The
University
NGy Of
&% Sheffield.

This is a repository copy of Hybrid crowd-powered approach for compatibility testing of
mobile devices and applications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/142482/

Version: Accepted Version

Proceedings Paper:

Naith, Q. and Ciravegna, F. orcid.org/0000-0001-5817-4810 (2018) Hybrid crowd-powered
approach for compatibility testing of mobile devices and applications. In: ICCSE'18. 3rd
International Conference on Crowd Science and Engineering, 28-31 Jul 2018, Singapore,
Singapore. ACM International Conference Proceeding Series . ACM . ISBN
978-1-4503-6587-1

https://doi.org/10.1145/3265689.3265690

© 2018 Association for Computing Machinery. This is an author produced version of a
paper subsequently published in ICCSE'18. Uploaded in accordance with the publisher's
self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Hybrid Crowd-powered Approach for Compatibility Testing of
Mobile Devices and Applications

Qamar Naith! and Fabio Ciravegna®
12 The University of Sheffield
! University of Jeddah
! {ghnaith1@sheffield.ac.uk, qnaith@uj.edu.sa}, ? {f.ciravegna@sheffield.ac.uk}

ABSTRACT

Testing mobile applications (apps) to ensure they work seamlessly
on all devices can be difficult and expensive, especially for small
development teams or companies due to limited available resources.
There is a need for methods to outsource testing on all these models
and OS versions. In this paper, we propose a crowdsourced testing
approach that leverages the power of the crowd to perform mobile
device compatibility testing in a novel way. This approach aims to
provide support for testing code, features, or hardware characteris-
tics of mobile devices which is hardly investigated. This testing will
enable developers to ensure that features and hardware character-
istics of any device model or features of a specific OS version will
work correctly and will not cause any problems with their apps. It
empowers developers to find a solution for issues they may face
during the development of an app by asking testers to perform a
test or searching a knowledge base provided with the platform. It
will offer the ability to add a new issue or add a solution to existing
issues. We expect that these capabilities will improve the testing
and development of mobile apps by considering variant mobile
devices and OS versions on the crowd.

KEYWORDS
Crowdtesting, Compatibility, Knowledge base, Mobile Devices

1 INTRODUCTION

Testing mobile apps on different mobile device models and OS ver-
sions is an expensive and complicated process. The main reason
is the compatibility issues (mobile fragmentation) which comes
from the complexity of mobile technologies and variety of existing
mobile device models and OS versions [19]. Developers are not
sure whether their apps behave and work as expected on all mobile
devices. This issue requires developers to perform mobile device
compatibility testing on a variety of mobile device platforms, mod-
els, and OS versions in the least time possible to ensure the quality
of the app.

The issue of compatibility testing is attributed to several causes:
(a) Mobile apps (especially, sensing apps) behave slightly differ-
ently, not only on mobile devices from different manufacturers
but also on mobile devices from the same manufacturer[17, 29];
(b) Most of the mobile app developers are small teams or individ-
ual developers, it is often too expensive and difficult for them to
have a variety of mobile devices models and OS versions for test-
ing. (c) The automated testing approach is insufficient to test all

ICCSE, 28-31 July 2018, Singapore
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

real-life scenarios or captures all aspects of real mobile devices [23].
(d) The lack of relevant knowledge and experience[33]. Recently,
several testing approaches like Automated testing [28], Cloud test-
ing services [15, 19, 20, 30] and industrial crowdtesting platforms
or companies [5, 7, 11, 13, 19, 20, 26, 30] have been built to address
the compatibility issue. However, the issue remains [16].

Due to the need for a generic solution to address compatibility
issues mentioned above, we consider the following requirements
in our proposed solution: (1) A new testing approach is required
to support a global-scale mobile device compatibility testing [12];
(2) The individual developers and small teams cannot have all dif-
ferent types of devices, so there is a need for outsourcing to obtain
enough mobile devices models with different OS versions; (3) An ef-
ficient method for sharing relevant compatibility testing knowledge
among developers and testers. (4) The need for manual compat-
ibility testing on a real mobile phone to address the automated
testing issue. (5) Guidelines to assist developers in the mobile apps
development lifecycle.

This paper proposes a new mobile devices compatibility testing
approach based on a new crowdsourcing method " Hybrid Crowd-
sourcing”(see section 4). The proposed hybrid crowdsourced com-
patibility testing approach is defined as a web-based crowdtesting
platform. It provides the ability to perform compatibility testing of
mobile devices at two different levels, low-level (as code) or high-
level (as physical features of API level related to OS versions or
mobile device) against mobile apps requirements. These two levels
of compatibility testing will be achieved through the participation
of public crowd testers using real mobile devices with different OS
versions. This platform not only provides testing services but also
a knowledge base for storing the collected results (incompatibility
issues and their reasons) from different human and hardware re-
sources in a structured manner, which enable developers to search
for the specific issues they may face.

