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An architecture is provided for cooperative target tracking
and signal propagation learning using mobile sensors. A
method can comprise as a function of sensing data repre-
sentative of a location of a target device at a first defined
moment and model data relating to a motion model repre-
senting a probability density function, determining, by a
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matrix of received signal strength values; and identifying, by
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device at the third defined moment based on the data
structure.
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COOPERATIVE TARGET TRACKING AND
SIGNAL PROPAGATION LEARNING USING
MOBILE SENSORS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application Ser. No. 62/765,051, titled: “COOPERATIVE
TARGET TRACKING AND SIGNAL PROPAGATION
LEARNING USING MOBILE SENSORS,” filed Aug. 27,
2018, the disclosure of which is hereby incorporated herein
by reference in its entirety.

TECHNICAL FIELD

The disclosed subject matter provides for cooperative
target tracking and signal propagation learning using mobile
sensors.

BACKGROUND

Target tracking generally refers to knowing a location of
mobile objects over a discernible duration of time. Target
tracking can have wide and varied applications. For
example, target tracking can have applicability in identify-
ing and tracking patients in hospital settings, understanding
flows of individuals (and/or assets/objects) in large enclosed
(e.g., bounded) venues, such as shopping malls, warchouses,
manufacturing locations and the like. Target tacking can also
be employed to locate individuals in areas such as amuse-
ment parks, airports, etc.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an illustration of a system for cooperative target
tracking and signal propagation learning using mobile sen-
sors, in accordance with aspects of the subject disclosure.

FIGS. 2A and 2B are further depictions of a system for
cooperative target tracking and signal propagation learning
using mobile sensors, in accordance with aspects of the
subject disclosure.

FIG. 3 provides depiction of example system for coop-
erative target tracking and signal propagation learning using
mobile sensors, in accordance with aspects of the subject
disclosure.

FIG. 4 provides illustration of particles structure for
cooperative target tracking and signal propagation learning
using mobile sensors, in accordance with aspects of the
subject disclosure.

FIG. 5 provides illustration of a process for generation of
RSS matrices for cooperative target tracking and signal
propagation learning using mobile sensors, in accordance
with aspects of the subject disclosure.

FIG. 6 provides depiction of histograms of the number of
sensor devices/target devices in a coverage area of target
devices in different venues, in accordance with aspects of the
subject disclosure.

FIG. 7 illustrates tracking errors and the number of
devices covered by a target device as measured over a
defined time horizon, in accordance with aspects of the
subject disclosure.

FIG. 8 provides illustration of a graph tracking errors
versus the number of particles in an example campus setting,
in accordance with described embodiments of the subject
disclosure.

15

20

25

30

40

45

55

2

FIG. 9 provides illustration of a graph tracking errors
versus the number of particle in an example shopping mall
environment, in accordance with described embodiments of
the subject disclosure.

FIG. 10 provides illustration of a graph tracking errors
versus a hop limit in an example college campus environ-
ment, in accordance with described embodiments of the
subject disclosure.

FIG. 11 provides illustration of a graph tracking errors
versus a hop limit in an example shopping mall environ-
ment, in accordance with described embodiments of the
subject disclosure.

FIG. 12 provides illustration of a graph of CDF tracking
errors under different location schemes in regard to the
example college campus environment, in accordance with
described embodiments of the subject disclosure.

FIG. 13 provides illustration of a graph of CDF tracking
errors under different location schemes in regard to the
example college campus environment, in accordance with
described embodiments of the subject disclosure.

FIG. 14 provides illustration of a graph representing RSS
errors and RSS matrix completion over time in regard to the
example college campus environment, in accordance with
described embodiments of the subject disclosure.

FIG. 15 provides illustration of a graph representing CDF
tracking errors with different RSS matrices in regard to the
example college campus environment, in accordance with
described embodiments of the subject disclosure.

FIG. 16 provides illustration of a graph representing
energy consumption verses time, in accordance with
described embodiments of the subject disclosure.

FIG. 17 illustrates a block diagram of a computing system
operable to execute the disclosed systems and methods in
accordance with an embodiment.

DETAILED DESCRIPTION

The subject disclosure is now described with reference to
the drawings, wherein like reference numerals are used to
refer to like elements throughout. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of
the subject disclosure. It may be evident, however, that the
subject disclosure may be practiced without these specific
details. In other instances, well-known structures and
devices are shown in block diagram form in order to
facilitate describing the subject disclosure.

The subject disclosure provides systems and/or methods
that can track targets (e.g., people, objects, and/or assets) in
defined or definable bounded areas. In various embodiments,
each target can carry a device which can continuously
compute the location of the target and can report the
computed location to a server device of a collection of server
devices. Each device can, for instance, be equipped with (or
can comprise), in addition to one or more processors and/or
memories, sensing modules/devices, localization modules/
devices, and/or communication (transceiver) modules/de-
vices. In additional and/or alternative embodiments, a plu-
rality of sensor devices can be variously dispersed (e.g.,
randomly scattered and/or positioned in a determined or
definable pattern) throughout one or more areas enclosed
within determined or definable perimeters, such that when a
target (e.g., person or object) associated with a tag device
(e.g., radio frequency identification (RFID) label, Wi-Fi tag,
etc.) interacts with one or more of the distributed sensor
devices (e.g., RFID reader, Wi-Fi sniffer, etc.), the sensor
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devices can identify the target (e.g., via the tag device) and
report the location of the target to a server device of the
collection of server devices.

In further additional and/or alternative embodiments,
rather than employing pluralities of fixed or stationary
sensor device widely distributed throughout areas enclosed
within defined or determinable boundaries, mobile sensor
devices can be carried by personnel, such as hospital staff,
security staff, mall patrols, . . . . Such mobile sensor devices
can generally be capable of determining their own location
based on localization functionalities and/or facilities, such a
using one or more functionality/facility associated with
global positioning system (GPS) technologies, Wi-Fi finger-
printing (e.g., using one or more received signal strength
indicator (RSSI) value received from one or more commu-
nication device (e.g., base station devices, eNodeB devices,
access point devices, picocell devices, femtocell devices,
Smartphone device, . . . ) that can be in wired and/or wireless
communication with a mobile sensor device to determine a
current location (e.g., a positional longitudinal coordinate
and/or positional latitudinal coordinate) with respect to the
one or more communication device), and/or use of multiple-
input multiple-output (MIMO) time-of-flight (TOF) deter-
minations (e.g., MIMO TOF measurements). As noted ear-
lier, the mobile sensor device can be carried on the person
of, for example, hospital staff, in-patients, security guards,
mall patrols, etc. Therefore, the mobile sensor device can be
a low-cost light weight active device (e.g., a portable tag
device) comprising at least transceiver with which the
mobile sensor device can broadcast and/or receive beacons
from other mobile sensor devices that can similarly include
one or more transceiver aspect. Broadcast beacons broadcast
by other mobile sensor devices can be opportunistically
captured by the mobile sensor device. Captured beacons can
subsequently be transmitted (e.g., relayed or forwarded) to
a server device of a collection of server devices for, if
necessary, additional analysis and/or processing. Based on
the broadcast beacons that can comprise beacon information
and mobile sensor device locations determined, for example,
by processing functionalities and/or facilities included with
a mobile sensor device and/or the server device of the
collection of server devices, target locations of targets (e.g.,
peoples, assets, tangible objects, etc.) can be computed. In
this regard it should be noted that mobile sensor devices, in
addition to comprising transceiver functionalites and facili-
ties can also comprise localization capabilities and/or com-
munication functions, as well as computing and wired
and/or wireless networking capabilities. Mobile sensor
devices can typically be mobile (e.g., can at various
instances in time transit through disparate areas enclosed
within defined or determinable boundaries and/or can at
other times be stationary, albeit for limited durations or
temporarily) and can be dynamically deployed to different
areas. Such an approach it has been observed employs fewer
mobile sensors when compared with infrastructures where
sensors are statically located and distributed through a
venue. For purposes of this disclosure, without limitation or
loss of generality, both mobile sensor devices and target
devices can be mobile.

Further, for ease of exposition, the subject disclosure is
described in the context of radio frequency (RF) signals such
as Wi-Fi (e.g., a grouping of radio technologies commonly
used for the wireless local area networking (WLAN) of
devices, the radio technologies are based around the institute
of electrical and electronics engineers (IEEE) 802.11 family
of standards) and/or protocol standards based on Bluethooth
(e.g., a wireless personal area network technology) low
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energy proximity sensing by transmission of universally
unique identifiers, such as iBeacon. Selection of these RF
signal types is due to their general cost-effectiveness and
their typical ease of deployment. Moreover, transceiving
modules using these technologies are easility accessible in
the market and have been widely embedded into different
mobile devices. Additionally, these RF signal types can also
be easily detected in terms of received signal strengths
(RSS).

In accordance with various embodiments, RF-based posi-
tioning issues can generally be treated as localizing station-
ary targets with static sensors and leveraging pre-deployed
network infrastructures, such as access points (AP) and
iBeacons, to determine target locations, via, for example,
tri-lateration that can employ range-based schemes, which
estimate the distance between nodes using signal measure-
ments, e.g., RSS and ToA (Time of Arrival). Performance of
such schemes can however be hampered by non-line-of-
sight (NLOS) measurement. Other solutions have been
range-free solutions, wherein in various embodiments a
fingerprinting approach has been considered, wherein signal
patterns at predefined positions can be recorded as unique
fingerprints. Then, according to these embodiments, the
location estimation problem becomes a search for matched
fingerprints. In accordance with these embodiments, these
solutions generally cast target localization as a per-time-slot
estimation issue, and hence typically do not take the mobil-
ity of targets into consideration.

