yet typical product
releasing scenario illustrated in the following figure:

You
are

Here

i Vendor A's
Product I

J

Assume you're a user that has bought a product from
Vendor A that provides a library of Ada utility rout!nes
built on top of operating system services (also written in
Ada). Both the products released from Vendor A as well
as the operating system release are distributed as Ada
libraries which include the visible specifications for com-
piling, and the product's object code for linking.

For the initial release, the same system interfaces are
used by Vendor A as are delivered to you. Later, when
we deliver a system upgrade, we must guarantee that
the system interfaces remain compatible with the original
release so that Vendor A's product does not need to be
recompiled. Indeed, these new interfaces and the
delivered Ada library must be compatible because you
probably don't even have the sources of Vendor A's pro-
duct to recompileJ

COPYRIGHT 1989 BY THE ASSOCIATION FOR COMPUTING MACHINERY, INC.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

CHANGING INTERFACES

Let's examine why interfaces can change. For typical
source control and Ada compiler implementations, a sim-
ple source change, such as adding a comment, causes
recompilation managers to believe that the source needs
recompiling and, transitively, all dependent units need
recompiling as well. (In Ada, dependencies among com-
pilation units are defined by context clauses (with

169

http://crossmark.crossref.org/dialog/?doi=10.1145%2F326490.326530&domain=pdf&date_stamp=1989-07-01

clauses). A compilation unit that mentions other library
units in its context clause depends on those library units.
Indirect dependencies exist among compilation units by
transitive analysis of the direct dependencies.) In a
development environment where project documentation
-is maintained in the program source files (and extracted
by a document generation tool), these unnecessary sys-
tem recompilations have a very negative effect on pro-
grammer productivity.

Similarly, when an interface is extended with an addi-
tional type or procedure declaration, the same thing hap-
pens. Even though there may be no need to recompile
dependent units that don't depend on these new declara-
tions, they are recompiled anyway - - simply because
they depend on some other declarations that were not
changed but live in the same source file as those that
were.

This situation is not unique to Ada. Consider a C header
file where a declaration is defined and then included into
C programs that use it. If the definition in the header file
is changed, all C programs that use this definition should
be recompiled. The C language does not require a
recompile nor does any C compiler do a consistency
check that these recompilations have been done.
Instead, the user is left on his own to guarantee that all
programs use consistent versions of common header
files. In Ada, the language requires the compiler and
Ada librarian to maintain unit consistency.

The problem then is to determine what kinds of interface
changes are benign, or upward compatible, and do not
introduce inconsistencies into the development system.
Our goal is to totally eliminate unnecessary recompila-
tions caused by compatible interface changes. Because
of this goal, when upward compatible releases of
software products (in the form of an Ada library) are
delivered to customers, there will be no forced require-
ment for all dependent customer code to be recompiled.
This is critical for software product suppliers such as
Vendor A in our scenario above, that do not include the
source of their software to their customers.

SOLUTION PRINCIPLES

The BiiN Ada compiler, like most other Ada implementa-
tions, uniquely identifies compilation units with a
version/time-stamp that permits the compiler to verify
that the same compiled version of a unit is seen by all
components of a product. If a compilation unit is recom-
piled, whether it has changed or not, the compiler gives
the unit a new version/time-stamp. In BiiN Ada, the
object files produced by the compiler also contain time-
stamp information, so that the linker can additionally ver-
ify the expected versions of dependent units are linked
together - - the defining object module version must
match the time-stamp of the referenced version recorded
in the object module of referencing compilation units.

In C (and other languages that support separate compi-
lation), subprogram prototypes are written by the pro-

grammer in an header file and this file is textually
included (via a #include directive) into every source file
that uses the interfaces described by this header file.
Each compilation pays the expense of scanning, parsing,
and verifying the semantic correctness of the contents of
these header files. In a large system this can amount to
a significant overhead for every compilation.

In BiiN Ada however, when a specification is compiled,
an interface file is produced which contains the pre-
digested information about the interfaces in a form that
can be quickly processed by users of the interface. Infor-
mation about types, type sizes, record field bit positions,
variables, data addresses, subprogram parameter pass-
ing profiles - - in short, all the separate compilation infor-
mation needed for a dependent unit - - is recorded in the
interface file.

The compiler produces an interface file for each compila-
tion unit (CU) presented to the compiler. This file, con-
taining separate compilation information, is stored in an
Ada Library. After recompiling a CU (and before updat-
ing the library), both the old and new interface
information is available. Under user control, the compiler
can compare the old and new interface information, and
if deemed compatible, the new file is "blessed" as a com-
patible version of the old interface file and is installed
into the Ada library as a new (and compatible) version of
the existing interface.