The overall content of this paper is organized as follows.Section 2
describes existing approaches for mobile app compatibility testing.
Section 3 discusses the limitations of all these approaches. Section 4
presents our proposed hybrid crowdsourced compatibility testing
approach. Section 5 presents the working mechanism of our crowd-
sourced compatibility testing approach. Section 6 provides a list of
all our contribution in this paper. Finally, Section 7 presents our
conclusions.

2 RELATED WORKS

Several solutions have been proposed in literature to address the
compatibility testing issues of mobile apps [2, 4-7, 10, 11, 13, 14,
19, 26, 30].

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

Industrial Crowdsourced Testing Platforms

Industrial crowdtesting platforms or companies like Mob4Hire [4],
Pay4Bugs [7], uTest (Applause) [10], 99Tests [1], Testbirds [8], Pass-
brains [6], Global App Testing (GAP) [2] etc., are considered as
initial solutions to address computability issues. Most of these plat-
forms and companies are not directly targeting compatibility testing
in their testing solutions. These platforms and companies focus
more on other types of testing such as functional, security, usability,
load, localization, and automation [13]. The crowdtesting method
used in these aforementioned platforms and companies is mainly
focused on testing the app as a whole to make sure that the app is
free of errors. They have designed based on "On-demand matching
and competition" [26], which means that crowd testers are selected
based on matched requirements (their availability, demographic
information, rate, and testing type preferences).

Automated and Cloud-based Testing Services

Prathibhan et al. [28] designed an automated testing framework
over the cloud for testing mobile app on different Android devices.
This framework can provide performance, functional and compati-
bility testing. Testdroid [21]is an online platform for automated UI
testing. It enables developers to execute automated scripted tests on
physical Android or iOS mobile devices with different OS versions
and screen resolutions. These devices are physically connected to
online servers which manage the test queue for the individual phys-
ical device. This platform has limited testing service, i.e. it does not
support for testing applications that depend on gesture, voice, or
movement input.

Cloud-based testing services are another type of solution that
is used to address the compatibility issue since different mobile
devices and OS versions are available in the cloud. Developers can
access these devices and use them via various cloud services. Huang
and Gong [20] proposed RTMS which is a cloud of mobile devices
for testing mobile apps. In the RTMS the users could remotely access
a pool of mobile devices that exist in a local lab and perform app
testing of uploading, startup, and testing by clicking and swiping
actions.

Besides, the authors of [19] extended the RTMS and they pro-
posed AppACTS that provides automated scripting service to per-
form compatibility testing of apps on different users real Android
devices and collecting the results of testing through a web server.
The compatibility testing of the proposed method covers installa-
tion process, startup, random key, screen actions, and the removal
process of the mobile app on real remote devices. The most impor-
tant feature of the AppACTS is its geographical distribution and
scalability, and unlike RTMS it will not use a cloud of mobile devices,
and it uses real remote devices. The MyCrowd platform [11] pro-
vides an automated compatibility testing service for mobile apps.
The service proposed is considered as SaaS (Software as a Service)
and different from the service provided in AppACTS [19]. This ser-
vice help developers to upload their apps through the web interface,
choose the target device models and OS version versions, perform
UI testing remotely, and then review testing report after finishing
testing.

Starov et al. [30] proposed CTOMS framework for cloud-based
testing of mobile systems that perform the testing on the remote

real mobile device through the cloud (each pool of real mobile
devices connect to a mobile server, and then all mobile servers
connected to one master server). This cloud testing is carried out by
the participation of their own crowd community. This framework
provided the concept and the prototype of cloud testing of mobile
systems together with multi-directional testing that tests the app
on various Android devices only with various OS versions and new
device models for their compatibility testing.

Knowledge base development for Compatibility
Testing

StackOverflow is a service based on open crowdsourcing (volun-
teer work) for addressing technical programming issues [14, 27].
This platform has documentation that focuses on storing questions
and issues related to computer programming only (coding issue).
It is also used by mobile apps developers to assist them with the
issues they are facing within the implementation process (program-
ming) of mobile apps, but it is clear that rarely they used for testing
(see section 3). The authors of [18] addressed Android fragmenta-
tion problem in mobile application compatibility automated testing.
Also, it could analyze the fragmentation both in code level as well
and API level based on the provided knowledge base from pre-
vious tests. The proposed crowdsourcing platform will involve a
knowledge base (documentation), especially for documenting issues
related to mobile device compatibility testing.

