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Using Autoencoders to Automatically Extract Mobility Features for
Predicting Depressive States
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Recent studies have shown the potential of exploiting GPS data for passively inferring people’s mental health conditions.
However, feature extraction for characterizing humanmobility remains a heuristic process that relies on the domain knowledge
of the condition under consideration. Moreover, we do not have guarantees that these “hand-crafted" metrics are able to
e�ectively capture mobility behavior of users. Indeed, informative emerging patterns in the data might not be characterized
by them. This is also a complex and often time-consuming task, since it usually consists of a lengthy trial-and-error process.

In this paper, we investigate the potential of using autoencoders for automatically extracting features from the raw input
data. Through a series of experiments we show the e�ectiveness of autoencoder-based features for predicting depressive
states of individuals compared to “hand-crafted" ones. Our results show that automatically extracted features lead to an
improvement of the performance of the prediction models, while, at the same time, reducing the complexity of the feature
design task. Moreover, through an extensive experimental performance analysis, we demonstrate the optimal con�guration of
the key parameters at the basis of the proposed approach.

CCS Concepts: • Human-centered computing→ HCI design and evaluation methods; Empirical studies in ubiquitous and
mobile computing;

Additional Key Words and Phrases: Mobile Sensing, Noti�cations, Application Usage, Context-aware Computing

ACM Reference Format:
Abhinav Mehrotra and Mirco Musolesi. 2018. Using Autoencoders to Automatically Extract Mobility Features for Predicting
Depressive States. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 127 (September 2018), 20 pages.
https://doi.org/10.1145/3264937

1 INTRODUCTION
Depression is the most common mental health condition. More than 300 million people su�er from depression
worldwide [1]. Depression has also a strong impact not only on the life of the individuals a�ected by it, but also
on their families and social circles. It can also have a severe negative impact on work and school performance
and, therefore, a non-negligible economic cost is associated to it. Moreover, depression at its worse could lead a
person to suicide. Indeed, in high-income countries mental disorders, and especially depression, are one of the
major causes of suicide [35]. The World Health Organization has estimated that by the year 2020 depression will
be the second largest cause for lost years of healthy life worldwide [1].
Around the world, only less than half of the people a�ected by this condition are able to receive e�ective

treatments when necessary. This number is less than 10% in many countries [1]. The key reasons are lack of
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resources and inaccurate assessment. Currently, psychologists rely mainly on self-assessment questionnaires (such
as PHQ-8 [26] and PHQ-9 [24]) for diagnosing a depressive condition. However, this approach is prone to errors
as it often relies on the person’s recollection ability [31] and it might be in�uenced by biased self-representation
given the persistent social stigma associated with mental health disorders.
At the same time, interview-based studies have shown that depression leads to a reduction of mobility and

activity levels [39]. Moreover, a few recent studies have proposed di�erent approaches to exploit mobility data
for monitoring depression [9, 30, 41]. For this reason, we focus on the GPS data, which can be reliably and
unobtrusively collected through mobile phones in a robust way, to investigate the potential of exploiting people’s
mobility characteristics to predict their depressive state. The authors of these studies have proposed a variety of
mobility features, such as the total distance covered by individuals, the number of places they visit, their regularity
and so on, for characterizing human mobility behavior and predicting people’s depressive states. However, these
features are in a sense “hard-wired" and pre-de�ned by researchers, who usually derived them from qualitative
observations contained in the existing literature on mental health disorders.
In this paper, we discuss an approach for the automatic extraction of mobility features from raw movement

data (e.g., GPS traces) without manually engineering them. In our opinion, this is a fundamental problem for a
variety of reasons. First of all, we do not have guarantees that the existing features are able to capture e�ectively
mobility behaviour. Indeed, informative emerging patterns in the data might not be captured by them. Moreover,
these features are usually dependent on the selection and tuning of sets of parameters. This is a complex and
often time-consuming task, since it usually consists of a lengthy trial-and-error process. It might also be strongly
dependent on the population under observation.

More speci�cally, we investigate the use of unsupervised deep autoencoders [7, 16, 17] for automatic extraction
of mobility features. We then examine their potential for predicting depressive states measured using standard
psychological tests. An autoencoder is an arti�cial neural network that is designed with the goal of copying its
inputs to its outputs in an e�cient way. By doing so, the underlying network is able to learn useful properties of
the data, which can then be used for example for e�cient coding. Researchers and practitioners in a variety of
domains, including, for example, activity recognition [37], computer vision [23], and speech recognition [29]
have exploited autoencoders to extract novel features from raw data. However, this powerful technique has not
been applied to the analysis of mobility data yet.
In order to validate our approach, we use the Trajectories of Depression dataset collected by the authors

of [9], who presented a set of “hard-wired" features for monitoring depression. The results of our analysis
demonstrate that the models trained by using autoencoder-based features could achieve 90% speci�city and 75%
sensitivity. By comparing our results with the performance of hand-crafted features-based model on the same
dataset (as presented by the authors of [9]), we show how the proposed approach is able to provide a signi�cant
improvement (i.e., around 8.5% speci�city and 10.5% sensitivity) with respect to the hand-crafted features. Even
if the improvement provided by these features is in a sense limited, from a practical point of view it is worth
underlying its simplicity also with respect to designing and tuning features. Indeed, we believe that this is the
major advantage in using autoencoders for this class of problems.

The key contributions of this paper can be summarized as follows:

• We propose an approach for using autoencoders to automatically extract features for characterizing users’
mobility behavior using GPS traces collected by means of mobile phones.
• We demonstrate that these automatically extracted features can be used as inputs to machine learning
algorithms for constructing personalized models that are able to achieve better performance than those
based on complex hand-crafted features.
• We propose di�erent inputs representation of autoencoders and quantify their e�ectiveness in predicting
users’ depressive states.
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Fig. 1. General architecture of an autoencoder.