Additional embodiments have considered localizing
mobile targets (e.g., targets that are in motion) with fixed
sensor devices over defined or defineable time horizons,
whereby Bayesian filtering can be typically applied to track
targets. The basic idea in accordance with these embodi-
ments is to combine signal measurements with the motion of
targets. Trajectory estimation based on, for instance, Viterbi
map-matching to improve tracking accuracy with a limited
number of sensor devices has proven beneficial. Further, in
the context of localizing mobile targets, it can be assumed
that each target is independent in order to simplify the
system. The subject disclosure considers both temporal
and/or cooperative information among targets to extend
tracking coverage as well as to improve accuracy.

In accordance with further embodiments consideration
has been had to tracking mobile targets with mobile sensor
devices. In accordacne with various embodiments, particle
filters can be used to combine target motion models and
sensor measurements for target tracking. Alternative
embodiments plan the moving trajectories of mobile sensor
devices for better localization performances. Generally, the
efficacy of these embodiments can be dependent on sensor
device density and sensor device trajectory. Thus in accor-
dance with described embodiments, the disclosed systems
and/or methods leverage both cooperation among devices
and associated temporal data or temparal information to
constrain the targets even when the targets are out of the
sensing coverage.

In accordance with some embodiments, cooperative local-
ization has been adopted, where each device (mobile sensor
device, sensor device, and/or target device) calculates its
own position by analyzing signal distances from each of its
neighboring devices. Some embodiments determine relative
positions between devices using MDS (Multi-dimensional
Scaling) due to the techniques computational efficiency.
However, in these embodiments, the requirement for a line
or sight (LOS) between devices can hinder application of
these embodiments when the defined area is complex.



US 11,525,890 B2

5

Therefore, in various preferred embodiments as discribed
herein, the concept of RSS matrices is employed to cater for
such complex environments.

As a brief overview, the subjet application provides a
cooperative, cost-effective and highly accurate system using
mobile sensor devices to track multiple targets. Generally,
RF signals emitted from target devices or tag devices (e.g.,
RFID tags, etc.) can have a defined or determinable cover-
age range that can be sensed, for example, by a sensor
device. When sensor devices are sparsely scattered with
respect to beacon coverage, some target devices or tag
devices may not be sensed, let alone tracked. To overcome
this, the subject application provides that target devices or
tag devices cooperatively rebroadcast received beacons
associated with target devices or tag devices other than itself
within a defined or defineable hop limit away. In other
words, the defined or definable hop limit can provide and
define a limited exisistence time or defined lifetime for the
beacons. Providing a defined existence tome or defined
lifetime can greatly extends a sensing scope of a sensor
device and accordingly achieves much better trackability in
terms of continuity and accuracy.

Traditionally, in order to model signal propagation, some
approaches have assumed line-of-sight (LOS) scenarios by
using simple fading formulas. While this can be efficacious
in open or outdoor spaces, these approaches generally do not
work well for complex indoor environments due to fading,
multipath and shadowing. To overcome these hinderances,
the subject application utilizes a general concept of RSS
matrices to capture signal propagation between any two
locations, where a matrix entry at (i, j) can be the RSS
received at point j for a transmitter at point i. In such way,
a RSS matrix does not require any propagation model, and
can provide spatial information between a transmitting
device and receiver device given a received RSS. The RSS
matrix conception disclosed herein can be applied in any
environment. For simple environments where signal propa-
gation can be approximated by a fading model, the RSS
matrix can be straightforwardly generated using that model.

In accordance with one or more embodiments, the subject
application solves the following cooperative target tracking
problem: given an RSS matrix, RSS measurements for tags
(e.g., target devices and/or tag devices) and sensor devices
and sensor device locations, how can target devices or tag
devices be efficiently localized over time defined time
periods? The disclosed systems and methods provide an
efficient process to address that. In embodiments, a modified
particle filter, which constrains tag device or target device
locations by means of temporal and spatial information.
Rather than tracking a single target at a time, the disclosed
systems and methods takes advantage of the spatial rela-
tionship among target devices and/or tag devices as deter-
mined from the generated RSS matrix, and jointly considers
temporal target movements.

The RSS matrix can be an important input for the dis-
closed systems and/or method, as such this disclosure
describes facilities to efficiently obtain RSS matrices with-
out any model assumptions and/or explicit site surveys.
Generally, site surveys can be costly, both time-consuming
and labor-intensive. To this end, the subject application
provides devices that can optionally and independently
comprise offline circuitry (e.g., processor) that can effi-
ciently and effectively learn signal propagation by generat-
ing RSS matrices using, for example, one or more mobile
sensor devices. Generally as described in the subject dis-
closure, mobile sensor devices can have transceiver (e.g.,
transmission and/or receive) functionalities, or can have
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access 1o, transceiver facilities or capabilities. The mobile
sensor device can, for instance, emit (transmit) beacon
signals and can receive beacon signals from one or more
disparate neighboring mobile sensor device. The mobile
sensor device can then transmit (e.g., broadcast) its current
location in its transmitted beacon signal, as well as, transmit
beacon information that it can have received from the one or
more disparate neighboring mobile sensor devices to a
server device.

It has been found that in instances server device locations
can be uncertain. To understand this issue the following
offline RSS matrix generation statement can be beneficial in
resolving the issue: given noisy estimated server device
locations and RSS data received over time from mobile
sensor devices, how can one construct a complete RSS
matrix efficiently? The subject application resolves these
issues by leveraging the movement and cooperation of
mobile sensor devices using, for example, a Rao-Black-
wellized particle filter, a framework that has had wide use in
simultaneous localization and mapping (SLAM) applica-
tions. Thus, in accordance with use of a Rao-Blackwellized
partical filter, in each defined or definable time period, the
sensor device locations can be refined based on one or more
signal measurement and/or use of one or more current RSS
matrices. Once sensor device locations have been refined,
and based on the refined location data, the RSS matrix can
be updated.

The subject disclosure applies a fine-grained model-free
approach to the mobile sensor tracking issue. The subject
application, during extensive testing and experimentation in
a university campus and a shopping mall, has achieved
tracking errors of approximately 4.37 meters (m) and 9.46 m
respectively, which it is noted significantly outperforms
other approaches.

Iustrated in FIG. 1 is an example system 100 in accor-
dacne with various embodiments. System 100 can include
sensor devices 102 and target devices 104 located in a
defined area (e.g., venue, such as a university campus,
shopping mall, warehouse, hospital, airport, . . . ). As
depicted, the venue is a partial view of a portion of the
defined area. The partial view of the defined area can include
a partitioned areas, wherein partitions are illustrated as grey
solid lines. As illustrated, sensor devices 102 can have been
dispersed thoughout the defined area and similarly, target
devices 104 can also be dispersed within the defined area.
The dotted lines variously extending between the sensor
devices 102 and/or target devices 104 can represent beacon-
ing signal transmissions that can be occuring between the
various devices (e.g., sensor devices 102 and/or target
devices 104).

In accordance with FIG. 1, sensor devices 102 can listen
for beacon signaling from its respective neighboring target
devices 104 (e.g., nodes within a defined sensing range value
of one or more respective sensor devices 102). In response
to receiving the beacons, sensor devices 102 can forward the
received beacons to a server device of a group of server
devices (not shown) together with their respective location
to the receiving sensor device 102. Target devices 104 can
periodically broadcast beacon signals. Beacon signals can
comprise at least the respective broadcasting target device’s
104 own unique identifier, a remaining lifetime value (typi-
cally initialized to a hop limit value), and the measured RSS
of neighboring target devices 104. Meanwhile, target
devices 104 can also rebroadcast beacons from respective
other target devices 104 within a defined hop limit away.
Typically, the hop limit value (e.g., maximum beacon life-
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time value) balances the sensing coverage and rebroadcast
overhead of target devices 104.

FIG. 2A and FIG. 2B depict two aspects 200 of the subject
disclosure for facilitating cooperative target device tracking
and signal propagation learning using mobile sensor
devices. FIG. 2A illustrates a workflow for cooperative
target tracking module 202 in accordane with embodiments
set forth in the subject disclosure. Each sensor device 102
can report the beacons that it has received (e.g., from other
devices within its broadcast/reception purview (sensor
devices 102 and target devices 104)) as well each sensor
device’s 102 own respective location data. Additionally
and/or alternatively, RSS matrices representing the spatial
signal propagation of the site or venue can also be imported
or input to cooperative target tracking module 202. Based on
the received data, the cooperative target tracking module
module 202 illustrated in FIG. 2A can use a modified
particle filter to estimate target device 104 locations. For
each iteration, target devices 104 can be localized sequen-
tially. Specifically, to localize a next target device 104 to be
estimated, cooperative target tracking module 202 performs
target device 104 selection based on a determined number of
neighboring target devices 104. Cooperative target tracking
module 202 can localize a target device 104 with the highest
(e.g., ranked) confidence level every time. Later, for tracking
target devices 104, particles can be updated based on a
motion model(s) and a spatial relation each target device 104
selection based on a determined number of neighboring
target devices 104. Cooperative target tracking module 202
can localize a target device 104 with the highest (e.g.,
ranked) confidence level every time. Later, for tracking
target devices 104, particles can be updated based on a
motion model(s) and a spatial relation each target device 104
has with its neighboring devices (e.g., sensor devices 102
and/or target device 104). At the completion of an iteration,
cooperative target tracking module 202 can generate (out-
put) estimated locations for all the target devices 104.