3 THE LIMITATIONS OF EXISTING
APPROACHES

In our view, the solutions above do not provide enough support
to address issues of mobile device compatibility testing for the
following reasons:

o Test Distribution: Most of these platforms, companies, and
cloud services described previously have a limited distribu-
tion of the test. Since they do not provide opportunities to
other public crowd testers with limited resources in world-
wide to contribute. Consequently, these solutions will be
unable to study enough users’ behaviors or interactions with
the app.

o Variety of Mobile Devices: Most of the mentioned approaches
may not cover a large variety of mobile devices or OS ver-
sions. The main reason is the lack of availability of all differ-
ent versions of mobile phones models or OS versions in one
place like a company headquarter or its specific crowd com-
munity. To our best knowledge, there is not a complete set
of mobile phones with different OS versions in a laboratory
or a registered cloud system to be accessible by developers
as discussed at RTMS [20], AppACTS [19], MyCrowd [11],
as well as CTOMS [30].

o Coordinated Scheduling: It can be also an important is-
sue for all mentioned approaches when crowd testers need
to share a single pool of mobile devices in different cases
such as: (1) When they required performing the test across
various locations at the same time. (2) When some of the
devices need to be tested with more than one OS versions
for different tasks at the same time. This could lead to issues

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

in the coordination process between testers and delay [32]
as well as it may not covering all the OS version.

e Knowledge Accessibility: Most of the mentioned testing
methods do not have a public place to store and share the
results of compatibility testing with public developers to
access. The results are stored in a private space of a company,
only developer teams within the company will be able to
access. This will not improve the experiences and knowledge
of both testers and developers as well as domain knowledge
of the mobile app development.

o Compatibility Testing Type: Most of these approaches fo-
cus on testing mobile apps itself to be sure there is not any
failure, not for checking and understanding the compatibility
of various mobile devices with the app requirement. This
way of testing will not help app developers to broaden their
level of knowledge and experiences.

o Impossibility of Testing: In Stack Overflow, there is a doc-
umentation for programming purposes, and is not designed
for testing. Also, there is no space where developers can ask
to test a specific issue (test case, feature, or code) on different
mobile phone models. Human-based tagging system might
be another drawback found in StackOverflow, where users
select the tag based on their feeling or potentially commu-
nities surrounding those tags. This might lead to tag the
information in a wrong classification.

The proposed crowdtesting platform and compatibility testing ap-
proach are designed to satisfy this need.

4 PROPOSED HYBRID CROWDSOURCED
COMPATIBILITY TESTING PLATFORM

Manual compatibility testing is the suggested method for testing the
mobile apps during the development process [22]. We design our
approach as a web-based platform specially designed to support
a fully mobile device compatibility testing for Android and iOS
through crowdsourcing methods. This platform involves two main
parts: Manual compatibility testing services based on proposed
hybrid crowdsourcing model, and a crowd-powered knowledge
base.

4.1 The Concept of Proposed Compatibility
Testing Approach

The concept of our compatibility testing approach focuses on test-
ing whether features or hardware components of mobile devices
and features of OS versions compatible with functionalities of dif-
ferent types mobile apps (e.g., health, banking, activity tracking,
social, or any other apps). It considers testing the compatibility for
all various dimensions of the mobile device and its criteria with
the app like (1) Hardware dimensions such as the camera (type
and resolution), screen (rotation, size, resolution), sensors, CPU
speed, GPS, Bluetooth, RAM, etc.); (2) Software dimensions such as
different APIs level (minimum supported Application Programming
Interfaces), Multimedia supported, etc.; (3) Human behaviors and
interaction with the app also considered as another dimension to
reduce compatibility testing issue such as localization, languages,
style, accessibility requirements, target user of the app, type of
environment (e.g., medical, finance, education, etc.); Therefore, our

approach possibly could answer the following questions: (1) Is there
any missing hardware components within mobile device models
or features within API levels related to OS versions that the app
needs it to work correctly? (2) How much the hardware compo-
nent is compatible with a specific functionality of a specific app for
different mobile device models and OS versions?

In our approach, the compatibility testing could be achieved in
two ways:

(1) Low-level testing: A developer can publicly test the com-
patibility by examining a piece of code to identify whether
the code testing results comply with the expected results
from a variety of mobile devices model and OS versions. By
proposed approach, this type of test could be carried out by
a large number of testers with both adequate and very high
level of experience.

(2) High-level testing: A developer can privately test the com-
patibility by testing the hardware features of the device itself
under different OS versions. This type of test may help testers
with a limited level of experience to perform multiple tests
and improve their experience.

These two ways of testing with all mobile device dimensions allow
for achieving full compatibility testing service through the use of
new crowdsourcing method.

4.2 Proposed Hybrid Crowdsourcing Method
for Testing

In the literature, two basic crowdsourcing methods are used in soft-
ware development and testing process: Traditional Crowdsourcing
method (used by most of the testing companies [26, 31] and Open
Crowdsourcing as used by in [27]. The traditional crowdsourcing
and open crowdsourcing method are similar in that both of them do
not support replication of the tasks which means that they specify a
different job for each crowd in order to complete the testing process
quickly within a limited time. These two methods are different in
the contribution form. Traditional crowdsourcing normally used
based on online competition and on-demand matching [24, 26]
where the crowd is selected from the registrants’ crowd list based
on their high experience to perform specific tasks. On the other
hand, open crowdsourcing method is used based on open collabora-
tion [26] where the public crowd participate (as volunteers) based
on their interests in tasks.