Additionally, we also study the impact of a series of key parameters on the performance of our models. In
particular, we analyze the use of di�erent autoencoder’s network con�gurations, number of days for which
mobility features should be used, and the time interval for which GPS traces should be sampled in order to
improve models’ performance. Our results show that using more complex networks (i.e., increasing the size)
does not improve the performance, there is no signi�cant di�erence in the results by using di�erent activation
functions, and increasing the dropout rate over 10% results in signi�cant drop in the prediction performance.

2 CHARACTERIZING MOBILITY BEHAVIOR USING AUTOENCODERS
In this section we discuss the potential of using autoencoders for the automatic extraction of features for
characterizing mobility behavior. We also present the key elements of the design of autoencoders [16], including
approaches for selecting e�ective input representations and for avoiding data over�tting.

2.1 Why Should We Use Autoencoders?
The goal of an autoencoder is to learn a compressed or decompressed representation of input data that can be
used to reconstruct the original one with a signi�cantly small error. A few years ago, Hinton et al. demonstrated
the potential of autoencoders for automatic and unsupervised learning-based discovery of generic features [16].
As shown in Figure 1, an autoencoder consists of two components: an encoder and a decoder. The objective of an
encoder is to compress the input representation. This compressed representation is decompressed by the decoder
to obtain the learned representation with the dimensions equal to the original ones.
An autoencoder comprises of one input layer, one output layer and an odd number of hidden layers. The

middle layer of the network should have the lowest number of nodes so that the transmission of input data
through this bottleneck can be used to obtain meaningful encoded representations. In other words, the outputs of
the encoder will be the extracted compressed input representations, which can be seen as discovered emergent
features. Once the autoencoder is trained, the encoder is taken out from this network and used as a model for
encoding the given input representations. In simple words, the encoder is used to compute features from the
given raw inputs. We believe that the human mobility behavior is complex and it might be di�cult to capture
with manually engineered functions. Therefore, autoencoders seem an ideal choice for characterizing generic
mobility behavior of users.
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2.2 Input Representations
Mobility patterns di�er from person to person. They re�ect the lifestyle of individuals in�uenced by the geography
of the places visited by them. For example, the distances covered by two people to go from home to work can
be very di�erent depending on the length of their commuting. For this reason, the �rst step is to normalize the
mobility trajectories in order to make them comparable and to allow for the extraction of common patterns.

The use of raw data could make impossible for an autoencoder to learn a common compressed representation,
since it would instead capture the di�erences in people’s movement due to the geography of the places. To
better understand this, let us consider an example where two users living in di�erent geographic locations have
travelled from home to work and then back home. Let us assume that, for one of them, the commute consists of a
50-mile car trip, whereas for the second one, it consists of 2-mile cycle ride. Now, by simply using the GPS data it
would be di�cult to translate, compare and �nd common patterns from these trajectories. Therefore, we have to
transform GPS traces into representations that can be generalized. More speci�cally, we transform them in three
ways:
• Displacement Representation (DR): to obtain this transformation we compute a vector of distances between
all pairs of adjacent GPS points. In order to make autoencoders less sensitive to the di�erences in people’s
mobility behavior, we normalize these distance vectors of each user by using a MinMax normalization
function. The formal process of transforming GPS points to the displacement representation is described
below.
Given a set Pu = {pu1 , pu2 , . . . , puN } of N GPS points of a user u. We de�ne the displacement vector for user
u as:

Du = {du1 , du2 , . . . , dui , . . . , duN�1} (1)

with

d
u
i = dist (p

u
i , p

u
i+1) (2)

where dist() is a function that computes Haversine distance between two points.

Then we compute the normalized displacement vector Du
MinMax as follows:

Du
MinMax = MinMax (Du ) (3)

whereMinMax () is the minmax scaling function applied to each element of Du . Du
MinMax is used as input

representation of the network.

• Change in Displacement Representation (CDR): we compute a vector containing ratios of distances for all
pairs of adjacent GPS points with the distance for the preceding pairs. In other words, we �rst calculate the
distances between all pairs of adjacent GPS points and then take the ratio of each distance value with its
preceding distance value. A more formal description of the transformation of GPS points to compute the
changes in displacement representation is described below.
Given a set of GPS points Pu , we de�ne the changes in displacement vector for user u as:

Cu = {cu1 , cu2 , . . . , cui , . . . , cuN�2} (4)

with

c
u
i = 1 � dui+1/dui (5)
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where dui is the distance between GPS point pui and pui+1 as described in Equation 11. Cu is used as an input
representation of the network.

• Signi�cant Place Representation (SPR): in order to obtain this transformation, we compute the time spent at
the top S signi�cant places.
More formally, given a set of GPS points Pu , we �rst cluster them into signi�cant places using the approach
presented in [9] for clustering location points. This results in a set Lu = {lu1 , lu2 , . . . , lui , . . . , luMu } ofMu

places 1. Then based on the overall time a user u spent during the period of data collection at each place in
Lu , we �nd the top k signi�cant places (sorted in a decreasing order of time spent). This results in a set
Su = {su1 , su2 , . . . , suk } of k signi�cant places for user u.
We then compute the time spent by the user u at all places in Su for a given da� as follows:

Tuda� = {tuda�,su1 , t
u
da�,su2

, . . . , tuda�,suk
} (6)

Additionally, all GPS points that are not member of any signi�cant place in Su are used to calculate the time
spent at non-signi�cant places for each day. Finally, this value (i.e., time spent in non-signi�cant places) is
appended to the vector Tuda� . By doing so, we obtain a �nal vector of Tuda�⇧ composed of S + 1 elements.
Tuda�⇧ is used as the signi�cant place representation.