With blessing, multiple acceptable versions of an inter-
face and object module are now possible - - where
newer versions provide superset implementations of pre-
vious versions. Blessing is integrated with the Ada
librarian to handle these multiple versions in a consistent
manner. When a unit is looked-up in a library (during
processing of a context clause), the latest version is
retrieved. When linked, there are multiple acceptable
versions of the object files referenced by the user's of an
interface. The linker verifies that the defining object file
provides an interface that is acceptable to all the
referencing object files.

A Comparison with Other Recent Work

In comparing blessing with the recent work of Tichy [1]
on Smart Recompilation, and Schwanke & Kaiser [2] on
Smarter Recompilation, one clear difference is evident.
Both of their approaches assume that all compilation
units are known when a "smart" recompilation is per-
formed. They rely on a reference set from each depen-
dent compilation unit to decide whether a recompilation
of dependent units can be avoided. This approach
works fine when reference set information is available.
But notice that their solutions don't help the situation
when there are users of an interface that are not known

when an Ada library of interfaces is shipped to a cus-
tomer as part of a product release. "Smart" recompila-
tion doesn't address the problem of customer source
recompilation because customer's code is not part of a
vendor product's Ada library.

170

The BiiN approach is based instead, on the assumption
that information from customer's dependent units is not
available - - as is the case when products, and the inter-
faces the user can compile against, are delivered to cus-
tomers. We do not depend on any specially generated
information other than the normally produced interface
files already used by the compiler for separate compila-
tion support, so there's no increase in disk space used
when blessing services are utilized. Blessing decides on
the upward compatibility of an interface by examining the
interface itself.

Blessing and Uses

Ada does put some obstacles in the way of blessing
interface changes. Issues arise of static semantic incom-
patibilities that could be introduced because of Ada's
visibility and name overloading rules. For example, our
so-called "compatible" addition of a new function into a
package specification could actually cause a compile-
time error in a dependent compilation if that compilation
does a use on both this new interface and a package
that also defines a function with the same name. (In this
case, Ada considers these functions to be homographs
that hide each other, and would therefore require
qualified names for a reference to either function.)

While on the surface this appears to be a fatal flaw with
blessing, in practice, it is quite innocuous behavior given
the benefits that blessing p r o v i d e s - all existing com-
piled code will continue to function identically, and newly
compiled code can use the new facilities provided by the
compatible interface changes. As an aside, the design
(and implementation) of blessing does not prohibit the
collection of further information about dependent units,
as is done for Tichy's "Smart" recompilation process.
With any usage information about dependent units,
blessing can only become "smarter" in what changes it
allows. Our intention, though, was to solve this recompi-
lation problem when no information about dependent
units was available.

For the problematic change described above, a compiler
error message would be given for the use of a hidden
identifier, if the unit doing the use were recompiled, and
fully qualifying the reference would remove the problem.

Note that blessing did not create this compilation error.
Even without blessing, given this change of adding a
new function with the same name as a function in
another package, the user would still be required to
change his source to add name qualification. Blessing
merely deferred recognition of the problem until the
dependent unit was recompiled, for some other reason.

THE IMPLEMENTATION

The key to blessing is its integration with the Ada library
manager and Ada compiler. Blessing is controlled by the
compiler :bless option. Before a successful compilation
of an interface is installed in the Ada library, the blessing

tool (actually a separate pass of the compiler) retrieves
the existing interface from the library and compares it
with the interface that is about to be installed. If no
differences are detected, or if "compatible" changes
were made, the new interface will replace the old. If
incompatible differences are found, then the compilation
is rejected and the old interface remains in the Ada
Library.

Inside an Interface File

An interface file in a BiiN Ada library is a network of
exprs, where an expr is either a symbol table entry (such
as for a type, procedure, or variable) or a node in an
expression or statement tree. Information about types,
type sizes, record field bit positions, variables, data
addresses, subprogram parameter passing profiles - - i n
short, all the separate compilation information needed for
a dependent unit - - is recorded in the interface file.

Interface files are complete - - they contain a copy of all
exprs from with'ed units that are needed by the current
CU. This makes the processing of context clauses and
the retrieving of separate compilation information from
the Ada library very fast. Unnecessary exprs are pruned
away to keep the size of interface files small.