To avoid these constraints, we proposed an alternative crowd-
sourced testing method, called "Hybrid Crowdsourcing” method.
This method uses the power of the public crowd testers to en-
hance and facilitate full mobile device and mobile app compatibility
testing process. By employing the hybrid crowdsourcing method
in proposed compatibility testing approach that described in sec-
tion 4.1, we will enable a large number of anonymous and public
crowd testers to participate based on their interests without time
constraints. Such open participation of public crowd testers will
assist developers in: (1) Testing more mobile devices with different
OS versions and gathering more accurate results. (2) Covering most
of the possible compatibility issues in early stages of the mobile
app testing process. This method will support flexible incentives
mechanism which is based on the negotiations between the parties
and the agreement for the incentives they willing to provide or

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

v-‘ o @egp B
o L o B D)
[Bl B
9. Validation of results by developers m =

12. Justify reasons of issues

1 Definition of

Task Details | Other groups

Mobile Device | 09
Details

2. Distribution | | Invite person

testing tasks
Individual or Small
team developers

| App Upload of testing tasks M@_

ki |

—_—
13. Bugs/defect 1
reason e : YWY
:,., - ,a TaskDIi:;;:tlon .. m 3_;
I|I T 8A'Reporl i 7 Submissions ' |4. Perform of testing R e ':“.:'.I‘l‘
2 |[f) tracking system j F testing reports Bugs/Defeet | | & preparing results e | &
| - of testing reports.| | pyyipg “ i
View of testing “g ‘ Crowd-powered Mobile Device 3. Select'and accept “ 1
reports Knowledge Base ~ Details of testing tasks Crowd testers

14. Analysis and classification
of issues and its causes

5. Use of a mobile app to
detect mobile device info

Reperform, Improvements, Request More details, Rejected, Fixed

10. Resend back to crowd testers for :

6. Upload of mobile
I GG | UT of Knowledge device info to results
Base reporting form

00

11. Close testing
cycle after issues are
fixed

Figure 1: The working mechanism of proposed hybrid crowdsourced compatibility testing approach

earn. Such incentive mechanism will help small teams or individ-
ual developers with limited resources to test their apps. Table I
shows a comparison between Traditional Crowdsourcing, Open
Crowdsourcing, and Hybrid Crowdsourcing methods based on dif-
ferent dimensions. While Table II describes the advantages and
disadvantages of the three Crowdsourcing methods.

5 PROPOSED WORKING MECHANISM

Based on the concept of the proposed compatibility testing ap-
proach described in Section 4.1 and hybrid crowdsourcing method
explained in Section 4.2, we will describe in this section a set of
process that is implemented in the working mechanism of proposed
crowdsourced compatibility testing. Fig 1 provides an overview of
the proposed working mechanism, and the set of the process are
listed below:

(1) Definition of testing tasks: Developers define their projects
for testing, the individual project can include more than one
task. At this stage, developers need to complete three main
steps to clearly define the project: (a) Task information: devel-
opers are able to define more than one task with the required
details for each task. First, they need to specify the hardware
components or feature category of the mobile device or OS
versions they would like to test. Next, developers need to se-
lect the way they would like to test their task with. testing as
code by providing the title of the task and source code or test-
ing as a feature by providing the title and testing steps. They

can use both ways at the same time to test a specific task.
Finally, developers need to specify the results they expected
to get from each testing task will be performed. (b) Device
information: developers need to define the required mobile
device platforms, OS versions, brand, and device models for
testing. It is possible for developers to define mobile devices
information for the project as a whole or for each individual
task within the project. (c) Application information: At the
beginning of this step, developers need to select the type of
app they would like to ensure it works seamlessly without
any errors against the tested mobile device’s or OS version’s
feature(e.g., Social, Business, Education, Finance, Lifestyle,
Medical, etc.). Then developers will need to upload the tar-
geted app to the platform. Our approach provides an easy
way that enables crowd testers to download the app on their
device without any constraints. In case of uploading An-
droid apps, developers need to upload the.apk file on the
platform. In contrast, for uploading the iOS app, developers
need achieving four main steps in order:
e Download ".cer" file from the platform and click to install
it on their mac device.
e Download ".provision" file and click to install it on their
mac device.
o Build their application with the identifier.
o Generate ".ipa" file and Upload it to the platform.

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

Table 1: The comparison of the three crowdsourcing methods

Method Participation Form | Expertise Crowd Task Task repli- | Incentive Type | Incentive example
Demand Size Length cation
Traditional On-demand Match- | Extensive | Limited limited None Extrinsic Compensation/Reward
Crowdsourcing| ing time (Physical (Mostly small amount
On-line Competi- Incentive) of money)
tion
Open Open Collaboration | Extensive Open limited None Extrinsic Name Recognition
Crowdsourcing| time (Social Incentive) | and Satisfaction
Hybrid Open Collaboration | Extensive Open Flexible Several Extrinsic as - Different types of re-
Crowdsourcing| Moderate time (Physical & ward not only money
Minimal Social) - Name Recognition &
Satisfaction
Intrinsic as -knowledge& Experi-
(Self knowledge | ence
& learning)

Table 2: The advantages and disadvantages of the three crowdsourcing methods

Method Advantages Disadvantages
Traditional
Crowdsourcing — All the selected crowd testers have a high level — Inherent constraints of human resources and hard-

of experiences.
— Lower cost compared to non-crowdsourced test-
ing companies.

ware resources.

