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Abstract
While containers efficiently implement the idea of operating-

system-level application virtualization, they are often insuf-

ficient to increase the server utilization to a desirable level.

The reason is that in practice many containerized applica-

tions experience a limited amount of load while there are

few containers with a high load. In such a scenario, the vir-

tual memory management system can become the limiting

factor to container density even though the working set of

active containers would fit into main memory. In this paper,

we describe and evaluate a system for transparently mov-

ing memory pages in and out of DRAM and to a NAND

Flash medium which is attached through the memory bus.

This technique, called Diablo Memory Expansion (DMX),

operates on a prediction model and is able to relieve the

pressure on the memory system. We present a benchmark

for container density and show that even under an overall

constant workload, adding additional containers adversely

affects performance-critical applications in Docker. When

using the DMX technology of the Memory1 system, however,

the performance of the critical workload remains stable.

1 INTRODUCTION
Containerization is an ongoing and important trend within a

broader effort to further improve server utilization. Instead of

launching a dedicated virtual machine for every service and

therefore having a separate OS kernel with all its overhead,
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multiple services can co-exist on the same operating sys-

tem while still providing the level of isolation and resource

management that is required in multi-tenant environments.

Systems like Docker [15] embraced container technol-

ogy and built an ecosystem and tooling around it for easy,

portable deployment of applications. This has led to many

developers packaging their creations in containers. The wide-

spread and growing popularity of containers today has re-

sulted in most public clouds offering IaaS/PaaS to providing

containers as a service in addition to virtualmachines. Emerg-

ing application architectures using microservices [20] and

cloud functions (functions-as-a-service or serverless com-

puting [3]) also rely heavily on containers. While containers

enable more efficient usage of infrastructure (relative to vir-

tual machines) the sudden proliferation of them has created

an unforeseen problem.

In IBM’scloud operation, we see many cases where a ma-

jority of the containers on a server are mostly inactive for an

extended period of time while few containers show high ac-

tivity. In order to keep the server utilization at a desired level,

operators would like to go beyond machine partitioning and

increase the density of container deployments by carefully

over-committing the resources. However, the balancing act

lies in increasing the density of containers by padding avail-

able capacity with lowly utilized container instances while

not compromising the performance of critical containers.

Most of the experimental analysis of container systems

has focused around the raw performance compared to either

bare metal or virtual machine deployments [7], [19], [22].

Research on performance isolation in container systems has

primarily considered storage [25], compute [26], and net-

working [27] while little attention has been paid to memory

effects. In this paper, we present a benchmark for container

density (§2) based on the idea of measuring the performance

of a critical workload while adding an increasing number of

moderately noisy neighbors. Our results for Docker (§3) show
that even when the level of noise through mostly inactive

tenant containers stays constant, the bare presence of more

container instances can significantly impact the performance

https://doi.org/10.1145/3265723.3265740
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of a critical workload, primarily due to memory pressure.

While the adverse effect on the performance due to an overall

increase of page faults in presence of a higher memory access

frequency is well studied and understood (e.g., [6], [11]), our

setup performs the same number of memory accesses, just

from a larger selection of processes. Under ideal conditions,

the VMM page replacement system should be able to handle

this gracefully since the number of hot pages remains essen-

tially constant while only the number of cold pages increases.

However, our benchmark shows a significant impact on the

tail latency of the critical workload that runs concurrently

with the mostly idle containers. Finally, we explore and eval-

uate a memory extension technique called DMX (Diablo

Memory Expansion) in Memory1 [14] by Diablo Technolo-

gies (in §4) that autonomously moves pages in and out of

memory and to a DIMM-sized NAND Flash medium that is

attached through the memory bus. By doing so, Memory1

can virtually extend the usable amount of memory at a much

lower cost compared to the corresponding actual amount

of DRAM. Our evaluation (§5) shows that DMX is able to

increase the density of containers while leaving the critical

workload unaffected.