Since there are copies of exprs from with'ed units within
the current CU's interface fife, it takes only three CUs to
show how the "same" definition can enter an interface
file from two different with'ed units.

package A is
type COLORS is (

VIOLET, BLUE, GREEN,
YELLOW, ORANGE, RED);

end A;

with A;
package B is

X: A.COLORS;
end B;

with A, B;
package C is

V: A.COLORS
end C;

:= B.X;

Ada's dependency rules require these CUs to be com-
piled in the order: A, B, C. The expts for the type
A.COLORS and all the enumeration values, come into
the compilation of package C, from the interface files of
both A and B. Ensuring that only one copy of the
definition expts actually exists during the compilation of
C is critical to both the semantic checks of the compiler
and to the compiler's performance and resource usage.
To do this, all expts are assigned a unique key within
their CU. All dependent units refer to the same expr in a
with'ed unit by the Ada library-wide unique identifier
(CU_name, expr key). The compiler's ability to recog-
nize the same expr definition coming through multiple
paths assumes that all copies of the original expr have

171

the same expr key. This is how the compiler knows for
example, during semantic checks, that two variables are
of the same type - - they refer to a type expr with the
same expr key.

In general, recompilation after arbitrary changes to the
source can produce an interface file bearing no resem-
blance to the original interface file or to any copies. It is
blessing's responsibility to restore order to the expr keys
introduced by such recompilations.

After compiling A, B, and C, say we make a change to
the type definition of A.COLORS and recompile A. If we
attempt to recompile C (without recompiling B) the com-
piler will notice that the unit B is obsolete and will abort
the recompilation of C. This is important to do since the
definition expr for the type A.COLORS that would come
into C from A differs from the copy that would come into
C from B.

Continuing with our example, what if instead of changing
A.COLORS, we add a new type definition
HOT_COLORS to the package:

package A is

type COLORS is (

VIOLET, BLUE, GREEN,

YELLOW, ORANGE, RED);

subtype HOTCOLORS is

COLORS range YELLOW .. RED;

end A;

There is no need for dependent CUs of A (namely 8 and
C) to be recompiled, since no change was made to an
existing definition. We would like to avoid recompiling
dependent units of A. We want to bless the new A inter-
face as being compatible with the old A interface.

Making Interfaces Internally Compatible

Now, what is involved in making interfaces compatible
should become more clear. When a specification is
recompiled, each item in the interface must be given the
same unique key it previously had. This is normally true
for a recompilation only if the sources are identical
(except for white-space and comment changes).

If however, a source change were made, say by adding
a new type declaration, then the unique key scheme
would be thrown askew. All items after the newly
inserted declaration would not have the same key as in
the previous interface, and other compilation units that
referenced the old-key item would no longer refer to the
correct declaration! If any unit that did a with on this
changed unit were recompiled, then all of these users of
this changed interface would need to be recompiled even
though they did not reference the new declaration. The
new interface would be internally incompatible with the
old. To bless the new interface, the compiler must per-
form a transformation of the items in the new interface to
give them the corresponding old interface unique keys.

Without blessing, the new file would simply replace the
old interface and would obsolete dependent units. The
secret to interface blessing is to know which interface
differences are important and which are benign or
upward compatible. For a useful set of changes to an
interface, the new interface can be made compatible with
the old interface.

For blessing to be successful then, each expr in the new
interface file must be given the same expr key as the
corresponding expr in the old interface file. To do this,
the blesser must find these corresponding expts and set
the new exprs key to be the same as the old. Finding
the corresponding expr is essentially a tree matching
problem.

An expr in the new interface file that does not have a
corresponding expr in the old interface file is considered
an addition to the interface. In this case, a compiler note
message is produced to remind the user that a compati-
ble change was detected, and the blessed CU is put into
the Ada library.

An expr in the old interface file that does not have a
corresponding expr in the new file is considered to have
been deleted. An expr in the old interface file that has
been deleted or is not the same as its counterpart in the
new file, is grounds for not blessing the new interface
file. For these, a compiler error message is given to the
user, and the Ada library is not updated.

PERFORMANCE

Some interesting statistical information was gathered to
help decide upon the algorithms used for blessing. Over
two hundred BiiN/OS Ada package specification inter-
face files were anaTyzed. Of these, over two-thirds of the
interface files contained under 100 exprs for declarations
made by this package.

Average is 98.4 exprs per Interface

exprs # interfaces
.

0- 24: 34
25- 49: 39
50- 74: 39
75- 99: 24

I00-124: 19
125-149: I0
150-174: 10
175-199: 6
200-224: 5
225-249: 2
250-274: 1
275-299: 2
300-324: 1

16.8%)
19.3%)
19.3%)
11.8%)
9.4%)
4.9%)
4.9%)
2 9%)
2 4%)
0 9%)
0 5%)
0 9%)
0 5%)

Guided by these statistics, blessing was implemented
with a rather straight-forward linear searching algorithm
for finding the corresponding expr in the old interface for
each expr in the new interface. Remarkably, compilation
time statistics also show that for a 500 line package
specification's interface file (containing over 150 expts),

172

the time to perform the blessing service was less than
one CPU second. This was true not only when comment
and white space changes were made, but also when a
new function was added right in the middle of the pack-
age specification.