— Persuading someone who is not interested to perform
a specific task might be difficult, this will probably
lead them to perform the task quickly to get the
reward only, this may cause inaccurate results.

— The use of extrinsic incentives only will be weakened
the crowd efforts to perform tasks correctly over time
Liang et al [32].

CroovfoD;sr;urcing — The public crowd is participating based on their — Non-physical incentives can be attributed to the lack
interests which they could do more effort to get of more crowd participation or laziness in executing
very good results. the tasks in some cases over time.

— Ability to study more human behavior and inter-
action with mobile devices.
Hybrid
Crowdsourcing — The ability for studying more of human behavior — The expertise of crowd participating is unknown

and interaction with mobile devices.

— The anticipation of unknown reward may attract
more people to take a part in the tasks to get
different types of reward.

— The use of both extrinsic and intrinsic incentive
mechanism together to motivate the crowd will
significantly improve the effort of the crowd in
performing tasks as proved recently in 2018 by
Liang et al [25].

unless the previous experiments have been taken,
the outcome would be unpredictable

(2) Announcement and distribution of testing tasks: Once
the developers finished the process of defining the new test-
ing project with its tasks requirements, an announcement
will be sent to all crowd testers registered on the platform to

execute the test rather than selecting specific crowd testers
based on requirements matched (e.g., available hardware and
software resources, demographic information, or geographic

®)

©

®)

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

location) as in most existing crowdtesting platforms. In addi-
tion, developers will be able to use the random URL link that
automatically generated after finishing defining the process
to distribute the test on a large scale: (a) Send the link to
specific users by email. (b) Publish (copy/paste) the URL link
in an online space such as Facebook, Twitter, LinkedIn, blogs,
or any testers’ groups on the internet. As we mentioned be-
fore, purchasing a big list of mobile devices only to test for a
specific time is really expensive. Further, it is also difficult for
companies dealing with specific communities, testing labs,
or cloud services to always keep the devices up to date. Our
global distribution of tests will allow public crowd testers to
participate and use their own device for testing. In this case,
it is very much possible to cover newly released devices that
probably are not still available with crowd tester community
in existing crowdtesting method or still not registered in the
could-testing system. In addition, it may also cover the old
devices that rarely became available in public.

Review project and its tasks specification by crowd testers:
When registered crowd testers receive the announcement
of the test, they will be able to review the requirements of
the project. On the other hand, when non-registered crowd
testers see the URL link anywhere on the internet, they will
first need to register to the platform and then review test
requirements. After crowd testers review the requirements
of the announced project, they will have an option to accept
the project for testing or not. If they are not interested in
performing a specific project, the proposed approach gives
them an opportunity to review requirements for all other
projects that can be tested using their device/s platform. So
that they can accept more than one project simultaneously
and then perform the test in order.

Execute testing: After crowd testers select and accept the
project, they will review all testing requirements before start
performing the test to avoid 4AIJout of scopedAl issues.
Then they will start testing all the tasks associated with
the project using required types of devices and OS versions.
In our approach, both crowd testers and developers will be
able to view all tested devices for each task so they can know
whether there are specific devices or OS version need to be
covered. Further, due to our global distribution of test, crowd
testers that are participating to execute the test can be from
different levels of experience. This diversity of experience
can help to find more issues quickly. This is because experi-
enced testers follow specific testing steps and they always
use them for testing any mobile app. As a human behavior,
the crowd testers with different levels of experience may
try to do more effort to perform the test and provide better
testing results. This will also help crowd testers to find more
issues and accurately reproduce the behavior of an app that
runs on exact mobile.

Prepare and submit testing reports: Before submitting
testing report, crowd testers need to notice that if they do not
accept the project they will not be able to report their feed-
back even if they performed the test. As we mentioned previ-
ously one project may include more than one task. When the
crowd testers accept the whole project, all the tasks belong

to this project will be added directly to their file; each task
within the project will have their own status (submitted or
in progress). This means that crowd testers can execute each
task separately and then submit a single report to developers
for each task executed. Each report includes crowd tester’s
feedback, this feedback includes the following information:
(a) Device information: It is essential for crowd testers to enter
the details of mobile devices (platform, brand, model, and
OS version) that they used in testing correctly in the report,
especially if they performed the test on many devices. In
this approach, if crowd testers would like to enter device
information for the first time, they require selecting "new
device" from the options then using our mobile app to
detect device information. Once tester is accessing the app
from the device that has tested, the information will di-
rectly be detected and sent to the server and then upload
into reporting form during the reporting process. This
method will provide accurate inputting of device details
and avoid the errors that may occur while entering the
details manually in the reporting form, which can confuse
the developer as in most crowdsourced testing approach
existing. On the other hand, if one crowd tester would like
to enter device information that already tested and regis-
tered before, the tester will require selecting "registered
device" from the options then the tester can choose from
his list of tested devices.
(b) Task information: At this step, crowd tester needs to enter
how many times they repeated the test and the estimated
time for each test cycle, as well as actual results.
Issue information: It is the responsibility of crowd testers
to provide a report with correct information for issues.
The information must compose of the following:(i) Issue
ID, title, priority, and description. (ii) Actions and steps
to reproduce the issue clearly written, showing how the
tester arrived at the location of the issue. (iii) Attachments
showing the issue either in a picture or in a video. (iv) Any
suggestion or idea they would like to share with develop-
ers in terms of improving or solving the issue as well as
how much they are sure about the result? In this approach,
crowd testers can enter more than the issue related to a
particular task in one report instead of submitting multi-
ple reports for the same task so this can reduce the time
needed for reporting process.