2 CONTAINER DENSITY BENCHMARK
In order to assess the ability of the system to sustain a higher

density of containers on the samemachine we created a setup

with a single performance-critical application that serves as a

benchmark and a variable number of non-critical containers

that perform periodic (but not benchmarked) activity. The

intention of the setup is to measure the interference or non-

interference of the non-critical with the critical workload.

The performance-critical workload is a deployment of

the AcmeAir benchmark [1] which was developed by IBM

Research. The benchmark simulates an online flight booking

portal and determines the total number of transactions as

well asmin/max/avg latency of requests. In our setupwe used

the implementation based on node.js [23] as an application

server running in one Docker container and MongoDB [18]

as a data store running in a separate container. In addition, a

second node.js instance handles the authentication of users

so that the benchmark uses a total of three containers on the

server side. Load to the system is generated by an Apache

JMeter [10]-based multi-threaded client.

As noise workloads we use an Apache httpd webserver [9]

(version 2.2) in a container which serves a series of large

static image files. In order to stress the memory system, we

explicitly cache the image files in the web servers using the

mod_mem_cache module. We generate 500 images of 20 MiB

size, 100 images of 80 MiB size, and 80 images of 200MiB. As

a result, the memory footprint of a noise container is in the

order of 34 GiB. We then program a client to randomly con-

nect to one of the webserver instances and request an image

file which it retrieves from memory. This can cause either

20, 80, or 200 MiB to be retrieved from RAM and potentially

evicts pages from the working sets of other containers, in-

cluding the AcmeAir instance. After a successful request the

client sleeps for 150 ms and then randomly retrieves another

image from a container instance.

The pressure on the system manifests itself primarily

through the addition of more processes and therefore virtual

address spaces. However, what makes containers particular

is that they typically fulfill a single function (microservice ar-

chitecture) and therefore all the processes within a container

follow the same activation pattern and periods of inactivity.

In this regard, the httpd webserver setup can be considered

a typical example that is inactive for most of the time and,

when activated through the arrival of a request, leads to a

burst of memory accesses.

We conducted the experiments on an Inspur NF5180M4 2-

socket server equipped with Intel Xeon E5-2660 v3 CPUs and

256 GiB of DRAM. We ran a Linux 3.10 kernel and Docker

version 17.03.1-ce for which we disabled OOM kill in order

to allow for over-committing the physical memory instead of

having docker kill containers randomly to free up memory.

An entire disk drive was dedicated to the swap partition.

3 EVALUATION OF DOCKER CONTAINER
DENSITY

We repeatedly measured the throughput and latency of an

AcmeAir setup while increasing the number of noisy neigh-
bors in the form of httpd container instances with every

iteration. In this experiment, we started with just one noise

instance and scaled up to 49 instances, with a step size of

two due to the length of the experiment. Under ideal condi-

tions, we would expect the noise instances to have little to

no impact on the AcmeAir performance since we keep the

number of web requests and thereby the overall amount of

memory traffic constant.

Figure 1a shows the transactions per second (TPS) that

the booking system can process as a function of the httpd

noise instances running on the same machine. The through-

put remains relatively stable but then degrades quickly and

noticeably at around 19 instances and the machine starts to

swap. After 33 instances, the system even began to thrash

and needed to be rebooted. It is important to note that the

total noise workload does not effectively increase during the

experiment since we do not change the number of clients,

just the number of httpd servers serving the same amount

of requests. In addition, we run the experiment in a contigu-

ous fashion, meaning that after every iteration we keep the

existing containers and add two new noise instances, which
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Figure 1: Throughput and Latency of the AcmeAir Workload Instance

makes addition independent of the number of existing con-

tainers. What we observe is therefore the memory system

not being agile enough to keep the hot pages in memory

and paging cold pages out to the swap partition when con-

tainers are activated by receiving a request. We furthermore

observed that the degradation is not primarily a function

of the speed of the swap device since we saw comparable

behavior on different types of media.

A look at the latency (Figure 1b) suggests that the through-

put is suffering because of a spike in the tail latency [5].