WHAT ARE COMPATIBLE INTERFACE CHANGES?

For common cases of interest, this is a straightforward
question to answer. An interface change is compatible,
from an object code point-of-view, if code compiled
against the old and new interfaces will behave identi-
cally. This pragmatic answer is the key to determining
the compatibility of a given interface change.

In its design, blessing was very conservative, and per-
mitted only very controled changes to an interface. As
we observed its use and behavior, and the kinds of
changes being made to interfaces within BiiN's develop-
ment projects, we modified blessing rules to permit more
extensive changes. These compatibility rules continue
to evolve.

Compatible Changes

An interface is compatible if code generated by users of
both the old and new interface behaves identically.
Specifically, this means that the compiler-known informa-
tion about basic declarations stored in the interface files
must not be affected by the changes made to the new
interface.

The most common compatible change is adding or
changing a comment, and it is always considered com-
patible since no new expts are added and no old expts
are removed from the existing interface.

Additions to the end of a CU, such as adding a new type,
procedure, or variable are allowed, and are also con-
sidered compatible. With a few exceptions (described
below), additions may also be made at places other than
the end of the library unit, but more care must be used to
maintain compatibility.

New object declarations (such as vari-
ables) and type declarations that cause
implicit declarations of objects (such as
temporaries used to freeze the bounds of a
dynamic subtype declaration) must be
placed after all existing object declarations
(explicit or implicit). The reason for this is
simple. The generated code references a
variable by a compiler-known offset within
the public (specification-defined) data for
the interface. If a new variable is intro-
duced in the middle, then all subsequent
variables would be referenced with an
incorrect offset by any existing code.

New overloaded subprograms must be
placed after all existing subprograms with
the same name. The compiler generates
unique linker names to resolve references
to overloaded subprograms. These names
are based on the order in which the over-
loaded subprograms are declared. Chang-
ing this order would result in the wrong
subprogram being called by any existing
code.

Blessing detects all of these incompatible changes and
reports the problem to the user.

The following are compatible changes to an interface:

• No change at all (i.e., recompiling the same
source file)

• Adding (or changing) comments,
spacecharacters, or formaLeffectors

• Adding new basic declarations

As described above, new declarations may be placed
anywhere within the package so long as they do not
change the interface information about other basic
declarations. In general, new types, scalar constants,
and non-overloaded subprograms can be added any-
where in the package specification. New variables (both
explicit and implicitly defined by subtype declarations)
may only be added after all existing variables. With-lists
changes are always compatible.

Incompatible Chanqes

Altering an existing type definition or subprogram
specification is generally incompatible. In the design of
the blessing service, interesting type changes were
investigated for their compatibility. For example, adding
an element to an enumeration type was considered, but
finally rejected. To see why, consider this example:

package COLOR MGR is
type COLORS is (

VIOLET, BLUE, GREEN,
YELLOW, ORANGE);

function P return COLORS;
end COLOR MGR;

The type COLORS defines:

• 5 enumeration literals (VIOLET=0,
BLUE=l, GREEN=2, YELLOW=3,
ORANGE=4)

• overloaded operator symbols ("=", "/=", "<",

'173

• attributes (SUCC, PRED, FIRST, LAST,
RANGE, POS, VAL, IMAGE, VALUE,
SIZE)

Adding a new enumeration literal to the type COLORS
affects all of these definitions. For example, consider
this user of the package COLOR MGR:

with COLOR MGR; use COLOR MGR;
procedure USER is

type PALETTE is
array(COLORS) of BOOLEAN;

PAL: PALETTE;
B: BOOLEAN;

begin

for C in COLORS loop

PAL(C) := FALSE;
end loop;

PAL(COLOR MGR.P) := TRUE;

case COLOR MGR.P is

when VIOLET..YELLOW =>
null;

when ORANGE =>

null;

end case;
end USER;

Consider the effects on procedure USER if the type
COLORS were changed by adding a new enumeration
literal (say adding RED after ORANGE), and we allowed
this new interface to be blessed. If the specification and
body of COLOR_MGR were recompiled and the pro-
cedure USER were relinked with these changes, then
the type PALEI-rE would still be an array of 5
BOOLEAN values, the loop would still iterate through the
values VIOLET (0) to ORANGE (4), but the invocation of
the function P could return the value RED (5) which
would index beyond the end of the PAL array! Runtime
checks would not catch this error because, as far as the
compiler is concerned, the function P's return type is the
same as the index type of PAL so no runtime check
would be emitted. The user's program would fail in a
very mysterious way by overwriting whatever was allo-
cated after the end of the array PAL (the variable B in
this example). Similarly, the case statement would
behave unpredictably if the function P returned a value
of RED since there is no entry in the branch table for this
value (since the compiler didn't expect there could be
any value greater than ORANGE).