With regard to FIG. 2B RSS matrix generation module
204 is designed to apply a Rao-Blackwellized particle filter
(RBPF) framework. The RSS matrix generation process can
operate in an iterative manner. Within each iteration, par-
ticles can be predicted and updated based on sensor device
102 mobility as well as respective sensor device 102 esti-
mated locations. Using a mutual RSS measurement value,
the RSS matrix generation module 204 constrain possible
locations of each sensor device. According to refined sensor
device 102 locations, the RSS matrix is updated over time.

FIG. 3 depicts an example cooperative target tracking
system 300 using the facilities and functionalities disclosed
in the subject application and in accordance with embodi-
ments set forth herein. FIG. 3 provides illustration of how
the disclosed tracking process operates. As depicted and
solely for purposes of exposition, a sensor network can
comprise 4 sensor devices (e.g., sensor devices 102) and/or
4 target devices (e.g., target devices 104). During defined
time period from t-1 to t, target devices can broadcast
beacons asynchronously. Dashed arrows indicate the recep-
tion of beacons at sensor devices and/or target devices. To
determine target device locations at time t jointly, the
process orders, sorts or ranks target devices as a function of
the number of covered sensor devices. As illustrated, the
sorted/ranked/ordered target listing, in this instance, would
be {1,3,2,4}. Then, the process locates target devices based
on the sorted ordered/ranked/sorted listing. The process first
determines a posterior probability p(x,'lo,.,) and determines
the location of target device 1. It will be observed that the
position of target device 1, in this example, can be identified
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without additonal information of other target devices as
there are 3 sensor devices providing sensing data with regard
to beacon signals that can have been received (e.g., by
sensor devices A, B, and C) from target 1. Thereafter, the
process can determines locations for target devices 3, 2 and
4, respectively. It will be observed that when determining the
location of target device 2, since determined locations for
target 1 and target 3 have already been determined, the
process can use the locations of target device 1 and target
device 3 to determine a location of target device 2. It will be
noted however, where the process determines a location of
target device 2 first, sensing data from sensor device B has
to be relied on to make an estimation as to the location of
target device 2. It will be observed from the foregoing
illustrative example, that by depending on locations that can
have been previously determined, the disclosed systems and
methods have the potential to improve target device location
accuracy.

FIG. 4 provides illustration of particles as applied in
RBPF, in accordance with some disclosed embodiments. A
gray column can represent individual particles (e.g., P,
pi], . PI®]), wherein each particle P can comprise a
grouping of sensor device location values (y), an estimation
of RSS matrix (M), and associated weight values (w).

An RSS matrix generally captures signal propagation
information in a venue (e.g., hospital, shopping mall, college
campus, and the like). In order to construct an RSS matrix,
the venue is discretized. Specifically, grouping of seed
points can be scattered or dispersed in accessible regions of
the venue. Thereafter Voronoi diagrams can be generated.
Each polygonal partition of the Voronoi diagram can be
referred to as a cell. In accordance with the characteristics of
Voronoi diagrams since any point inside the cell can be
closer to the corresponding seed point than other points, a
cell can be identified where a point locates by searching its
nearest seed point in the plain.

Thus, a venue can be partitioned into ¢ cells, a cxc RSS
matrix M can be generated, wherein every cell can be
labeled with an index. RSS measurements can often be
assumed as having Gaussian noise. M, ; <p.M » O, ) can be
stored to represent a RSS dlstnbutlon where Hag,, “and O,
are the mean and standard deviation of 51gnaf strength
emitted/broadcast from an i-th cell and received at a j-th cell.

One issue in generating RSS matrices is the so-called
device heterogeneity problem issue. Because different sen-
sor devices and target devices can have different transmis-
sion power values and antenna gain values, offset values
among these devices can distort tracking accuracy. To over-
come this issue, the disclosed systems and/or methods select
or identify a specific device as a reference device, and
measurements for other devices are thereafter adjusted with
respect to levels in the context of the reference device. More
specifically, for every device, RSS values can be measured
at a same distance (e.g., 1 meter) and offset values deter-
mined with in relation to measurements associated with the
reference device. As a function a listing of offset values and
RSS values from known (identified or identifible) devices, a
linear transformation can be performed to adjust RSS values
in relation to the reference device.

In relation to the facilities and/or functionalities of coop-
erative target tracking module 202 (see FIG. 2), cooperative
target tracking in general can be modeled as estimating the
true states of a dynamic system from noisy observations. At
discrete time t, the locations of target devices (e.g., target
device 104) can be represented by system state x,={x,',
X2, . . ., X}, where x/={x-coordinate,y-coordinate} can
be the 2-D coordinate of target i. Similarly, the location of
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sensor devices (e.g., sensor device 102) can be denoted as
v={v,". v2 . ...y} During the defined time periof from
t—1 to t, target devices can be assumed to move according to
a given motion model p(x,'Ix, "), a probability density
function of target i’s current location given its previous
location x,_,".

To leverage temporal information, sensing data from time
1 to time t (denoted as {o,.,, z,.,}) and the motion model can
be used to estimate target device locations at time t. A
sequential importance resampling (SIR) particle filter, can
for example, be used to incorporate temporal sensing data
for location estimation. The posterior probability distribu-
tion of target device locations at time t—1 can be determined
by p(x,410,...1 Z;.,_,). An observation model p(o,, z,Ix,) can
describe a likelihood of observing sensing result {o, z}
based on target device locations X,. As interest is had in
determining the joint posterior probability distribution of
target device locations, e.g., p(x,l0,.,, Z.,), a particle filter
can determine the posterior distribution recursively accord-
ing to:

@®

plx | Olits Z14)

plor, 7 | Xr)fp(xr | x-1) plxe-1 | 01:-1, Z14-1)  dX-1-

likelihood posterior of previous location

However, since target devices are able to sense with each
other, leveraging mutual sensing data to estimate the joint
posterior probability p(x,l0,.,, Z,.,) can incur unaffordable
time complexities. To address this, cooperative target track-
ing module 202 devises a modified particle filter to approxi-
mate the individual conditional posterior probabilities for
target device location sequentially instead of considering
them together at the same time.

A sensor device can be associated with a target device if
the sensor device receives a beacon from the target device.
Thus, cooperative target tracking module 202 orders, ranks,
and/or sorts target devices based on a localization confi-
dence value that can be determined as the number of sensor
devices associated with the target device. Then for each
target device, cooperative target tracking module 202 deter-
mine a conditional posterior distribution, and hence a loca-
tion for each target device. By doing so, target device
locations that can be determined with a high degree confi-
dence can appear at the top of a ranked list of target devices,
and based at least in part on the higher ranked target device
locations, locations of other target devices can be deter-
mined.

For purposes of cooperative target tracking module 202,
the joint posterior distribution of target device locations
p(x,',...,x/"lo,,,7,.,) at time instance t can be represented
by a set of particles, which can be denoted as P=u,_ P/,
where P/={P/ 1, . . ., P/ X1} is the set of particles
representing target device i’s location and P,"™! can be the
k-th particle of target device i. The location distribution of
each target device can be represented by K particles. K can
be a system parameter which balances the computational
complexity and the tracking accuracy. Each particle can be
formed by a tuple (x,*“, w, ™), where x,"! is a possible
location of target device i and weight w,"[! represents how
likely the true target device location is x,*\. In each itera-
tion, the tracking can be separated into two successive steps:
target device selection and target device tracking, as detailed
as follows.
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Typically, the number of sensor devices within a broad-
cast coverage area of a target device can be different.
Intuitively, the larger the number of sensor devices within
the coverage area a target device, the more accurate an
estimate can with regard to the location of the target device.
Therefore, cooperative target tracking module 202 sort/
ranks/orders targets as a function of a determined number of
sensor devices within the broadcast coverage area of the
sensor devices (ties can be broken arbitrarily). With the
ordered, ranked or sorted listing of target devicess, a joint
posterior probability can be determined as:

P(Xrl, cees X |01 Zl:r) =~ P(Xrl |01:r, 21:171)17(%;2 | Olit> Z1:-15 Xrl, Zrl) @

n 1 n-1 1 n—1
e p(x, |01:r> Zli—15 Xps oo 5 Xy 5 Zps e 5 Xy )>

conditional posterior of target i

where p(x,/0,., 1, X,'..., %", ...,z ") is an approximated

conditional posterior distribution of target device i. Initially,
it can be observed that the computation of posterior distri-
bution of the location of target device 1 (e.g., as depicted in
FIG. 3) can be approximated by p(x,'l0,_,, z, ,_,) which does
not depend on sensing data with regard to other target
devices at the current time instance. While the computation
of posterior probability of target device 2 can be determined
by p(x,210,,, Z;., - X,'s 7)., which can be dependent on
sensing data with regard to target device 1 and location data
with respect to target device 1. Since cooperative target
tracking module 202 does not generally know the exact
location of target device 1, cooperative target tracking
module 202 can use an estimated location instead. Target
device locations can be estimated based on the ranked order
or sorted order of target devices one by one, in a sense
determination of later listed target devices are able to make
use of the estimated locations and sensing data of previously
estimated target devices.