While the minimum is hardly affected, the maximum latency

for requests to get processed increases by more than three

orders of magnitude. The log-scale representation (Figure 1c)

shows that the average latency increases by a factor of two

but not super-linear as the max. An in-depth analysis of the

latency percentiles in Figure 1d confirms this hypothesis and

shows that even the 95th percentile is hardly affected and

the spike in latency is only visible in the 99th percentile.

In summary, the experimental results against a conven-

tional server system appear sound as a baseline for container

density and show that an increasing number of noisy neigh-

bor can negatively affect a workload even when the total

amount of load remains constant, which matches our experi-

ence from production systems. The performance degradation

is significant (around 50% after hitting the saturation point of

the VMM) and the effect manifests itself over-proportionally

in the tail latency.

4 DYNAMIC MEMORY EXTENSION
In traditional forms of memory management, both the map-

ping and the migration of pages between the different tiers of

memory and storage is under the control of the operating sys-

tem. With the mechanisms, operating systems furthermore

implement policies and heuristics to decide on an optimal

placement of pages. As a result, the presence of multiple

memory tiers is fully transparent to applications and jointly

create the illusion of an (almost) unbound virtual memory

address space.

Memory1, in contrast, is a server memory extension prod-

uct developed by Diablo Technologies that marries a fast
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Figure 2: Structure of the Memory1 DMX System

storage device with an external memorymanager in software

that utilizes a prediction model to manage page migration

and placement more efficiently. In contrast to, e.g., the Linux

Swap system which relies fully on a page fault handler and

reacts the memory pressure, DMX is continually running

and monitoring memory traffic from the time an application

makes memory allocation request until the process termi-

nates. Throughout that time, DMX monitors memory traffic

(without being in the memory path) and learns memory

pattern behavior even without page faults.

Memory1 consists of a software component called DMX

SW and a hardware component called DMX module which

is a NAND-flash module that plugs into the DDR-4 memory

channel and provides high bandwidth, low latency access

to flash devices mounted on the module. To be able to use

DMX modules, server BIOS/UEFI modifications are required.

Beyond that, however, Memory1 is transparent to the oper-

ating system and semi-transparent to applications in that it

requires the user to configure which processes should receive

memory extension.

DMX SW is a loadable kernel module driver that connects

onto the OS Virtual MemoryManager (VMM) and can be con-

sidered an extension of the operating system’s VMM. DMX

SW supports major Linux distributions (RedHat, Ubuntu,

etc) and does not require any changes to the OS or appli-

cations. The user can select which application(s) are to be

managed by DMX via a configuration file. By means of a

pre-load library in the user space, the DMX kernel driver

intercepts and services all memory requests generated by the

selected application (malloc, page fault, etc). DMX creates

a Memory Context for each selected application running on

the server and carves out a dynamic portion of the server’s

physical memory (i.e. DRAM) to be used as front-end cache

for that application (Figure 2). It is dynamic because the size

of that cache will dynamically vary depending on various

factors, the primary being the degree of memory activity

of the specific application. Since DMX is servicing all mem-

ory requests of the selected application, it is aware of its

memory access activities as well as its access patterns. The

memory access patterns are used to feed the tiering and pre-

diction algorithms in the application Memory Context and
the memory activities will be used to decide on the cache

size allocated for this application. A dormant application or

one that is only doing compute/processing on small region

of its memory will consume a small amount of cache. If the

total needed cache sizes of all running applications exceeds

the total amount of physical memory available in the system,

the tiering and predictions algorithms will make sure the

appropriate data remains in physical memory.

Although DMX SWwas originally developed to only work

with DMX modules, its current version is capable of utilizing

industry-standard NVMe-PCI SSDs as the flash module to

be used as a paging device, and hence eliminate the required

BIOS/UEFI changes or limitations in server hardware. Mem-

ory1 was designed to be hardware agnostic and accordingly,

DMX SW is split into two distinct parts: Data Management

and Media Management. The Data Management element is

where all tiering and prediction algorithms are implemented.