If the type COLORS had 8 values and then was changed
to have 9, the size of variables of type COLORS would
change from 3 bits to 4 bits, another source of mysteri-
ous program errors.

Blessing must maintain the run-time integrity of user's
programs. The user's program would remain correct
only if, after changing the type COLORS, the subpro-
gram USER were forced to be recompiled. Therefore

allowing COLOR_MGR to be blessed after a change to
the type COLORS should not be allowed.

Similar problems would occur if we allowed a subtype
range to be changed (e.g., from INTEGER range 0..4 to
INTEGER range 0..5) and the interface blessed.

Further examples of interface changes that are incompa-
tible (and are therefore not allowed) are:

• Deleting an existing basic declaration

• Changing an existing basic declaration:

Adding, deleting, reordering, or
changing the type of a record field or
formal subprogram parameter

Adding, deleting, or reordering
enumeration literals of an enumera-
tion type

• Changing the element type of an
array

• Changing the base type or con-
straints of a subtype

• Changing the default value for a formal
parameter or discriminant, or the value of a
constant or named number

• Applying (or changing) a representation
pragma or representation clause (except
when the actual representation is not
affected by the change)

• Reordering ovedoaded subprograms in a
package

Although not all changes are considered compatible,
interface blessing is often able to contain the effects of
an incompatibly changed interface to the immediate
users of this interface, thereby containing the effects of
an unblessed change to the directly dependent CUs.

CONSISTENCYINTHEPRESENCE OF CHANGE

The programmer can take advantage of the multiple ver-
sions allowed by blessing, to install upwardly compatible
interfaces with varying levels of support, all under the
watchful eye of the Ada librarian and linker. Because
multiple version/time-stamps are maintained in the inter-
face and object files, these tools will catch any attempt to
link together incompatible implementations, such as
compiling against a new enhanced interface but linking
with an older subset implementation. At the same time,
these linking tools will allow you to compile with an old
interface and link against a new compatibly blessed ver-
sion of the object code.

47,~

BLESSING USED FOR PROJECT CONTROL AND
SYSTEM RELEASE

The ability to compare interfaces has important applica-
tions for project management and maintenance. For
example, as a project control tool, blessing can be told
(by specifying the option :bless=identical to the Ada
compiler) to allow only identical interfaces to be installed
into a project library. Normally this would be done by
restricting modify-access to the source files, but this res-
triction would also prohibit documentation changes. With
blessing, source files can remain available while
changes to the declarations and code can be detected
and prohibited.

By shipping public interface files together with product
source files, the regeneration of a product at a foreign
site can be guaranteed to be identical to a baseline site's
generation. This is vital for releasing Ada systems writ-
ten by different vendors, to the same user.

By far the most important benefit from interface blessing
is in generating product releases. By compiling with the
blessing option, the compiler will guarantee that the new
interface is indeed compatible with the existing interfaces
of the previous release. Project management need not
rely on manual inspection of source changes to verify
compatibility - - with blessing the checking is done
automatically. Surprises caused by incorrectly perceived
compatible changes will be immediately caught, an error
message given, and the changes not allowed - - the Aria
library' will not be updated with the incompatibly changed
unit. Blessing solves the problems of making upward
compatible updates to product interfaces by providing a
powerful tool to verify that old and new interfaces are
truly compatible.

CONCLUSION

The ability to keep Ada library semantics consistent,
even in the presence of compatible interface changes, is
vital not only for rapid product development, but also for
product generation, maintenance, and releases. As our
system project use has demonstrated at BiiN, the inter-
face blessing techniques and tools we've developed are
proven and efficient, and make sense in a world of
changing interfaces.

REFERENCES

[1] Tichy, W.F. Smart Recompilation, ACM Transactions
on Programming Languages and Systems, Vol. 8,
No. 3, July 1986.

[2] Schwanke, R.W. & Kaiser, G.E. Smarter Recompila-
tion, ACM Transactions on Programming
Languages and Systems, Vol. 10, No. 4, October
1988.

175