(c

~

(6) Collect, track, and organize testing reports After many

crowd testers are executing different tasks for different projects
at different times, developers need to collect and organize
the report to view all issues that have been reported. To
avoid the limitations of collecting and organizing of testing
report manually by crowd manager or crowd leader as in
most existing crowdsourced testing method, our approach
will implement a report tracker system slightly similar to
JIRA [3] and Zoho [9] for collecting, tracking and organizing
all testing reports submitted by crowd testers automatically.
This tracking system will assist developers to: (a) Task Status
Tracking: Track the status of each task within each specific
project; (b) Detailed Report: Track master details regarding

™

®)

©

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

the issues Id, type, description, priority, etc.; (c) Testers Iden-
tity: Track the crowd testers’ details who report the results;
(d) Scheduled Reports: Track recent update on the results
based on Daily, Weekly, or Hourly; (e) Modification Method
or issue tracking life cycle: Ability to modify an existing is-
sue status, open, in progress, under review, Invalid/rejected,
accepted, or fixed; (f) Notification Method: To notify devel-
opers about any new bug reported, also testers about any
change on the bug they have reported; (g) Results visual-
ization: To provide charts and analysis of reported results
during the time; (h) Efficient Classification: To classify the
reported issues based on the type of app;

View testing reports and validate results: After crowd
testers are submitted their reports, and after collected and
organized the reports by our tracking system, the respon-
sibility of the developers to view and validate the results
in every single report. At this step, developers starting vali-
date results in one report after another. Based on the crowd
testers’ results and validation results of developer they will
be able to "Approved" or "Rejected" the reports. In case of the
results is not accurate the developer will directly reject the
report and will not reward the crowd testers. On the other
hand, if the results are correct and developer has approved
the results, they will have the option to change the status
of the report to deferred (they will try to fix the issues after
finishing current work), in progress (I am trying to fix the
issues), or fixed (I have finished fixing issues). Once the de-
veloper changes the status of a specific report, the status of
the report will directly be updated on the profile of crowd
tester’s who has submitted the report. Note, the priority of
fixing issues based on the priority of issues for all reports.
After developer fixing the issue, they will send the report
back with a notification to crowd tester to retest and make
sure that the error is fixed and not appear again. Once fin-
ishing retest process, crowd tester will send the report back
to developers with a notice that the issue has totally fixed
and then asks for closing the test task cycle. After developer
finishing validation of all tasks within a specific project, a
notification is sent to the tester to close any activities related
to the project.

Update crowd testers rating by developers: Based on the
good preparation of reports and accuracy of crowd testers’
feedbacks (including full issues details reported), developers
will rate crowd testers. In addition, accepting and performing
as much as possible of testing projects will also positively
influence developers rating for crowd testers. On the other
side, rejected reports will negatively effect on crowd testers’
rating. In our approach, due to dealing with public and anony-
mous crowd testers, the rating (collected points) of crowd
testers can reduce developers’ concerns for working with
public crowd testers and increase their confidence in crowd
testers’ works performance and results they will report.
Encourage and reward of crowd testers: After developers
finish validation and evaluation of crowd testers, they will
need to send a notification to crowd testers to close the test-
ing project. After that, our system will monitor and calculate

all closed project for different testers and send a notifica-
tion with a list of all crowd testers need to reward. This
process will minimize the problem of consuming a long time
by crowd leader or crowd manager to monitor and identify
a list of crowd testers that need to be rewarded and then
send the list to developers to perform the rewarding process.
According to results proved by Liang et al [25] that using
extrinsic incentives only (rewarding) weaken crowd perfor-
mance and effort to perform tasks correctly, so there is a
need for using intrinsic incentive as well. In our approach,
the two incentive types will be implemented to encourage
crowd testers: Extrinsic and Intrinsic. The extrinsic incen-
tive" is the rewarding step which depends on the agreement
among developers and testers. In extrinsic method, develop-
ers are free to choose the type of reward they are willing
to offer to the testers (e.g., some money, free app, gift card,
certificate, job, etc.), it is possible to provide multiple options
for crowd testers. At this stage, developer sends an offer
including reward options to crowd testers. Once the crowd
tester receives this offer the crowd tester will choose one
option, and then send his approval to the offer again to the
developer. The intrinsic incentive includes self-knowledge
and learning. In our approach, crowd testers can get benefits
and learn more from other crowd testers’ knowledge and
testing scenarios that have been stored in our knowledge
base. This incentive mechanism could motivate the testers
more and more, and at the same time serve developers with
limited resources, unlike to other crowdtesting platforms
that are restricted developers into the only money.