It also contains the interface that attaches DMX SW onto the

operating system stack. Data Management interfaces with

Media Management by generating block requests (pages to

be evicted/written and pages to be prefetched/read). The Me-

dia Management element is responsible for translating these

block requests into standard IO requests and has built in

intelligence to maximize the performance of the paging me-

dia (traffic shaping). Having Memory1 run with alternative

flash media (NVMe SSDs vs. DMX modules) only requires

changes to the Media Management resulting in large degree

of hardware compatibility and scalability.
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Traditional virtual memory management is primarily re-

active. The operating system reacts to page faults and then

loads pages back into main memory, applying a heuristic

replacement policy in order to reduce the likelihood of future

page faults. Linux, e.g., uses a simple LRU queue to deter-

mine data hotness and hence make decisions on what stays

in memory and what should not. Memory1, in contrast, uses

a prediction model to proactively migrate pages in and out

of main memory and therefore eliminates page faults that

would trigger the operating system’s VMM. It is based on a

complex multi-queue algorithm for data tiering and relies on

machine learning techniques to creates statistical model of all

high frequency pages to enable accurate prediction of which

data to prefetch from Flash. By doing that, paging device

latency is amortized across multiple page faults and hence re-

ducing its negative impact. Furthermore, Linux Swap works

on the whole data as aggregate entity. As a result, it does not

distinguish which data belongs to which process or container.

That renders it inefficient when containers go from active

to inactive. DMX on the other hand manages each container

data independently and should therefore be able to efficiently

detect when container go inactive and back to active and

react accordingly by prefetching the associated data. In the

following experiment, we explore to which extent DMX is

able to increase the density of containers in practice on a

single machine by reducing the overhead of the Linux VMM.

5 CONTAINER DENSITY WITH
DYNAMIC MEMORY EXTENSION

We ran the same experiment as in §3 but this time with the

DMX software enabled. Every container was given a config-

uration file so that DMX could manage it. On the hardware

side, 12 of the memory slots were populated with 128 GiB

Memory1 NAND Flash DIMMs for a total of 2 TiB of ex-

tended memory. The firmware version was still under active

development at the time of the experiment but the changes

necessary to support a Docker container environment were

released to the general public with version 1.3 of the DMX

SW.

Since the total amount of memory used at any time does

not change during the previous experiment it is clear that the

system is not overloaded in the strict sense but instead what

we observe is the inability of the virtual memory system to

keep up with the growing number of tenant containers (i.e.,

processes). This should give Memory1 an opportunity to re-

lieve the memory system bymoving pages out of DRAM (and

thereby out of the realm of the operating system’s virtual

memory manager) and into NAND Flash.

In order to validate if dynamic memory extension is able

to increase the density of containers on servers we repeated

the experiment, this time with Memory 1 DMX enabled. In

our configuration, the amount of Flash is eight times the size

of the DRAM. Since the technology is based on predictions,

a moderate amount of overhead can be expected since our

requests are randomized and some pages need to be fetched

from the slower Flash medium within the critical path of the

AcmeAir workload.

The throughput of AcmeAir, shown in Figure 3a, remained

almost constant over the entire duration of the run. In ab-

solute terms, it is about 10% lower than with no memory

extension but the system can now sustain the 49 noise in-

stances without a noticeable performance degradation. The

latency graph (Figure 3b) shows that there is once again a

slight overhead that the system introduces when compared

to the case without memory extension but the latency re-

mains largely unaffected regardless of the number of noise

instances running. A look at the log-scale latency (Figure 4a)
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Figure 4: Latency of the AcmeAir Workload Instance with DMX

and latency percentiles (Figure 4b) reveal that the slightly

higher average latency is mostly due to an increased degree

of jitter. The maximum latency is higher and more volatile

due to the impact of mis-predictions of the DMX technology

and consequently page loads from the Flash device. The 90th

percentile and 95th percentile are close to identical to the

non-DMX case for a low enough amount of noise but the

99th percentile is slightly higher.