Note that all of these representations are computed for each day’s GPS data for all users iteratively. Moreover,
GPS traces are not always sampled at equal intervals but the input layer of an autoencoder has a �xed number of
nodes: for this reason, we �rst transform GPS traces of each day into an equally spaced time series. The process
of selecting of optimal time window (�window ) is discussed in Section 4.3.

2.3 Regularization Approach to Prevent Autoencoders from Overfi�ing
One of the design goals of machine learning algorithms is to be robust to over�tting [14]. A predictive model is
said to be over�tted when its performance on the training data is signi�cantly higher than the performance on
validation data. In such situations the model adjusts its parameters to capture very speci�c characteristics of
the training data and, for this reason, it does not generalize well to test datasets with di�erent characteristics.
This is a common issue with most neural network-based models when they are trained with a limited amount of
training data [34].

Numerous methods have been proposed for addressing this issue. These include early stopping of training when
the performance on the validation data starts to get worse and soft weight sharing [34]. A most commonly adopted
method is “dropout” – a technique that performs model averaging to reduce over�tting in neural networks [44].
It is a method in which nodes (from both hidden and visible layers) in a neural network are temporarily dropped
along with all their incoming and outgoing connections to other nodes. More speci�cally, certain number of
nodes are randomly picked to be dropped for an iteration (i.e., completion of a batch). This guarantees that the
weight of the network will not adapt to a very speci�c set of inputs. The number of nodes to be dropped can be
selected as a percentage of available nodes in a layer and it is usually referred to as dropout rate. The process of
selecting of optimal dropout rate is discussed in Section 4.3.

3 BUILDING PREDICTION MODELS
3.1 Computing PHQ Scores
In this study we use the PHQ-8 test that is a widely adopted and extensively studied 8-item questionnaire for
assessing and monitoring depression severity [26]. In this test each question is associated to a score between 0
1We use Mu as the number of signi�cant places may vary for each user.
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and 3. The PHQ score is computed by adding the contributions of all questions and it lies between 0 and 24, where
0 indicates no depression and 24 indicates severe depression. Note that the PHQ score of a user can be computed
at a daily, weekly or monthly frequency (based on the requirements) by asking the user to respond to PHQ-8
tests accordingly. Since the goal of our work is to predict the daily depressive states, we would need to ask users
to provide their responses to PHQ-8 tests every day. It is worth noting that our approach is �exible and can also
be adapted for the prediction of weekly or monthly depressive states. However, since it is not trivial to engage
users in such a study for a longer period, we consider the task of predicting daily depressive states that gives us a
statistically signi�cant number of samples (i.e., PHQ-8 scores) for each user to build their personalized models.
One possible approach for predicting users’ depressive states is to model this problem using regression, i.e.,

prediction of scores from 0 to 24 for each day. However, as also reported in the literature [9], building personalized
regression models (i.e., performing separate regression task for each user) leads to poor prediction results given
the noise in the data (i.e., both in the GPS traces and labels from questionnaires) and the sparse nature of the
PHQ-8 scores (i.e., the limited amount of observations per score). For this reason, the prediction task that we
consider is modelled as a binary classi�cation task as in the Trajectories of Depression project [9] that we use
as a comparator. More speci�cally, in order to convert this into a classi�cation problem we compute a binary
label, which indicates absence (by ‘0’) and presence (by ‘1’) of depressed mood on that day, for each day and for
each user. This transformation is done in two steps: (i) we �rst calculate the mean and standard deviation for
the PHQ-8 scores of each user from their daily PHQ-8 scores; (ii) we then assign label ‘1’ (i.e., the presence of
depressed mood) if the PHQ-8 score of a day is larger than the mean PHQ-8 score of that user plus one standard
deviation, otherwise the label ‘0’ (i.e., the absence of depressed mood) is assigned. It is worth underlining that the
mean and standard deviation of PHQ-8 scores are computed only on users’ training data.

3.2 Architecture and Implementation
Figure 2 presents the architecture of the proposed prediction mechanism consisting of two processes: (a) training
of prediction model, and (b) making predictions. The process of training prediction models consists of the
following seven steps:

Step 1: train three generic autoencoders (i.e., autoencoders that are trained with all users’ data and exploited to
discover features for all users) by using each of the three input representations obtained from the training
data of all users;

Step 2: once the autoencoders are trained, extract the three trained encoders from these autoencoders;
Step 3: computemobility features for the training data by usingmobility traces (with di�erent input representations)

as input for all the trained encoders;
Step 4: use the computed mobility features as input to machine learning (ML) algorithm;
Step 5: compute training labels from the PHQ-8 scores;
Step 6: feed the training labels into ML algorithm as dependent variables;
Step 7 : once both dependent variables and mobility features are ready, train the ML algorithm to obtain the trained

model.

Once the models are trained, they can be used to make predictions. As presented in Figure 2(b), this process
consists of the following two steps:

Step 8: compute mobility features for the testing data by using mobility traces as input for all the trained encoders;
Step 9: feed the computed features (on testing data) to the trained model for obtaining prediction outputs.

It is worth noting that training and testing datasets are obtained by splitting each users’ data into the portions
of 80% and 20% respectively. Moreover, we build personalized prediction models using three di�erent machine
learning (ML) algorithms: (i) support vector machine (SVM) [11] with Gaussian kernel, (ii) random forest (RF) [8],
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(a) The process of training a prediction model. It comprises of seven steps: (1) train three generic autoencoders; (2)
extract the three trained encoders; (3) compute mobility features; (4) use these feature as input to ML algorithm; (5)
compute PHQ scores; (6) feed the training labels into ML algorithm as dependent variables; (7) train the model.