Cooperative target tracking module 202 can use a predic-
tion step/act in the particle filter process. The location
distribution of the i-th target device at time instance t—1 can
be represented by particles {P*t1, . . ., P*I51}. At time 0,
particles can be uniformly distributed in the whole acces-
sible area (e.g., venue) as cooperative target tracking module
202 generally does not have any prior knowledge of target
device locations and a target device can be at any location
within the venue. Typically, cooperative target tracking
module 202 is unaware of a moving speed and direction of
the target device. Nevertheless, cooperative target tracking
module 202 can be aware of a target device’s moving
distance within time interval must be less than a defined
value d,,... Thus, when target device i is at location x,, at
a last time instance, at time t, the target device could be at
any location within a circular region with origin x, ; and
radius d,,,,.. More precisely, the motion model can be given
by the following probability density function:

&)

if the Euclidean distance between x,_; and
x; is not greater than d,,.,,

1
plx; | Xp-1) = { ﬂdéax ’

0, otherwise.
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To predict the next location of target device i, cooperative
target tracking module 202 moves each of the particles of
target device i to a random position within in the circular
region with radius d,, . centered at the particle. That is, for

each particle P, ,"%=(x, "4, w, )

-1

@

i[k] motion model
1 —

AT ALY
P P:[]—<X;[]>X:£1]>,

where x,”! is the new particle’s location.

The weight of each particle can be updated by cooperative
target tracking module 202 according to the foregoing
observations. Note that before estimating the posterior dis-
tribution of target device i, cooperative target tracking
module 202 can have already determined the locations of
target devices {0, 1, . . ., i-1}. Cooperative target tracking
module 202 given sensing data o, at sensor devices, the
sensing data at target device {0, 1, . . ., i—1} and the
estimated location of target device {0, 1, . . . , i—1},
cooperative target tracking module 202 is able to measure a
likelihood of each particle P,” being at the true location.
Recall that the signal propagation loss between any two
points in the map can be given by the RSS matrix M. Denote
x and y as the locations of a target device and a sensor
device, respectively, and o can be the detected RSS at the
sensor device. Then the likelihood of RSS measurement
p(olx,y) follows N(”M;n’ GM;nz)’ where { and 1) are the cell
indexes of x and y, reSpectively. Considering that the RSS
observed at each sensor device/target device is independent,
the likelihood of observing sensing result {o0,, z,', . . ., z,”'}
can be determined as:

1 i-1 2 | i—1 (5)
p(0h [ A B R >)’r):

-1

[ [plof | 54) [ [l | 5. ),

jec j=0

where p(o/1x,/, y/) is the likelihood that the RSS of target
device i’s beacon received at sensor devuce j is o/, and,
similarly, p(z/Ix,’,x;/) is the likelihood that the RSS of target
device i’s beacon received at another target device J is z;.
Note that the likelihood of target device i1 being at location
x’; depends on sensing data at all sensor devices and data at
target devices whose locations are already estimated.

Cooperative target tracking module 202 can update the
weight of each particle of target device i according to p(o,,
z', .. ..,x', ...,x", y). That is, for each P,"¥),
(")

L]

©

: i . .
P 2T (A i), where

1

1
ocp(o,, 2y e

i [£] i~1 | | A[K] i~1
witH LA ).

Then, the weight of particles can be normalized by coop-
erative target tracking module 202 to satisfy X,w;¥=1.

The location of target device 1 at time t can be estimated
by cooperative target tracking module 202 by using the
expectation:

= Z PUCICE M
k
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The expectation can be used by cooperative target track-
ing module 202 to address the degeneracy issue of the SIR
particle filter. The basic idea of resampling by cooperative
target tracking module 202 is to eliminate trajectories that
have small normalized importance weights and to concen-
trate upon trajectories with large weights. Resampling can
be perfomed by cooperative target tracking module 202 as
follows: 1) draw K particle samples from all particles, each
of the K particle being drawn with a probability as its
weight; 2) replace P, with the drawn particles, and s) set the
weight of each particle to be 1/K.

FIG. 5 illustrates an algorithm or process 500 that can be
used by RSS matrix generation module 204 to efficiently
generate RSS matrices in accordance with some disclosed
embodiments of the subject application. In accordance with
various embodiments, RSS matrix generation module 204
can generate RSS matrices under noisy sensor device loca-
tions efficiently. The output RSS matrices can be used as
input for more accurate cooperative tracking.

In order to generate RSS matrices, there can be a require-
ment for accurate sensor device locations. However, sensor
device locations can usually be noisy in reality, and RSS
matrices can aid in reducing such errors to some extent. To
solve this chicken-or-egg problem, RSS matrix generation
module 204 estimates a joint posterior

POoeMls oWy, 8

where y,., is a sequence of sensor device locations from time
0 to t, M is a RSS matrix, s, is a sequence of mutual
measurements among sensor devices, and ,, is a sequence
of noisy location estimations of sensor devices provided by
external sources.

To take the advantage of temporal and spatial information,
Monte Carlo filtering approaches can be employed by RSS
matrix generation module 204 to address this issue. How-
ever, these approaches generally cannot estimate equation
(8) efficiently as the existence of the RSS matrix in the
posterior probability increases the dimensionality of the
estimation space. Nevertheless, equation 8 can be factorized
as

PWoss M | 5140 ¥1:0) = PO | 15 ¥1:0) POL | Yo, St Y1) = ©®

o | S5 Y1)

sensor trajectic

pM | Youts S1:4) -

RSS matrix posteri

"y posteri

The factorization can decompose the joint posterior estima-
tion into two separate problems, e.g., (i) sensor device
trajectory estimation, and (ii} RSS matrix estimation based
on sensor device locations. In realization of this aim, RSS
matrix generation module 204 can employ a modified RBPF.

RSS matrix generation module 204 thus determines the
sensor trajectory posterior probability p(y,.!s;,, W;.) in
equation (9). Further, RSS matrix generation module 204
factorizes the posterior probability as:

PWo: |Sl:r> Y1) o plse, e |y:) PWo | Sti-15 Y1i-1) = 1o

PWos | 8121, Y1:-1) pWi | ve) plsi | ye)s

where p(Yo.,!Sg.,—1- Wo.,—1) 15 @ prediction of current sensor
device trajectory based on historical information, p(y,ly,) is
alikelihood of estimated sensor device locations, and p(s,ly,)
is a likelihood of mutual sensing. Hence RSS matrix gen-
eration module 204 can draw samples from a motion model
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first, and then update weights according to the two types of
likelihood as determined above (e.g., p(y,ly,)—likelihood of
estimated sensor device locations, and p(s,ly,)—likelihood
of mutual sensing).

Since sensor device estimation based on external
approach can be independent from each other, we have
p(\vtlyy)zl'l-:lmp(\ytj ly/). By use of a central limit theorem,
RSS matrix generation module 204 can further assume the
estimated sensor device location follows a zero-mean mul-
tivariate Gaussian distribution, e.g., p(y/ly/): N(y/ L)
where j represents the sensor device index, and the covari-
ance matrix X ; of sensor device location can be a diagonal
matrix whose elements on the main diagonal is equal to G ~.
The value of & can relate to the choice of external sensor
localization techniques and its accuracy.

Each particle can represent a combination of the potential
locations of all the sensor devices. Thus every particle can
contain m locations for m sensor devices. As the RSS matrix
is unknown, each particle can also include a local RSS
matrix following the RBPF. Determination of the RSS
matrix is discussed later. P, can be denoted as the k-th
particle at time t, which results in P,¥1={y, /M ¥, w [}
where y [“ represents a “guess” in regard to a sensor device
location(s) in the particle, M,/ denotes the local RSS matrix
estimated in the particle, and w,*! is a determined and
assigned weight of the particle.

In the prediction stage, RSS matrix generation module
204 can predict a particle’s state as a function of a previous
estimation. Considering that the mobility of each sensor
device can independent, RSS matrix generation module 204
can predict particle states by predicting each sensor device
location individually. Here RSS matrix generation module
204 can use the same motion model as set forth in equation
3 above.

In the updating stage, RSS matrix generation module 204
can update the weight w,! of each particle. The weight can
represent a belief on each particle. Higher weights indicate
that the paricle is more likely to be chosen. To determine
w,"1, RSS matrix generation module 204 can derive it as
follows:

BT EEN) an

' P()’gfr] | Sta-1, Y1a1)

plse, ¥ | VA Stat, Y1) p(ygf,] |S1:171, Y1) _
P()’g:cr] |S1:171, Y1)

[]

p(sta Ve | J’gfrla S1:-15 Wl:rfl) = p(lﬂr | Vi ) p(s, | yg:fr], Sl:rfl)-

With regard to equation 11 the first term follows the
sensor device location observation model. To further deter-
mine the second term p(s,ly,,“Ls, ., ;). RSS matrix genera-
tion module 204 performs the following:

PGslyo sy D=lp(s,Miyo Fs , )dM=p(s)

My, M pMyo, ¥s ., dM. (12)

Equation 12 can be approximated by RSS matrix genera-
tion module 204 as Gaussian density:

i A j\2
ploc | A spa) o [ ] exp (T8 )
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where s, represents the RSS measurement by the device in
i-th cell and received in j-th cell, and §7 represents the
expected RSS measurement, e.g., §,7=y,, . The variance
0; J-z in equation 13 can represent the uncertZu'nty on estima-
tion, which can be determined as the summation of the
variance of p(s,”IM, J-,ym[k]) and the variance p(M,;
1Yo.,—1%8,.,,)- It will be observed that p(s,ly,"“.s,.,_,) actu-
ally indicates how likely the particle matches to the current
RSS matrix estimation. Note that the weight of particles
should be normalized to satisfy Ejkwtj =,