(10) Justify reasons of issues by developers: In this step, after
developer finish validation of all submitted reports related to
testing a particular task on a variety of mobile device, the de-
veloper will justify reasons of issues on these tested mobile
devices and OS version to be stored in our knowledge base.
This step is not available in any of current crowdsourcing
methods. Implementing this step can assist developers in
the future to understand incompatibility reasons of a spe-
cific mobile app with mobile devices and OS versions while
developing a new mobile app.

5.1 A crowd-powered knowledge base

Our approach includes a knowledge base that documenting col-
lected compatibility results (including issues) through the crowd
testers within the platform. This knowledge base will bring sup-
porting evidence enable developers to understand the reasons for
specific issues appeared. Also, it will allow developers to get useful
guidelines; for example, some of the mobile devices will not support
a specific functionality within a specific type of app for any reason
such as if some hardware component or characteristics necessary
for the proper running of an app is missed in any device model, or
not supported by any API framework related to specific OS ver-
sions. Documenting such this results will help developers a lot in
the future when they need developing a new app that may have
some similar functionality of the apps that have been developed
before and tested on many devices. Of course, this will reduce the
issues and time taken for compatibility testing on different devices,

Hybrid Crowd-powered Approach for Compatibility Testing of Mobile Devices and Applications

especially during early stages of the development cycle. In addition,
it provides ability for the developers and testers to vote, rate, and
comment to evaluate the quality of other published results related
to specific compatibility issue of the mobile device.

6 CONTRIBUTION

The main contributions in this paper are:

(1) A crowdsourced testing platform that supports the distri-
bution of full mobile device compatibility testing, which is
suitable for both professional and beginner developers and
testers.

(2) It lays out a new crowdsourced testing framework, that can
be used to execute other mobile apps testing types such as
GUI, Usability, Localization, etc. for all supported platforms.

(3) A novel direct interaction mechanism between the developer
to provide better coverage of testing in specific software or
hardware that are in need of testing by the crowdtesting
platform.

(4) A public knowledge base allows for a deep understanding of
the internal complexity of testing the features or hardware
characteristics of mobile device models or features of API
levels related to OS versions for all supported platform. This
can improve developers’ knowledge and experiences and
helps them during the app development process.

7 CONCLUSIONS

This paper narrows the research gap related to studying causes of
compatibility testing issues. It reviewed the current approaches that
address the compatibility testing issues. Since compatibility testing
requires to cover many mobile device models and OS versions, the
hybrid crowdsourced testing method has been proposed to use
the power of public crowd testers and their own mobile devices
to perform testing on a variety of devices. This paper focuses on
testing the features and hardware characteristics of mobile devices
with different OS versions in two different ways, which are code or
features, against mobile apps requirements. The proposed approach
shows that the use of public crowd testers and processes used in the
hybrid crowdtesting method might be significantly strong enough
for several reasons. The ability to cover a large number of mobile
device model with different OS versions. To improve the testing and
development of mobile apps through direct interaction between
developers and crowd testers. The ability to discover more issues
through different experience levels of crowd testers. To reduce the
delay in the coordination process among crowd testers for the avail-
ability of using a specific device. To avoid mistakes that may occur
by crowd testers when reporting information about tested mobile
device by using a mobile app as automated data detection method.
To reduce developers’ concerns of working with anonymous crowd
testers. To attract more crowd testers to participate through the use
of both extrinsic and intrinsic incentive method. To reduce delay
in waiting for either the crowd manager or crowd leader to collect
and organize testing reports. As a future work, we will evaluate
our proposed approach "hybrid crowdsourced compatibility test-
ing" to measure its effectiveness and efficiency in addressing the
compatibility testing issues.

REFERENCES

[1] 99tests news. https://99tests.com/news. [Online; accessed 29-July-2017].

[2] Global app testing. https://www.globalapptesting.com/. [Online; accessed 20-
Jun-2017].

[3] Jira. https://www.atlassian.com/software/jira. [Online; accessed 18-April-2018].

[4] Mob4hire. http://www.mob4hire.com/. [Online; accessed 8-Aug-2017].

[5] Most popular crowdsourced testing companies of 2018.
http://www.softwaretestinghelp.com/crowdsourced-testing-companies/.
[Online; accessed 28-Mar-2018].

[6] Passbrains. https://www.passbrains.com/. [Online; accessed 18-Nov-2017].

[7] Pay4bugs.crowdsource software testing. https://www.pay4bugs.com/. [Online;
accessed 20-Jun-2017].

[8] Testflight. https://developer.apple.com/testflight/. [Online; accessed 18-Nov-
2017].