Testing Data Trained Model
8 9
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Prediction Output

(b) The process of making predictions using the trained encoder and prediction model. It comprises of two steps: (8)
compute mobility features using trained encoders; and (9) use computed features to make prediction.

Fig. 2. Architecture of our prediction mechanism.

and (iii) XGBoost [10]. Note that we could not use neural network-based algorithms because of the limited
amount of data available for constructing personalized models for each user.
Additionally, to evaluate the importance of the proposed input representations for predicting the depressive

states, we build seven di�erent prediction models by using seven combinations (i.e., all possible combinations) of
encoded features obtained through the input representations (discussed in Section 2.2). More speci�cally, the
combinations are: (i) DR, (ii) CDR, (iii) SPR, (iv) DR + CDR, (v) DR + SPR, (vi) CDR + SPR, and (vii) DR + CDR +
SPR2 .

4 EVALUATION SETTINGS
4.1 Dataset
In order to conduct our analysis, we use the Trajectories of Depression dataset that was collected using the
MoodTraces application by the authors of [9]. MoodTraces employed a mixed method approach of passive mobile
sensing and questionnaire responses from users. Participants were asked to respond to a modi�ed version of the

2In order to ensure reproducibility of these results and to make available these tools for the community, the code can be downloaded from
https://github.com/AbhinavMehrotra/Mobility_Autoencoder.
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Table 1. Version of the PHQ-8 test used in the study.

Have you been bothered by any of the following in the last day?
Little interest or pleasure in doing things.
Feeling down, depressed, or hopeless.
Trouble falling or staying asleep, or sleeping too much.
Feeling tired or having little energy.
Poor appetite or overeating.
Feeling bad about yourself, or that you are a failure, or have let yourself or your family down.
Trouble concentrating on things, such as reading the newspaper or watching television.
Moving or speaking so slowly that other people could have noticed.

PHQ-8 questionnaire [26] that comprised of the eight items listed in Table 1. The questionnaire asked how they
felt in the last day but the PHQ-8 score is computed based on how frequently they felt it over a period of last 14
day. Therefore, for each user we computed the PHQ score on a given day x by using their responses from day
x � 13 until day x and count how many times each depressive symptom occurred in this time interval. Then, for
each question a score of 0, 1, 2 and 3 if given when the corresponding symptom has been reported to be occurred
for 0-1, 2-6, 7-11, 12-14 days respectively. Finally, we sum up the score for all eight questions to obtain a PHQ-8
score between 0-24. It is worth noting that this method of collecting PHQ-8 data has been widely adopted by the
psychiatrists [25].
Since studies have shown that data collected through ESM questionnaires may contain responses that were

not reported correctly and were responded for the sake of completion. Therefore, we �lter out the questionnaires
that were responded too quickly by using the Speeder Index approach [40]. Finally, these remaining responses to
questionnaires are used as the ground-truth values of participants’ depressive states.

At the same time, the mobile application also passively collected users’ mobility traces (i.e., GPS data) 3 through
an adaptive sampling approach. In this sensing approach, the location data is collected only when there is a
signi�cant change in the user’s location, hence the sampling rate is not constant.

Since some of the GPS data can be noisy (for example, in the case when a user is inside a building), we �ltered
out the GPS points that are not very accurate. To do this, we used the same approach as taken by the authors of
the Trajectories of Depression study [9], i.e., we remove points that have accuracy error of more than 200 meters.

Between September 3, 2014 and June 14, 2015, 184 people participated in the study by installing the app. Since
many of them participated for a very short duration, we considered only 28 users (15 male and 13 female) who
used the app for the minimum duration of 71 days. The average age of all users is 31 years and they are linked to
di�erent occupations, such as students, academics, artists, and retired people.

4.2 Selecting Baselines
In the Trajectories of Depression study [9], the authors proposed a variety of novel mobility features for predicting
the depressive state of individuals. These features include total distance covered, maximum distance between two
locations, radius of gyration, standard deviation of the displacements, maximum distance from home, number of
di�erent places visited, number of di�erent signi�cant places visited, and a routine index capturing the repetition
of visits of a user over time to the same place at the same hour. By using the same dataset we are able to compare
the performance of predictive models built using features from autoencoders against those relying on manually
engineered ones.
3Note that the application collected additional sensor data such as users’ physical activities, application usage and communication logs. This
information is not analyzed directly in this work. However, our method could be applied to any other sensor data modalities by designing the
corresponding input representation.
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4.3 Selecting and Tuning of the Experimental Parameters
We now discuss the selection and tuning of the parameters used in the performance evaluation of our approach.

4.3.1 Autoencoder Network Topology. Network topology (i.e., the optimal number of layers and their nodes) is
one of the key parameters of an autoencoder. In order to explore the impact of the network structure on the
performance of our models to predict depressive states, we optimize the number of hidden layers (denoted by h
in this paper) to construct autoencoders. More speci�cally, we construct autoencoders with the di�erent number
of hidden layers (i.e., excluding the input and output layers) such that h 2 [1,3,5,7]. We use 1 as a lower bound
because that is a minimum number of hidden layer an autoencoder should have. We aim to extend the network
to examine whether it can derive features at successive levels of abstraction. Therefore, we construct additional
networks with 3, 5 and 7 hidden layers apart from a network with 1 hidden layer.
In the structure of the encoder, we set consecutive layers with half the number of nodes as in the preceding