Based on the updated weight of each particle, RSS matrix
generation module 204 can determine the i-th sensor device
location ¥, by determining an expectation of sensor device
location, as:

5= Sl &
k

Under the framework of RBPF, RSS matrix generation
module 204 can determine the RSS matrix at the same time
as refining the sensor device locations. The determination by
RSS matrix generation module 204 can be conducted by
recursively updating the posterior probability of RSS matrix
PMI1Yo.81.,)-

For any element M, ; in the RSS Matrix M, if there is a
measurement at time t where the transmitting sensor device
is located in 1, and the receiver sensor device is located at 1,
then element M, ; needs to be updated. In this instance, M,
can be used to represent the element with coordinate (i,j) in
the RSS matrix M of time t. For the simplicity of the symbol,
let M,:N (u,,6,%), and s, represent the RSS measurement for
M, ; at time t. As p(u,Is, ,)e<p(s,Ii,) p(p,!s;.,_,) where both the
prior p(u,ls;.,_,) and the likelihood function p(s,ly,) are
Gaussian variables, the posterior probability p(p,ls;.,) can be
updated, by RSS matrix generation module 204, as Gaussian
with

as)

where B=1/6, ,*+1/6> and 6 is the measurement variance.
On the other hand, if the matrix element does not need to be
updated, RSS matrix generation module 204 can simply
leave it unchanged:

s )=pp sy, 1) (16)

In order to yield the RSS matrix, RSS matrix generation
module 204 can take the weighted average as the approxi-
mation (for simplicity of exposition the subscript t for has
been omitted):

iy = Yl @
k

In regard to the foregoing cooperative target tracking
module 202 and RSS matrix generation module 204 these
modules can be in operative communication with one or
more processor devices, memory devices, and/or storage
devices (not shown). Typically, the one or more processor
devices, memory devices, and/or storage devices can be
included in a system, device, and/or apparatus. In accor-
dance with various embodiments, cooperative target track-
ing module 202 and/or RSS matrix generation module 204
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can be in communication with the one or more processor
devices to facilitate operation of computer-executable
instructions or machine-executable instructions and/or com-
ponents by cooperative target tracking module 202 and/or
RSS matrix generation module 204, the one or more
memory devices for storing data and/or computer-execut-
able instructions or machine-executable instructions and/or
components, and one or more storage devices for providing
longer term storage of data and/or machine-readable instruc-
tions and/or computer-readable instructions. Additionally,
the system, device, and/or apparatus that can include coop-
erative target tracking module 202 and/or RSS matrix gen-
eration module 204 can also receive input for use, manipu-
lation, and/or transformation by cooperative target tracking
module 202 and/or RSS matrix generation module 204 to
produce one or more useful, concrete, and tangible results,
and/or transform one or more articles to different states or
things. Further, the system, device, and/or apparatus that can
include cooperative target tracking module 202 and/or RSS
matrix generation module 204 can also generate and output
the useful, concrete, and tangible results and/or the trans-
formed one or more articles as output.

Tlustrative examples of systems, devices, and/or appara-
tuses that can effectuate the functionalities and/or facilities
associated with cooperative target tracking module 202
and/or RSS matrix generation module 204 can include any
type of mechanism, machine, device, facility, apparatus,
and/or instrument that includes a processor and/or is capable
of effective and/or operative communication with a wired
and/or wireless network topology. Mechanisms, machines,
apparatuses, devices, facilities, and/or instruments that can
comprise systems, devices, and/or apparatuses on which
cooperative target tracking module 202 and/or RSS matrix
generation module 204 can be operable can include tablet
computing devices, handheld devices, server class comput-
ing devices, machines, and/or databases, laptop computers,
notebook computers, desktop computers, cell phones, smart
phones, consumer appliances and/or instrumentation, indus-
trial devices and/or components, hand-held devices, per-
sonal digital assistants, multimedia Internet enabled phones,
multimedia players, consumer and/or industrial appliances
and/or instrumentation associated with automotive vehicles,
industrial and/or consumer appliances and/or instrumenta-
tion associated with aerospace vehicles and/or satellites
orbiting in low earth orbit, geosynchronous orbit, and the
like.

FIG. 6 depicts illustrative results of testing of the dis-
closed and describe embodiments in the context of a college
campus environment (venue) and a shopping mall venue.
FIG. 6 shows the histograms of sensor device/target device
coverage in both venues. Each distribution indicates the
number of cases in which sensor devices/target devices are
able to sense the target devices. Due to the limited area in the
campus site (e.g., 28 mx70 m), it was observed that, in the
most cases, 1-3 sensor devices (FIG. 6(a)) and 2-4 target
devices (FIG. 6(b)) were able to capture beacon signals
emanating from the target devices. However, the scenario in
the shopping mall (130 mx180 m) proved more challenging.
There was between approximately 11.4% (FIG. 6(c¢)) and
about 14.4% (FIG. 6(d)) of all cases where no sensor device
or other target device was able to detect a target device,
respectively.

To illustrate the relation of tracking error and the number
of'devices in the coverage, we illustrate a period of data from
a selected target device (e.g., target device 3) as an example.
FIG. 7 visualizes the tracking error and the quantities of
devices within the coverage umbra/penumbra of a particular
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target device. It will be observed from FIG. 7 that if many
sensor devices or target devices are within the coverage
umbra/penumbra, the tracking error is typically low. Nev-
ertheless, there are two interesting observations can be
identified from review of FIG. 7. There is no device in the
coverage umbra/penumbra at all within the time range from
114 s to 120 s. As a result, the tracking error increases as the
information about the target device is lost. In another time
range from 145 s to 160 s, only limited number of sensor
devices/target devices sense a particular target device, which
is not sufficient to guarantee a good tracking accuracy in
traditional approaches. However, since the disclosed appli-
cation in accord with various embodiments, additionall
considers mobilities of the devices, the facilities and/or
functionalities set forth herein can still achieve satisfying
performance.

FIGS. 8 and 9 show the impact of the number of particles
against the tracking accuracy. As will be observed a large
number of particles (usually more than 75) can bring sig-
nificant improvement on tracking accuracy (over 10% and
40% in the campus environment and mall environment,
respectively). The reason for this is that more particles can
have a more accurate representation of the posterior prob-
abilities of target device positions. However, when the
amount of particles further increases, the improvement can
be limited. This is because the subject disclosure uses a
discrete representation on the signal propagation (e.g., the
RSS matrix), and hence different particles can be located at
the same cell with the same signal propagation information.
On the other hand, a large number of particles can require
more computational power and the cost can rise. To balance
robustness and accuracy, it is suggest that approximately 125
particles be used when using the disclosed embodiments.

In order to study the impact of hop limits on tracking
accuracy, all sensing data within at most 5 hops were stored
(e.g., to memory or longer term storage devices) and the hop
counts labeled for each set of sensed data. The data could
thus be filtered within desired hop limits to investigate its
impact. FIGS. 10 and 11 show the tracking error versus hop
limit in the campus setting and shopping mall setting,
respectively. It was observed that, in the campu settings,
increments of hop limit did not apparently improve system
performance markedly, because the number of covered
sensor devicess were adequate. In the mall site environment,
by increasing the hop limit, a more comprehensive view on
the collaborated relationship of target devices was provided.
Hence, the error was reduced by more than 12% when hop
limits were defined to be larger than 2 compared with no
target device cooperation.

FIG. 12 shows the CDF of tracking error of different
processes in the scenario of the campus environment. In
such complex indoor environments, the subject application
(referred to in FIG. 12 as “Mosent”) can outperform the
state-of-the-art schemes by more than 40%. The mean error
of for the subject application is 4.37. Both monte carlo
localization (MCL) and MDS-based collaborative location
(MDS) suffer from the unpredictable signal propagation
characteristics. Hence, they cannot achieve satisfying
results.

FIG. 13 shows the overall comparison results in the
shopping mall envronment, where tracking is rather chal-
lenging because of the huge area and low density of sensor
devices/target devices. The performance of the subject appli-
cation is still better than other systems. The mean error of the
subject application is 9.46, and the 50th percentile is 3.27. It
can be observed that a long error tail exists in the CDF. Such
errors occur in instances when no device can sense the target
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device. On the other hand, MDS utilizes the shortest path
distance to approximate the actual distance among devices.
However, due to the extremely low sensor device/target
device densities, such schemes fail to compute the accurate
distance matrices. Hence it produces the highest error.
Compared with other schemes, the subject application can
still cut the error rate by about 30%.

The RSS matrix generation performance can be investi-
gate in terms of the RSS error and the RSS matrix comple-
tion percentage. FIG. 14 demonstrates the two metrics over
time in the campus setting. It can be observed from FIG. 14
that the RSS matrix completion percentage keeps increasing
and eventually converges at around 60%. The remaining
entries cannot be learned because no detectable signal can
transmit from one side and received at the other. Meanwhile,
the mean RSS error also reduces with the matrix completion.
After learning, for example, for 10 minutes, the mean RSS
error reduces to 1.93. This indicates that the matrix can
gradually reflect the signal propagation in reality.