[9] Zoho bug tracker. https://www.zoho.com/bugtracker/features.html. [Online;

accessed 18-April-2018].

utest. https://www.utest.com/, 2007. [Online; accessed 8-Aug-2017].

] Mycrowd qa. https://mycrowd.com/, 2015. [Online; accessed 1-Nov-2017].

[12] M. Akour, A. A. Al-Zyoud, B. Falah, S. Bouriat, and K. Alemerien. Mobile software
testing: Thoughts, strategies, challenges, and experimental study. International
Journal of Advanced Computer Science and Applications, 7(6):12-19, 2016.

[13] S. Alyahya and D. Alrugebh. Process improvements for crowdsourced software
testing. 2017.

[14] A. Bacchelli, L. Ponzanelli, and M. Lanza. Harnessing stack overflow for the ide.
In Proceedings of the Third International Workshop on Recommendation Systems
for Software Engineering, pages 26-30. IEEE Press, 2012.

[15] R.]. Bhojan, K. Vivekanandan, S. Ganesan, and P. M. Monickaraj. Service based
mobile test automation framework for automotive hmi. Indian Journal of Science
and Technology, 8(15), 2015.

[16] H.K.Ham and Y. B. Park. Mobile application compatibility test system design
for android fragmentation. In International Conference on Advanced Software
Engineering and Its Applications, pages 314-320. Springer, 2011.

[17] H.K.Ham and Y. B. Park. Designing knowledge base mobile application compat-
ibility test system for android fragmentation. 2014.

[18] H.K. Ham and Y. B. Park. Designing knowledge base mobile application compat-
ibility test system for android fragmentation. IFSEIA, 8(1):303-314, 2014.

[19] J.-f. Huang. Appacts: Mobile app automated compatibility testing service. In
Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE
International Conference on, pages 85-90. IEEE, 2014.

[20] J.-f. Huang and Y.-z. Gong. Remote mobile test system: a mobile phone cloud
for application testing. In Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on, pages 1-4. IEEE, 2012.

[21] J. Kaasila, D. Ferreira, V. Kostakos, and T. Ojala. Testdroid: automated remote ui
testing on android. In Proceedings of the 11th International Conference on Mobile
and Ubiquitous Multimedia, page 28. ACM, 2012.

[22] M. Kamran,]. Rashid, and M. W. Nisar. Android fragmentation classification,
causes, problems and solutions. International Journal of Computer Science and
Information Security, 14(9):992, 2016.

[23] D.Knott. Hands-on mobile app testing. Indiana: Pearson education Inc, 2015.

[24] T. D. LaToza and A. van der Hoek. Crowdsourcing in software engineering:
Models, motivations, and challenges. IEEE software, 33(1):74-80, 2016.

[25] H. Liang, M.-M. Wang, J.-J. Wang, and Y. Xue. How intrinsic motivation and
extrinsic incentives affect task effort in crowdsourcing contests: A mediated
moderation model. Computers in Human Behavior, 81:168-176, 2018.

[26] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey of the use of crowdsourcing
in software engineering. Journal of Systems and Software, 126:57-84, 2017.

[27] D.Phair. Open crowdsourcing: Leveraging community software developers for IT
projects. PhD thesis, Colorado Technical University, 2012.

[28] C.M.Prathibhan, A. Malini, N. Venkatesh, and K. Sundarakantham. An automated
testing framework for testing android mobile applications in the cloud. In
Advanced Communication Control and Computing Technologies (ICACCCT), 2014
International Conference on, pages 1216-1219. IEEE, 2014.

[29] T. Samuel and D. Pfahl. Problems and solutions in mobile application testing.
In Product-Focused Software Process Improvement: 17th International Conference,
PROFES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings 17, pages
249-267. Springer, 2016.

[30] O. Starov. Cloud platform for research crowdsourcing in mobile testing. East
Carolina University, 2013.

[31] K.-J. Stol, T. D. LaToza, and C. Bird. Crowdsourcing for software engineering.
IEEE Software, 34(2):30-36, 2017.

[32] TestObject. Mobile app testing main challenges, different approaches, one solu-
tion. 2017.

[33] K. Wnuk and T. Garrepalli. Knowledge management in software testing: A
systematic snowball literature review. e-Informatica Software Engineering Journal,
12(1):51-78, 2018.

[En—_
=)

https://99tests.com/news
http://www.mob4hire.com/
https://www.passbrains.com/
https://www.pay4bugs.com/
https://developer.apple.com/testflight/
https://www.utest.com/
https://mycrowd.com/

	Abstract
	1 Introduction
	2 Related Works
	3 The Limitations of Existing Approaches
	4 Proposed hybrid crowdsourced compatibility testing Platform
	4.1 The Concept of Proposed Compatibility Testing Approach
	4.2 Proposed Hybrid Crowdsourcing Method for Testing

	5 Proposed Working Mechanism
	5.1 A crowd-powered knowledge base

	6 Contribution
	7 Conclusions
	References