layer, starting from the second layer (i.e., the hidden layer next to the input layer). On the other hand, in the
structure of a decoder, we set consecutive layers with half the number of nodes as in the succeeding layer, starting
from the second last layer (i.e., the hidden layer preceding the output layer). Note that we restrict any layer to
contain less than f nodes and the centre layer to always have f nodes as it is the number of features we want to
extract.
Considering the number of features to be extracted is denoted by f , the number of hidden layers in an

autoencoder is denoted by h and the number of nodes in the input layer (which is same as in output layer) is
denoted by nIO . The number of nodes in j

th hidden layer (denoted by njhidden ) can be computed as:

n
j
hidden =

8>>>><>>>>:

f , if j = h�1
2 + 1

n
j
encoder , if j < h�1

2 + 1
n
j
decoder , if j > h�1

2 + 1
(7)

where njencoder and n
j
decoder are functions to compute the number of nodes for the encoder and the decoder

respectively. These functions are de�ned as:

n
j
encoder =

8><>:
f , if f > nIO

j+1
nIO
j+1 , otherwise

(8)

n
j
decoder =

8><>:
f , if f > nIO

h�j+1
nIO
h�j+1 , otherwise

(9)

To understand this more clearly, let us consider an example where we have an autoencoder with h = 5 hidden
layers, nIO = 48 input nodes and we want to encode the input to f = 5 features. Now, based on the Equation 7
the structure of this network would be 48-24-12-5-12-24-48 (i.e., the �rst layer will be composed by 48 nodes, the
second one by 24 and so on).
Note that the value of the number of nodes in the input/output layer (nIO is based on �hist and �window

(discussed in next subsection). Formally, the number of nodes in the input/output layer can be computed as:

nIO = �hist ⇤
24 ⇤ 60
�window

(10)

Additionally, in order to regularize, the autoencoders we tune the value of dropout rate between 0 and 90%
with 10% steps. Note that we do not consider 100% as this would mean that all the nodes of each layer are dropped.
Moreover, we use MSE as loss function and ADAM optimizer [20] to train the autoencoders.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 127. Publication date: September 2018.



127:10 • A. Mehrotra and M. Musolesi

It is worth noting that the focus of this work is to investigate the feasibility of an autoencoder based solution
for automatically extracting features from raw data in contrast with existing approaches that rely on hand-crafted
features. The aim of this paper is to explore the parameter space associated it. For this reason, we selected the
simplest autoencoder. The proposed approach is independent from the type of autoencoder used and can be
applied to other more complex variations of autoencoders.

4.3.2 Length of Period for the Extraction of the Mobility Features. Since the PHQ-8 test considers the condition
of users for the past 14 days, should we also use the mobility features of these 14 days to build the model or
fewer days will su�ce? In order to answer this question, we aim to �nd the optimal number of days (�hist ) for
which the mobility features should be considered for the prediction task. We optimize the values of �hist 2 [1,14]
with steps of 1 day. It is worth noting that �hist equal to 1 indicates the use of features for the current day. It is
worth noting that the focus of this work is on associating changes in depressive states with variations in mobility
patterns. Moreover, depressive states usually last for several days and, therefore, we consider a time period of
more than one day in our analysis. In other words, we do not consider intra-day mobility variations.

4.3.3 Time Window for Input Representations. Mobility trajectories di�er from person to person as they are
in�uenced by the geography of the places visited by them. For this reason, the �rst step is to transform the
mobility trajectories such that they become comparable and common patterns can be extracted as discussed in
Section 2.2. However, to perform this transformation we �rst need to convert the raw GPS traces into equally
spaced time series because as discussed above (see Section 4.1) the GPS traces are sampled at uneven intervals
(i.e., when there was a signi�cant change in the users’ location). In order to do so, the optimal time window
(�window ) for this conversion has to be calculated. Since people do not change their location very frequently we
use 10m time window as lower bound for computing the input representations. On the other hand, by increasing
the time window we will end up aggregating the available data points and thus reducing the size of the input
layer in our network. For example, by having the time window of 1 hour we will have only 24 nodes containing
distance travelled by the user in each hour. Having a higher value of time window will make it even di�cult to
extract the features. Therefore, we aim to optimize the value of time window as �window 2 [10,60] with the steps
of 10 minutes.

4.3.4 Number of Top Places for the Significant Places Representation. In order to compute the signi�cant places
representation, we need to set the number of top signi�cant places, which we indicated with k . At the same
time, we need to set the value of k greater than F (i.e., the number of features extracted from an autoencoder).
However, if we consider high value of k we might not �nd the same number of signi�cant places for all users.
Therefore, it is not reasonable to optimize this parameter. For this reason, we chose the value of k equal to the
lowest number of signi�cant places visited by a user in our dataset.

5 PREDICTION RESULTS
We now present the performance of our approach for predicting depressive states using mobility features of
each individuals discovered by autoencoders by exploiting di�erent input representations. The selection of
input representations is a key step for designing e�ective autoencoders. Since some combinations might lead to
non-optimal results. For this reason, an extensive performance evaluation has to be carried out to investigate all
combinations of input representations. We quanti�ed the performance of our models in terms of speci�city and
sensitivity (presented in Figure 3.a). Moreover, for the ease of comparing the performance of di�erent models, we
also computed the diagnostic odds ratio (DOR), which is presented in Figure 3.b. DOR is widely used in clinical
studies as a measure for assessing performance of binary classi�cation models [13], which is computed as:
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Fig. 3. Prediction results (a. in terms of specificity and sensitivity; and b. in terms of DOR) for di�erent combinations of
input representations computed by using three di�erent classifiers and two activation functions. These results were obtained
by optimizing dropout rate, f , h, �hist and �window with the grid search approach.