FIG. 15 shows the CDF of tracking error with different
RSS matrices. A comparison between the effectiveness of
generated RSS matrix with the manually collected one is
depicted. In FIG. 15, the generated CDF curve is very close
to the one by manual collection. The mean tracking error
with generated RSS matrix is about 4.37, while the error
with manually collected matrix is about 3.78.

A further experiment was conducted to monitor the power
consumption of both target device and sensor device proto-
types. Both devices were operable under 5V DC. No energy
saving mode was configured. A USB-based power meter
was used to keep measuring the power consumption for 6
hours. FIG. 16 shows the result over time. The power usage
was quite linear during the whole test. The energy consump-
tion of sensor devices was approximately 1.77 times to that
of the target devices. This is mainly due to the overload of
network communication and self-localization on the sensor
devices. The subject application in accordance with various
embodiments leverages target devices with low energy con-
sumption to achieve a better accuracy than systems using
sensor devices only.

In accordance with various embodiments, a device, sys-
tem, and/or appartus is disclosed. The device, system, and/or
appartus can comprise: a processor; and a memory that
stores executable instructions that, when executed by the
processor, facilitate performance of operations. The opera-
tions can comprise: as a function of sensing data represen-
tative of a location of a target device at a first defined time
point and model data representative of a motion model of a
probability density function, determining a group of loca-
tions for the target device at a second defined time period,
wherein the probability density function facilitates a deter-
mination, based on the location of the target device at the
first defined time point, a current location of the target device
at a third defined time point; generating, based on the group
of locations, a data structure representing a matrix of
received signal strength values; and identifying, based on
the data structure, a location of the group of locations for the
target device at the second defined time point.

The sensing data can be received from a sensor device of
a collection of sensor devices, wherein the sensor device can
be located in an area circumscribed by a defined perimeter,
and the area can be partitioned into a group of cells based on
a generated Voronoi diagram. Further, a value associated
with a count of the group of cells can be used to generate the
data structure, wherein an entry of entries of the data
structure can comprise an index value. Additionally, an entry
of entries of the data structure can represent an received
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signal strength distribution comprising a mean of a signal
strength emitted from a first cell of the group of cells and
received by a second cell of the group of cells and a standard
deviation of the signal strength emitted from the first cell and
received by the second cell. Further, a cell of the group of
cells can comprise a sensor device.

In accordance with additional and/or alternative embodi-
ments a method is disclosed. The method can comprise acts
that can comprise: as a function of sensing data represen-
tative of a location of a target device at a first defined
moment and model data relating to a motion model repre-
senting a probability density function, determining, by a
system comprising a processor, a group of locations for the
target device at a second defined time point, wherein the
probability density function facilitates determining, based
on the location of the target device at the first defined
moment, a current location of the target device at a third
defined moment; and as a function of the group of locations,
generating, by the system, a data structure representing a
matrix of received signal strength values; and identifying, by
the system, a location of the group of locations for the target
device at the third defined moment based on the data
structure.

Additional acts can include receiving, by the system, the
sensing data from a sensor device of a grouping of sensor
devices located in a defined area circumscribed by a defined
boundary; facilitating, by the system, partitioning of the area
into a grouping of cells based on a generated Voronoi
diagram; and determining, by the system, a count value for
the grouping of cells, and generating, by the system, a
dimension of the data structure based on the count value.

In accordance with the foregoing method, an entry of
entries of the data structure can comprise an index value; an
entry of entries of the data structure can represent an
received signal strength distribution comprising a mean of a
signal strength emitted from a first cell of the grouping of
cells and received by a second cell of the grouping of cells
and a standard deviation of the signal strength emitted from
the first cell and received by the second cell; and a cell of the
grouping of cells can comprise a sensor device.

In accordance with further embodiments, a machine-
readable storage medium or computer-readable storage
medium, comprising executable instructions that, when
executed by a processor, facilitate performance of operations
is disclosed, The operations can comprise: based on model
data representative of a motion model defining a probability
density function, determining a group of locations for the
target device at a third defined time period, wherein the that
facilitates determining, as a function of a location of a target
device at a first defined point in time obtained from sensing
data, a current location of the target device at a second
defined point in time; and based on the group of locations,
generating a data structure representing a matrix of received
signal strength values; and determining a location of the
group of locations for the target device at the third defined
point in time based on the data structure.

Additional operations can comprise: receiving the sensing
data from a sensor device of a grouping of sensor devices
located in a defined area circumscribed by a defined bound-
ary; partitioning the defined area into a grouping of cells
based on a generated Voronoi diagram; determining a count
value for the grouping of cells, and generating a dimension
of the data structure based on the count value, wherein an
entry of entries of the data structure represents an received
signal strength distribution comprising a mean of a signal
strength emitted from a first cell of the grouping of cells and
received by a second cell of the grouping of cells and a



US 11,525,890 B2

19

standard deviation of the signal strength emitted from the
first cell and received by the second cell.

In order to provide a context for the various aspects of the
disclosed subject matter, FIG. 17, and the following discus-
sion, are intended to provide a brief, general description of
a suitable environment in which the various aspects of the
disclosed subject matter can be implemented. While the
subject matter has been described above in the general
context of computer-executable instructions of a computer
program that runs on a computer and/or computers, those
skilled in the art will recognize that the disclosed subject
matter also can be implemented in combination with other
program modules. Generally, program modules include rou-
tines, programs, components, data structures, etc. that per-
form particular tasks and/or implement particular abstract
data types.

In the subject specification, terms such as “store,” “stor-
age,” “data store,” data storage,” “database,” and substan-
tially any other information storage component relevant to
operation and functionality of a component, refer to
“memory components,” or entities embodied in a “memory”
or components comprising the memory. It will be appreci-
ated that the memory components described herein can be
either volatile memory or nonvolatile memory, or can
include both volatile and nonvolatile memory, by way of
illustration, and not limitation, volatile memory 1720 (see
below), non-volatile memory 1722 (see below), disk storage
1724 (see below), and memory storage 1746 (see below).
Further, nonvolatile memory can be included in read only
memory (ROM), programmable ROM (PROM), electrically
programmable ROM (EPROM), electrically erasable ROM
(EEPROM), or flash memory. Volatile memory can include
random access memory (RAM), which acts as external
cache memory. By way of illustration and not limitation,
RAM is available in many forms such as synchronous RAM
(SRAM), dynamic RAM (DRAM), synchronous DRAM
(SDRAM), double data rate SDRAM (DDR SDRAM),
enhanced SDRAM (ESDRAM), Synchlink DRAM (SL-
DRAM), and direct Rambus RAM (DRRAM). Additionally,
the disclosed memory components of systems or methods
herein are intended to comprise, without being limited to
comprising, these and any other suitable types of memory.

Moreover, it will be noted that the disclosed subject
matter can be practiced with other computer system con-
figurations, including single-processor or multiprocessor
computer systems, mini-computing devices, mainframe
computers, as well as personal computers, hand-held com-
puting devices (e.g., PDA, phone, watch, tablet computers,
notebook computers, . . . ), microprocessor-based or pro-
grammable consumer or industrial electronics, and the like.
The illustrated aspects can also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network; however, some if not all aspects of the
subject disclosure can be practiced on stand-alone comput-
ers. In a distributed computing environment, program mod-
ules can be located in both local and remote memory storage
devices.

FIG. 17 illustrates a block diagram of a computing system
1700 operable to execute the disclosed systems and methods
in accordance with an embodiment. Computer 1712, which
can be, for example, part of the hardware of system 170,
includes a processing unit 1714, a system memory 1716, and
a system bus 1718. System bus 1718 couples system com-
ponents including, but not limited to, system memory 1716
to processing unit 1714. Processing unit 1714 can be any of

29 <

20

25

30

35

40

45

50

20

various available processors. Dual microprocessors and
other multiprocessor architectures also can be employed as
processing unit 1714.

System bus 1718 can be any of several types of bus
structure(s) including a memory bus or a memory controller,
a peripheral bus or an external bus, and/or a local bus using
any variety of available bus architectures including, but not
limited to, Industrial Standard Architecture (ISA), Micro-
Channel Architecture (MSA), Extended ISA (EISA), Intel-
ligent Drive Electronics, VESA Local Bus (VLB), Periph-
eral Component Interconnect (PCI), Card Bus, Universal
Serial Bus (USB), Advanced Graphics Port (AGP), Personal
Computer Memory Card International Association bus
(PCMCIA), Firewire (IEEE 1194), and Small Computer
Systems Interface (SCSI).

System memory 1716 can include volatile memory 1720
and nonvolatile memory 1722. A basic input/output system
(BIOS), containing routines to transfer information between
elements within computer 1712, such as during start-up, can
be stored in nonvolatile memory 1722. By way of illustra-
tion, and not limitation, nonvolatile memory 1722 can
include ROM, PROM, EPROM, EEPROM, or flash
memory. Volatile memory 1720 includes RAM, which acts
as external cache memory. By way of illustration and not
limitation, RAM is available in many forms such as SRAM,
dynamic RAM (DRAM), synchronous DRAM (SDRAM),
double data rate SDRAM (DDR SDRAM), enhanced
SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), Ram-
bus direct RAM (RDRAM), direct Rambus dynamic RAM
(DRDRAM), and Rambus dynamic RAM (RDRAM).