6 RELATEDWORK
We are not the first to explore Flash/SSDs as a way to ex-

tend main memory. Early work primarily revolved around

optimizing the existing Linux kernel swap mechanism for

traditional Flash storage. FASS [12] aimed at moving the flash

translation layer into the kernel swap mechanism for better

efficiency and durability. LOBI [13] optimized the way how

pages are stored on the medium by using a log-structured

swap-out and a block-aligned swap-in. FlashVM [21] pre-

sented more fundamental changes to the Linux virtual mem-

ory system to better support Flash for paging. This includes

prefetching of pages on the read path, throttling and zero-

page sharing on the write path, and garbage collection.

Mogul et al. proposed to combine Flash and DRAM into

a single package and elaborated on the required operating

system support for such forms of hybrid memory [17]. Their

main conclusion is to use the DRAM portion for buffering.

Memory1 achieves a comparable effect through their pre-

diction model and by using DRAM as a front-end cache for

Flash.

SSDAlloc [2] is a hybrid DRAMand flashmemorymanager

which allows applications to extend their usable amount of

memory in a semi-transparent way. It replaces malloc and
utilizes the Flash medium as a log-structured object store. In

comparison, Memory1 is fully transparent and operates on

the granularity of pages

Intel has recently announced a byte-addressable storage-

class memory solution [8] with XPoint [4]. While it shares

the motivation with Memory1 to offer a middle ground be-

tween DRAM and storage in terms of price and latency, the

technology is not yet available in the DIMM form factor.

However, when available, it could be used with the DMX

software for dynamic memory extension without requiring

changes to DMX.

Vilayannur et al. [24] explored the challenges of traditional

page replacement algorithms for scientific applications that

tend to access memory in a cyclic manner. Their conclusion

was that as soon as the working set became slightly larger

than the available main memory, most algorithms tend to

evict exactly the pages that are likely to be accessed next.

In response, they proposed the use of predictive page re-

placement techniques. Memory1 uses a predictive algorithm

and combines it with a fast and high-bandwidth secondary

storage device. While our experimental setup for the noise

containers is not cyclic in nature but performs random access

of larger blocks of memory and sequential access within the

blocks, it unveiled similar problems with the standard Linux

VMM as the authors had observed.

Mesnier et al. proposedDifferentiated Storage Systems [16]

to address the challenge of the single policy approach of most

operating system when it comes to providing storage to ap-

plications. Their work exposes an API through which the

application can provide a classification of storage blocks

which is then mapped to a custom policy. One of the in-

tended applications is caching of blocks in the buffer cache.

DMX shares the motivation for differentiating services per

application but does so for memory as opposed to storage.

Furthermore, it provides differentiation in a manner that is
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transparent to both the application and the operating system,

without the need for API changes while the implementation

equivalent to Differentiated Storage Systems would require

the application to provide classification with every memory

allocation request.

7 CONCLUSIONS
We have presented a benchmark for container systems that

is able to show the correlation between container density

of co-located low priority containers and tail latency of a

performance-critical container workload. In our setup, we

could observe a 2x reduction of throughput and increase of

average latency while the tail latency increases by several or-

ders of magnitude. Memory1’s dynamic memory extension

technique, however, has proven to be capable of increas-

ing the density of containers and mitigating the problem

of paging in dense container deployments. With DMX en-

abled, the same system can support more than twice as many

co-located low priority containers without significant per-

formance degradation by predicting the pages that are likely

accessed when a container becomes active. Through our ex-

periments, we have shown that dynamic memory extension

with Flash DIMMs is a viable option to increase the density in

container deployments at a lower price point than increasing

the amount of main memory by adding more DRAM.

8 AVAILABILITY OF THE SETUP
The scripts to build and run the experiment are available

on GitHub (https://github.com/rellermeyer/container_scale)

and are provided under the Apache 2 license.
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