DOR =
speci f icit� ⇤ sensiti�it�

(1 � speci f icit�) ⇤ (1 � sensiti�it�) (11)

Our results demonstrate that models trained with DR and SPR (i.e., Displacement Representation and Signi�cant
Places Representation respectively) outperform those trained with the other six combinations of input representa-
tions. More speci�cally, this analysis shows that using DR and SPR as input representation, ReLU as activation,
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Fig. 4. Prediction performance by using di�erent values of encoded features (f ).

and SVM as machine learning algorithm, our approach is able to achieve 91% speci�city and 77% sensitivity (i.e.,
DOR equal to 34).

A comparison with the results obtained using the technique described in the Trajectories of Depression study [9]
reveals that our model successfully outperforms the performance of hand-crafted features-based model (which
achieved speci�city of 82% and sensitivity of 67%) with a signi�cant improvement (i.e., around 9% speci�city and
10% sensitivity). In other words, the mobility features extracted by means of autoencoders are more e�ective
for predicting depressive states compared to hand-crafted features. It is worth noting that this study focusses
on the analysis of mobility data for predicting users’ depressive states; therefore, we could only compare our
results with [9], which is the only existing predictive method for the prediction of depressive states based on
the analysis of mobility data. However, a detailed comparison of our approach with other techniques that rely
on di�erent types of data sources (and potential applications of our approach to alternative or additional data
sources) are discussed in the Related Work section (i.e., Section 7).

In Figure 3 we also present the prediction results obtained by using three di�erent machine learning algorithms:
SVM (Gaussian), Random Forest, and XGBoost. Our results show that the best prediction results are obtained with
SVM. However, there is no di�erence in the performance of models trained with Random Forest and XGBoost
algorithms. More speci�cally, the performance of the model trained with DR and SPR input representation shows
an improvement of 1% speci�city and 2% sensitivity by using SVM compared to the other algorithms taken into
consideration.

Furthermore, we also compare the use of two types of activation functions in the autoencoder: (i) hyperbolic
tangent (tanh) [2] and (ii) Recti�ed Linear Unit (ReLU ) [33]. Our results show that the models trained with the
mobility features obtained through autoencoders relying on ReLU lead to an improved accuracy over the other
models relying on tanh.

It is worth noting that for these analyses, we optimize the value of dropout rate, number of features f , number
of hidden layers (h), �hist , and �window . In order to tune the model we employed the grid search approach that
trains the model for each combination of the given parameters and evaluates their performance on a held-out
validation set [6]. For the best model (discussed earlier) the optimal values for dropout rate, f , h, �hist , and
�window were 10%, 8, 3, 14 and 10, respectively.
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Fig. 5. Prediction performance by using di�erent values of hidden layers (h).

5.1 Impact of f on Prediction Performance
In this subsection we analyze the impact of f (i.e., the number of features encoded) on the prediction performance
of our approach. In order to conduct this analysis, we use a combination of Displacement and Signi�cant Places
representations (i.e., DR and SPR) for extracting mobility features. Moreover, we set the activation function,
dropout rate, h, �hist and �window as ReLU, 10%, 3, 14 and 10 respectively, which are the optimal values discussed
in the previous analysis. As shown in Figure 4, our results suggest that there is indeed an impact of the value of
f on the performance of our model. As the value of f increases, the prediction performance improves. However,
the performance of the model stabilizes when f reaches the value of 8. This indicates that the optimal number of
features extracted by the autoencoders is 8. A larger number of features in general might require a larger training
set.

5.2 Impact of h on Prediction Performance
In this subsection we examine the impact of h (i.e., the number of hidden layers used in the autoencoder) on the
performance of our approach. We perform this analysis by using the combination of Displacement and Signi�cant
Places representations (i.e., DR and SPR) for extracting mobility features in a similar way to the analysis conducted
for understanding the impact of the value of f . Moreover, we set the activation function, dropout rate, f , �hist and
�window as ReLU, 10%, 8, 14 and 10 respectively, which are the optimal values discussed in the �rst analysis of this
section. As shown in Figure 5 our results demonstrate that there is a signi�cant impact of h on the performance
of our model. The best performance of the model can be achieved when h is 3. However, the improvement of the
performance of the model trained with h equal to 3 compared to that trained with h equal 1 is negligible. At the
same time, the model shows worse performance when h is equal to 5 and 7. This could be due to the fact that
noise in the input data (i.e., mobility representations) could make it di�cult for the network to generalize and
this might potentially lead to over�tting. Moreover, it is worth noting that these kinds of dataset are also limited
in terms of size, which potentially hinders the training process of network.

5.3 Impact of Dropout Rate on Prediction Performance
In this subsection we analyze the impact of the value of the dropout rate (i.e., the number of nodes to be dropped
in each layer to make the autoencoder generalizable) on the performance of the proposed approach. In order
to perform this analysis we con�gure an autoencoder with 3 hidden layers, ReLU activation function and use
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Fig. 6. Prediction performance by using di�erent values of dropout rates.

the combination of Displacement and Signi�cant Places representations (i.e., DR and SPR) for extracting 8 (i.e.,
optimal value of f ) mobility features.

We then examine the impact of the dropout for all values of �hist 2 [1,7,14] and �window 2 [10,20,30,40,50,60].
As shown in Figure 6, the results of this analysis demonstrate that for the optimal values of �hist (i.e., 14) and
�window (i.e., 10), the performance of our models improves with 10% dropout rate compared to 0% and stay
stable until 30% dropout rate. However, there is a signi�cant reduction of performance with the further increase
of dropout rate. On the other hand, with other con�gurations of �hist and �window (such as �hist 2 [1,7] and
�window � 20) the performance stabilizes between 20-40% dropout rate. These �ndings partially contradict the
empirical results of Warde et al. [49] that the performance stabilizes between 20-60% dropout rate. However, it is
worth noting that the characteristics of our dataset are rather di�erent. Indeed, a possible reason for the drop
of performance with increase in the dropout rate could be related to the fact that our dataset is limited in size
(which is the problem for most studies in this area) and, therefore, it becomes di�cult for the autoencoder to
extract e�ective features with high dropout rate.