Computer 1712 can also include removable/non-remov-
able, volatile/non-volatile computer storage media. FIG. 17
illustrates, for example, disk storage 1724. Disk storage
1724 includes, but is not limited to, devices like a magnetic
disk drive, floppy disk drive, tape drive, flash memory card,
or memory stick. In addition, disk storage 1724 can include
storage media separately or in combination with other
storage media including, but not limited to, an optical disk
drive such as a compact disk ROM device (CD-ROM), CD
recordable drive (CD-R Drive), CD rewritable drive (CD-
RW Drive) or a digital versatile disk ROM drive (DVD-
ROM). To facilitate connection of the disk storage devices
1724 to system bus 1718, a removable or non-removable
interface is typically used, such as interface 1726.

Computing devices typically include a variety of media,
which can include computer-readable storage media or
communications media, which two terms are used herein
differently from one another as follows.

Computer-readable storage media can be any available
storage media that can be accessed by the computer and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer-readable storage media can be implemented
in connection with any method or technology for storage of
information such as computer-readable instructions, pro-
gram modules, structured data, or unstructured data. Com-
puter-readable storage media can include, but are not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disk (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
other tangible media which can be used to store desired
information. In this regard, the term “tangible” herein as
may be applied to storage, memory or computer-readable
media, is to be understood to exclude only propagating
intangible signals per se as a modifier and does not relin-
quish coverage of all standard storage, memory or computer-
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readable media that are not only propagating intangible
signals per se. In an aspect, tangible media can include
non-transitory media wherein the term “non-transitory”
herein as may be applied to storage, memory or computer-
readable media, is to be understood to exclude only propa-
gating transitory signals per se as a modifier and does not
relinquish coverage of all standard storage, memory or
computer-readable media that are not only propagating
transitory signals per se. For the avoidance of doubt, the
term “computer-readable storage device” is used and defined
herein to exclude transitory media. Computer-readable stor-
age media can be accessed by one or more local or remote
computing devices, e.g., via access requests, queries or other
data retrieval protocols, for a variety of operations with
respect to the information stored by the medium.

Communications media typically embody computer-read-
able instructions, data structures, program modules or other
structured or unstructured data in a data signal such as a
modulated data signal, e.g., a carrier wave or other transport
mechanism, and includes any information delivery or trans-
port media. The term “modulated data signal” or signals
refers to a signal that has one or more of its characteristics
set or changed in such a manner as to encode information in
one or more signals. By way of example, and not limitation,
communication media include wired media, such as a wired
network or direct-wired connection, and wireless media
such as acoustic, RF, infrared and other wireless media.

It can be noted that FIG. 17 describes software that acts
as an intermediary between users and computer resources
described in suitable operating environment 1700. Such
software includes an operating system 1728. Operating
system 1728, which can be stored on disk storage 1724, acts
to control and allocate resources of computer system 1712.
System applications 1730 take advantage of the manage-
ment of resources by operating system 1728 through pro-
gram modules 1732 and program data 1734 stored either in
system memory 1716 or on disk storage 1724. It is to be
noted that the disclosed subject matter can be implemented
with various operating systems or combinations of operating
systems.

A user can enter commands or information into computer
1712 through input device(s) 1736. As an example, mobile
device and/or portable device can include a user interface
embodied in a touch sensitive display panel allowing a user
to interact with computer 1712. Input devices 1736 include,
but are not limited to, a pointing device such as a mouse,
trackball, stylus, touch pad, keyboard, microphone, joystick,
game pad, satellite dish, scanner, TV tuner card, digital
camera, digital video camera, web camera, cell phone,
smartphone, tablet computer, etc. These and other input
devices connect to processing unit 1714 through system bus
1718 by way of interface port(s) 1738. Interface port(s) 1738
include, for example, a serial port, a parallel port, a game
port, a universal serial bus (USB), an infrared port, a
Bluetooth port, an IP port, or a logical port associated with
a wireless service, etc. Output device(s) 1740 use some of
the same type of ports as input device(s) 1736.

Thus, for example, a USB port can be used to provide
input to computer 1712 and to output information from
computer 1712 to an output device 1740. Output adapter
1742 is provided to illustrate that there are some output
devices 1740 like monitors, speakers, and printers, among
other output devices 1740, which use special adapters.
Output adapters 1742 include, by way of illustration and not
limitation, video and sound cards that provide means of
connection between output device 1740 and system bus
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1718. It should be noted that other devices and/or systems of
devices provide both input and output capabilities such as
remote computer(s) 1744.

Computer 1712 can operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer(s) 1744. Remote computer(s) 1744
can be a personal computer, a server, a router, a network PC,
cloud storage, cloud service, a workstation, a microproces-
sor based appliance, a peer device, or other common net-
work node and the like, and typically includes many or all
of the elements described relative to computer 1712.

For purposes of brevity, only a memory storage device
1746 is illustrated with remote computer(s) 1744. Remote
computer(s) 1744 is logically connected to computer 1712
through a network interface 1748 and then physically con-
nected by way of communication connection 1750. Network
interface 1748 encompasses wire and/or wireless commu-
nication networks such as local-area networks (LAN) and
wide-area networks (WAN). LAN technologies include
Fiber Distributed Data Interface (FDDI), Copper Distributed
Data Interface (CDDI), Ethernet, Token Ring and the like.
WAN technologies include, but are not limited to, point-to-
point links, circuit-switching networks like Integrated Ser-
vices Digital Networks (ISDN) and variations thereon,
packet switching networks, and Digital Subscriber Lines
(DSL). As noted below, wireless technologies may be used
in addition to or in place of the foregoing.

Communication connection(s) 1750 refer(s) to hardware/
software employed to connect network interface 1748 to bus
1718. While communication connection 1750 is shown for
illustrative clarity inside computer 1712, it can also be
external to computer 1712. The hardware/software for con-
nection to network interface 1748 can include, for example,
internal and external technologies such as modems, includ-
ing regular telephone grade modems, cable modems and
DSL modems, ISDN adapters, and Ethernet cards.

The above description of illustrated embodiments of the
subject disclosure, including what is described in the
Abstract, is not intended to be exhaustive or to limit the
disclosed embodiments to the precise forms disclosed.
While specific embodiments and examples are described
herein for illustrative purposes, various modifications are
possible that are considered within the scope of such
embodiments and examples, as those skilled in the relevant
art can recognize.

In this regard, while the disclosed subject matter has been
described in connection with various embodiments and
corresponding Figures, where applicable, it is to be under-
stood that other similar embodiments can be used or modi-
fications and additions can be made to the described embodi-
ments for performing the same, similar, alternative, or
substitute function of the disclosed subject matter without
deviating therefrom. Therefore, the disclosed subject matter
should not be limited to any single embodiment described
herein, but rather should be construed in breadth and scope
in accordance with the appended claims below.

As it employed in the subject specification, the term
“processor” can refer to substantially any computing pro-
cessing unit or device comprising, but not limited to com-
prising, single-core processors; single-processors with soft-
ware multithread execution capability; multi-core
processors; multi-core processors with software multithread
execution capability; multi-core processors with hardware
multithread technology; parallel platforms; and parallel plat-
forms with distributed shared memory. Additionally, a pro-
cessor can refer to an integrated circuit, an application
specific integrated circuit (ASIC), a digital signal processor
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(DSP), a field programmable gate array (FPGA), a program-
mable logic controller (PLC), a complex programmable
logic device (CPLD), a discrete gate or transistor logic,
discrete hardware components, or any combination thereof
designed to perform the functions described herein. Proces-
sors can exploit nano-scale architectures such as, but not
limited to, molecular and quantum-dot based transistors,
switches and gates, in order to optimize space usage or
enhance performance of user equipment. A processor may
also be implemented as a combination of computing pro-
cessing units.

In the subject specification, terms such as “store,” “stor-
age,” “data store,” data storage,” “database,” and substan-
tially any other information storage component relevant to
operation and functionality of a component, refer to
“memory components,” or entities embodied in a “memory”
or components comprising the memory. It will be appreci-
ated that the memory components described herein can be
either volatile memory or nonvolatile memory, or can
include both volatile and nonvolatile memory.

As used in this application, the terms “component,”
“system,” “platform,” “layer,” “selector,” “interface,” and
the like are intended to refer to a computer-related entity or
an entity related to an operational apparatus with one or
more specific functionalities, wherein the entity can be either
hardware, a combination of hardware and software, soft-
ware, or software in execution. As an example, a component
may be, but is not limited to being, a process running on a
processor, a processor, an object, an executable, a thread of
execution, a program, and/or a computer. By way of illus-
tration and not limitation, both an application running on a
server and the server can be a component. One or more
components may reside within a process and/or thread of
execution and a component may be localized on one com-
puter and/or distributed between two or more computers. In
addition, these components can execute from various com-
puter readable media, device readable storage devices, or
machine readable media having various data structures
stored thereon. The components may communicate via local
and/or remote processes such as in accordance with a signal
having one or more data packets (e.g., data from one
component interacting with another component in a local
system, distributed system, and/or across a network such as
the Internet with other systems via the signal). As another
example, a component can be an apparatus with specific
functionality provided by mechanical parts operated by
electric or electronic circuitry, which is operated by a
software or firmware application executed by a processor,
wherein the processor can be internal or external to the
apparatus and executes at least a part of the software or
firmware application. As yet another example, a component
can be an apparatus that provides specific functionality
through electronic components without mechanical parts,
the electronic components can include a processor therein to
execute software or firmware that confers at least in part the
functionality of the electronic components.

In addition, the term “or” is intended to mean an inclusive
“or” rather than an exclusive “or.” That is, unless specified
otherwise, or clear from context, “X employs A or B” is
intended to mean any of the natural inclusive permutations.
That is, if X employs A; X employs B; or X employs both
A and B, then “X employs A or B” is satisfied under any of
the foregoing instances. Moreover, articles “a” and “an” as
used in the subject specification and annexed drawings
should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a
singular form.
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Moreover, terms like “user equipment (UE),” “mobile
station,” “mobile,” subscriber station,” “subscriber equip-
ment,” “access terminal,” “terminal,” “handset,” and similar
terminology, refer to a wireless device utilized by a sub-
scriber or user of a wireless communication service to
receive or convey data, control, voice, video, sound, gaming,
or substantially any data-stream or signaling-stream. The
foregoing terms are utilized interchangeably in the subject
specification and related drawings. Likewise, the terms
“access point (AP),” “base station,” “NodeB,” “evolved
Node B (eNodeB),” “home Node B (HNB),” “home access
point (HAP),” “cell device,” “sector,” “cell,” and the like,
are utilized interchangeably in the subject application, and
refer to a wireless network component or appliance that
serves and receives data, control, voice, video, sound, gam-
ing, or substantially any data-stream or signaling-stream to
and from a set of subscriber stations or provider enabled
devices. Data and signaling streams can include packetized
or frame-based flows.

Additionally, the terms “core-network”, “core”, “core
carrier network™, “carrier-side”, or similar terms can refer to
components of a telecommunications network that typically
provides some or all of aggregation, authentication, call
control and switching, charging, service invocation, or gate-
ways. Aggregation can refer to the highest level of aggre-
gation in a service provider network wherein the next level
in the hierarchy under the core nodes is the distribution
networks and then the edge networks. UEs do not normally
connect directly to the core networks of a large service
provider but can be routed to the core by way of a switch or
radio area network. Authentication can refer to determina-
tions regarding whether the user requesting a service from
the telecom network is authorized to do so within this
network or not. Call control and switching can refer deter-
minations related to the future course of a call stream across
carrier equipment based on the call signal processing.
Charging can be related to the collation and processing of
charging data generated by various network nodes. Two
common types of charging mechanisms found in present day
networks can be prepaid charging and postpaid charging.
Service invocation can occur based on some explicit action
(e.g. call transfer) or implicitly (e.g., call waiting). It is to be
noted that service “execution” may or may not be a core
network functionality as third party network/nodes may take
part in actual service execution. A gateway can be present in
the core network to access other networks. Gateway func-
tionality can be dependent on the type of the interface with
another network.

Furthermore, the terms “user,” “subscriber,” “customer,”
“consumer,” “prosumer,” “agent,” and the like are employed
interchangeably throughout the subject specification, unless
context warrants particular distinction(s) among the terms. It
should be appreciated that such terms can refer to human
entities or automated components (e.g., supported through
artificial intelligence, as through a capacity to make infer-
ences based on complex mathematical formalisms), that can
provide simulated vision, sound recognition and so forth.

Aspects, features, or advantages of the subject matter can
be exploited in substantially any, or any, wired, broadcast,
wireless telecommunication, radio technology or network,
or combinations thereof. Non-limiting examples of such
technologies or networks include Geocast technology;
broadcast technologies (e.g., sub-Hz, ELF, VLF, LF, MF,
HF, VHF, UHF, SHF, THz broadcasts, etc.); Ethernet; X.25;
powerline-type networking (e.g., PowerLine AV Ethernet,
etc.); femto-cell technology; Wi-Fi; Worldwide Interoper-
ability for Microwave Access (WiMAX); Enhanced General
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Packet Radio Service (Enhanced GPRS); Third Generation
Partnership Project (3GPP or 3G) Long Term Evolution
(LTE); 3GPP Universal Mobile Telecommunications System
(UMTS) or 3GPP UMTS; Third Generation Partnership
Project 2 (3GPP2) Ultra Mobile Broadband (UMB); High
Speed Packet Access (HSPA); High Speed Downlink Packet
Access (HSDPA); High Speed Uplink Packet Access
(HSUPA); GSM Enhanced Data Rates for GSM Evolution
(EDGE) Radio Access Network (RAN) or GERAN; UMTS
Terrestrial Radio Access Network (UTRAN); or LTE
Advanced.

What has been described above includes examples of
systems and methods illustrative of the disclosed subject
matter. It is, of course, not possible to describe every
combination of components or methods herein. One of
ordinary skill in the art may recognize that many further
combinations and permutations of the disclosure are pos-
sible. Furthermore, to the extent that the terms “includes,”
“has,” “possesses,” and the like are used in the detailed
description, claims, appendices and drawings such terms are
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” is interpreted when employed
as a transitional word in a claim.

What is claimed is:

1. A device, comprising:

a processor; and

a memory that stores executable instructions that, when

executed by the processor, facilitate performance of

operations, comprising:

as a function of sensing data representative of a loca-
tion of a target device at a first defined time point and
model data representative of a motion model of a
probability density function, determining a group of
locations for the target device at a second defined
time period, wherein the probability density function
facilitates a determination, based on the location of
the target device at the first defined time point, of a
current location of the target device at a third defined
time point;

generating, based on the group of locations, a data
structure representing a matrix of received signal
strength values representative of first values associ-
ated with the target device and second values asso-
ciated with a collection of sensor devices, wherein
the collection of sensor devices are distributed within
an area circumscribed by a defined perimeter asso-
ciated with the group of locations; and

identifying, based on the data structure, a location of
the group of locations for the target device at the
second defined time point.

2. The device of claim 1, wherein the sensing data is
received from a sensor device of the collection of sensor
devices.

3. The device of claim 2, wherein the sensor device is
located in the area circumscribed by the defined perimeter.

4. The device of claim 2, wherein the area is partitioned
into a group of cells based on a generated Voronoi diagram.

5. The device of claim 4, wherein a value associated with
a count of the group of cells is used to generate the data
structure.

6. The device of claim 5, wherein an entry of entries of the
data structure comprises an index value.

7. The device of claim 5, wherein an entry of entries of the
data structure represents a received signal strength distribu-
tion comprising a mean of a signal strength emitted from a
first cell of the group of cells and received by a second cell
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of the group of cells and a standard deviation of the signal
strength emitted from the first cell and received by the
second cell.

8. The device of claim 4, wherein a cell of the group of
cells comprises a sensor device.

9. A method, comprising:

as a function of sensing data representative of a location

of a target device at a first defined moment of time and
model data relating to a motion model representing a
probability density function, determining, by a system
comprising a processor, a group of locations for the
target device at a second defined moment of time,
wherein the probability density function facilitates
determining, based on the location of the target device
at the first defined moment of time, a current location
of the target device at a third defined moment of time;
and

as a function of the group of locations, generating, by the

system, a data structure representing a matrix of
received signal strength values representative of first
values associated with the target device and second
values associated with a grouping of sensor devices,
wherein the grouping of sensor devices are distributed
within a defined area associated with the group of
locations; and

identifying, by the system, a location of the group of

locations for the target device at the third defined
moment of time based on the data structure.

10. The method of claim 9, further comprising receiving,
by the system, the sensing data from a sensor device of the
grouping of sensor devices located in the defined area
circumscribed by a defined boundary.

11. The method of claim 10, further comprising facilitat-
ing, by the system, partitioning of the area into a grouping
of cells based on a generated Voronoi diagram.

12. The method of claim 11, further comprising deter-
mining, by the system, a count value for the grouping of
cells, and generating, by the system, a dimension of the data
structure based on the count value.

13. The method of claim 12, wherein an entry of entries
of the data structure comprises an index value.

14. The method of claim 12, wherein an entry of entries
of the data structure represents a received signal strength
distribution comprising a mean of a signal strength emitted
from a first cell of the grouping of cells and received by a
second cell of the grouping of cells and a standard deviation
of' the signal strength emitted from the first cell and received
by the second cell.

15. The method of claim 12, wherein a cell of the
grouping of cells comprises a sensor device.

16. A machine-readable storage medium, comprising
executable instructions that, when executed by a processor,
facilitate performance of operations, comprising:

based on model data representative of a motion model

defining a probability density function, determining a
group of locations for the target device at a third
defined time period, wherein the determining further
facilitates determining, as a function of a location of a
target device at a first defined point in time obtained
from sensing data, a current location of the target
device at a second defined point in time; and

based on the group of locations, generating a data struc-

ture representing a matrix of received signal strength
values representative of first values associated with the
target device and second values associated with a
collection of sensor devices, wherein the collection of
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sensor devices are distributed within a defined area
associated with the group of locations; and

determining a location of the group of locations for the
target device at the third defined point in time based on
the data structure.

17. The machine-readable storage medium of claim 16,
the operations further comprise receiving the sensing data
from a sensor device of the grouping of sensor devices
located in the defined area circumscribed by a defined
boundary.

18. The machine-readable storage medium of claim 17,
the operations further comprise partitioning the defined area
into a grouping of cells based on a generated Voronoi
diagram.

19. The machine-readable storage medium of claim 18,
the operations further comprise determining a count value
for the grouping of cells, and generating a dimension of the
data structure based on the count value.

20. The machine-readable storage medium of claim 18,
wherein an entry of entries of the data structure represents a
received signal strength distribution comprising a mean of a
signal strength emitted from a first cell of the grouping of
cells and received by a second cell of the grouping of cells
and a standard deviation of the signal strength emitted from
the first cell and received by the second cell.
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