5.4 Impact of �window on Prediction Performance
In this subsection we analyze the impact of �window (i.e., time window for transforming unevenly spaced time
series of GPS traces into equally spaced ones for computing input representations) on the e�ectiveness of features
extracted from autoencoders to predict the depressive state of an individual. In order to perform this analysis
we con�gure an autoencoder with 3 hidden layers, ReLU as activation function, 10% dropout rate and use the
combination of Displacement and Signi�cant Places representations (i.e., DR and SPR) for extracting 8 (i.e., optimal
value of f ) mobility features.

We then examine the impact of �window for all values of �hist 2 [1,7,14]. As shown in Figure 7, our results
demonstrate that as �window increases, the performance of our model decreases. Moreover, this pattern is present
for all values of �hist . However, there is a considerably small di�erence in the prediction performance of models
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using �window equal to 10 and 20. This indicates that the autoencoders require less aggregate information in order
to extract useful features.

5.5 Impact of �hist on Prediction Performance
In this subsection we analyze the impact of �hist (i.e., the number of days used for the calculation of the mobility
metrics) on the performance of our approach for predicting the depressive states of an individual. In order to
perform this analysis we con�gure the autoencoder with 3 hidden layers, ReLU activation function and use the
combination of Displacement and Signi�cant Places representations for extracting mobility features. Moreover,
we set the dropout rate, f , h and �window with their optimal values.

As shown in Figure 8, our results demonstrate that as �hist increases the performance of models also increases
(i.e., sensitivity and speci�city increase). With the lowest value of �hist (i.e., 1), our model could achieve only
75% speci�city and 36% sensitivity. On the other hand, with highest value of �hist (i.e., 14) our model is able to
achieve 91% speci�city and 77% sensitivity. Additionally, in Figure 8 we also show that our model’s performance
always remains closely above the performance of models based on hand-crafted features (proposed in [9]).
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Fig. 9. Comparing prediction performance of our approach by using autoencoders and PCA.

5.6 Why AutoEncoder over Other Types of Feature Extraction Methods?
As discussed in Section 2.1, an autoencoder is the state-of-the-art approach to learn a compressed representation
of input data (i.e., to extract features) with an unsupervised learning technique. We now compare our approach
with a traditional algorithm for automatic feature compression, namely principal component analysis (PCA) [19].
Algorithms like PCA are comparatively much less sophisticated, but, at the same time, easier to train.

In order to investigate the use of PCA in our application scenario, we simply replace autoencoders with a
Gaussian kernel-based PCA in our system architecture (discussed in Section 3.2). We then train three PCAs for
the corresponding three input representations and use the combinations of the features extracted by these PCAs
to build seven models. This process is similar to that we discussed in Section 3.2. We set the values �hist and
�window to 14 and 10 as by using these parameter values that lead to the highest number of input features with
the lowest amount of data aggregation. Finally, to compute the performance of our models relying on PCAs, we
optimize the number of features to be extracted by the PCA.
We compare the performance of our models relying on PCA against the results discussed in Section 5 (i.e.,

the performance of our models based on autoencoders). As shown in Figure 9, the results demonstrate that
autoencoders outperform PCA with a signi�cant di�erence in terms of sensitivity. More speci�cally, PCA could
only achieve 90% speci�city and 23% sensitivity by using most of the combinations for input representations
compared to the performance of the autoencoder based model that obtained 91% speci�city and 77% sensitivity.

6 LIMITATIONS AND FUTURE WORK
In this paper we have presented a novel approach for predicting depressive states by exploiting mobility features
that are automatically extracted from GPS traces. To the best of our knowledge, this is the �rst study that
investigate the potential of autoencoders for extraction of features characterizing complex human mobility
behavior. We show that our approach does not only reduce the burden of designing new features for the
characterization of human mobility behavior but it could also achieve a signi�cant improvement compared to
prediction performed by exploiting “hand-crafted" features.
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However, we have identi�ed a few minor limitations in the proposed approach that can investigated in the
future studies. One of the limitations is that the current implementation of our approach does not completely
explore the temporal aspect of mobility behavior. For instance, there might be some weekly mobility patterns
that could not be discovered through a feed forward network-based encoder. Instead, we need to construct the
autoencoder using a recurrent neural network (RNN) [32] that is capable of capturing dynamic temporal behavior.
However, for evaluating such an approach we would need longitudinal data for several months and possibly years.
There is indeed a need of conducting longitudinal studies for exploring the potential of RNNs in this context.

Another limitation is related to the ecological validity of this study. We believe that the key contribution of this
work is methodological and, indeed, our results indicate the potential of the application of the proposed method-
ology for predicting depressive states. However, it is di�cult to make a strong claim in terms of generalizability of
the method. We believe that this study should be replicated in order to verify its validity, for example, on di�erent
demographics. In our opinion it would also be useful to repeat the study in a clinical setting using di�erent diagnostic
methods, in particular one-to-one interviews for collecting a variety of ground-truth data and for validating the
robustness of the proposed solution.
Moreover, while making a selection between hand-crafted and automatically extracted features, there is a

trade-o� between the prediction performance and interpretability. Our experiments show that the autoencoders
have the potential to automatically discover features that are more e�ective, compared to the hand-crafted
ones, for predicting users’ depressive states. However, the use of autoencoders a�ects the explainability of the
predictions. In general, the problem of explainability of deep learning algorithms is an open challenge for the
machine learning community [12].
At the same time, we believe that this work demonstrates that autoencoders are a powerful tool for the

automatic extraction of features for characterizing di�erent aspects of human behavior, not only for well-being
applications but for a variety of other anticipatory mobile apps [36].

7 RELATED WORK
In this section we review the related work in two key areas, namely the studies about monitoring mood and
well-being of users through the analysis of their mobile sensor data, and those about using autoencoders for
extracting features from raw data.

7.1 Exploiting Mobile Sensor Data to Infer Users’ Mood and Well-being
The recent advances in context sensing have made mobile phones a unique platform for building e�ective mental
health monitoring systems. Many studies have shown the potential of exploiting mobile sensing for passively
inferring users’ mental health and well-being [4, 9, 28, 30, 38, 42, 45, 46]. Whilst sounding simple, inferring users’
emotional states by exploiting their physical contextual information is a complex task.
In the �rst study of this area, i.e., EmotionSense [38], the authors used the audio samples to train predictive

models running locally on the phone for identifying speakers and inferring their emotion. Their results demon-
strate that speech alone can be used to detect emotions with an average accuracy of 71%. Later, many other studies
have investigated the use of alternate and less intruding sensors (such as GPS, activity, sms and call logs) for
predicting users’ emotional states. In [28] Likamwa et al. proposed to exploit the mobile interaction logs (such as
SMS, email, phone call, application usage, and web browsing) together with the contextual information obtained
through mobile sensors for predicting users’ daily average mood. The authors evaluated their approach with
32 participants over two months and demonstrated that their system could predict 93.1% of the daily pleasure
averages and 92.7% of the activeness averages with less than 0.25 MSE (mean squared error). Similarly, in [3],
Alvarez-Lozano at al. examined the potential of exploiting the mobile app usage logs for predicting the bipolar
state of users. In particular, the author proposed to quantify the changes in app usage behavior and exploit them
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to predict variations in self-reported bipolar states. In other to evaluate their approach, they conducted a study
with 18 patients with bipolar disorder for over 5 months. Their results demonstrate that users’ app usage patterns
have a signi�cantly strong correlation with di�erent aspects of their bipolar states.
Recent studies have also shown that mobility traces (obtained through the GPS sensor) contains valuable

information for modeling users’ depressive states. In [9] Canzian and Musolesi investigated the potential of
exploiting mobility traces for predicting depressive states. The authors proposed a series of novel metrics for
characterizing human mobility patterns and used these metrics to build models for predicting depressive states
of users. They demonstrated that their approach could be used to infer changes in depressive states from users’
average depressive state with the sensitivity and speci�city of 83% and 68%. In a similar study [41], Saeb et al. also
shown the potential of exploiting human mobility traces for predicting depressive states. In this work, the authors
proposed a di�erent set of metrics for characterizing human mobility patterns. Their focus was on correlation
analysis: their results show that their metrics also have a strong association with users’ depressive states.
All of these studies show the potential of using mobile sensor data for inferring emotional states of users in

real-time. In particular, information on human mobility behavior derived from GPS data has been shown to be
an invaluable source for passively inferring users’ mental health and well-being [5, 9, 41, 42]. However, these
studies rely on hand-crafted features in order to build predictive models. Using the approach proposed in this
work, we are able to automatically extract features that capture emerging behavioral patterns that are present in
the raw data.

7.2 Automatic Extraction of Features Using Autoencoders
Indeed, most machine learning algorithms require humans to be in the loop for designing features that could
be used as input of the learning task since designing features requires an in-depth knowledge of the domain.
Autoencoders have been recently used to address this problem.

This powerful technique has been employed in numerous �elds in computer science, such as vision [23], natural
language processing (NLP) [27], speech recognition [29] and activity recognition [37]. It is apparent that this
powerful technique has essentially revolutionized the �eld of computer vision in terms of dimensionality reduction
and feature extraction [23]. Researchers and practitioners have exploited di�erent variations of autoencoders
to solve several problems in the area. Some of the examples include the design of denoising autoencoders to
recover an original undistorted image from a partially corrupted image [48], sparse autoencoders for image
reconstruction [22] and variational autoencoders for generating similar images [21].
As discussed above, another application area is Natural Language Processing: various approaches that rely

on autoencoders for document clustering [18], learning representations for words and phrases [27], analyzing
sentiments [47], and detecting paraphrases [43] have been proposed. Similarly, autoencoders have been used for
the extraction of extremely sophisticated features in other �elds such as speech recognition [15] and activity
recognition [37].
Compared to this body of work, to the best of our knowledge, this is the �rst study that investigates the

e�ectiveness of autoencoder-based feature extraction for characterizing human behavior and in particular mobility
from GPS data and to show its potential for a variety of applications not only in digital mental health.

8 CONCLUSIONS
In this paper we have proposed an approach for predicting the depressive states in users by exploiting a set
of mobility features that are automatically extracted from a deep autoencoder. Through a series of extensive
experiments we have demonstrated that our approach could successfully achieve performance that provides
an improvement compared to the models that are trained on hand-crafted mobility features. We have explored
the use of di�erent input representations and their e�ectiveness in predicting future depressive states of an
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individual. Finally, through a series of experimental analyses we have demonstrated the optimal con�guration of
the key parameters used in our solution.
We believe that the approach presented in this work can be applied to a variety of problems that rely on the

automatic extraction of features describing human behavior, not restricted to the digital health domain. Indeed,
the de�nition of hand-crafted features might not just be possible in certain domains given the lack of background
knowledge. The possibility of exploiting emergent patterns in behavioral data is an extremely powerful technique,
which provides an e�ective solution to this problem.
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