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ABSTRACT

A convolutional sequence to sequence model for predicting the
jump forces of ski jumpers directly from pose estimates is pre-
sented. We collect the footage of multiple, unregistered cameras
together with the output of force measurement plates and present
a spatiotemporal calibration procedure for all modalities which is
merely based on the athlete’s pose estimates. The synchronized
data is used to train a fully convolutional sequence to sequence
network for predicting jump forces directly from the human pose.
We demonstrate that the best performing networks produce a mean
squared error of 0.062 on normalized force time series while being
able to identify the moment of maximal force occurrence in the
original video at 55% recall within + 2 frames around the ground
truth.
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1 INTRODUCTION

The motion of a ski jumper can be divided into four parts. During
the in-run, the athlete accelerates while skiing down a jumping
ramp. Reaching the take-off table at the end of the ramp, the athlete
launches himself through a jumping motion into the flight phase
(Figure 1). During the flight phase, the jumper targets to assume
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distance from take-off table

Figure 1: Based on the predicted poses of an athlete
(green/yellow), joint trajectories and camera offset Ax and
Ay for two camera views can be inferred with the method
described in Section 3.2. The red line indicates the edge
of the take-off table, which serves as the anchor for force-
image synchronization. The synchronized force signal for
the jump is depicted as a red graph.

an optimal posture to increase flight time and thereby extend jump
distance. The jump is completed with the landing phase, where
the final distance is weighted with external factors to yield a final
score for the jump. The final distance a ski jumper travels during
a jump can be actively influenced during each phase of the jump.
An optimal streamlined in-run guarantees enough initial velocity,
while a steady and precisely executed jump motion on the take-
off table and a stable and optimal flying posture increase the final
distance.

During training sessions, coaches put much effort into optimiz-
ing the ideal timing for executing the jump motion on the take-off
table. Therefore, ski jump hills are equipped with an array of cam-
eras parallel to the flight path of the athlete. Additionally, force
measurement plates are installed on a jumping ramp to precisely
measure the jump force during the last meters of the in-run. After a
run, coaches review measured force series as well as identify points
of interest like the temporal occurrence of the strongest force while
precisely annotating and evaluating the athlete’s posture. This pro-
cess is usually done manually and thereby time-consuming. The
maintenance of arrays of force measurement plates is also expen-
sive, and the correct function cannot be guaranteed at all times, as
the hardware is exposed to extreme weather very often.

In this paper, we strive to automate the whole jump evaluation
process using recent advances in computer vision and deep learn-
ing. Our final ambition is to develop a system that needs only the



footage of a jump to be able to predict the jump forces of an ath-
lete. As the system will eventually be trained from corresponding
pose and force, two problems need to be solved. First, different
camera views need to be registered in a mutual coordinate system,
followed by temporal synchronization between camera views and
force measurements. Second, a model for generating sequences
of force predictions from sequences of pose estimates has to be
defined.

We propose a solution for both steps as follows. Given some
different cameras and the measurements of multiple force measure-
ment plates, we first describe a solution for temporal and spatial
registration of all modalities solely based on continuous pose esti-
mates of an athlete. The same estimates are used as input to a purely
convolutional sequence to sequence neural network for predicting
the jump force.

Our contributions are as follows:

o We are among the first to predict human jump forces directly
from pose estimates using a multimodal learning approach,
e.g., multiple cameras and force measurement plates.

e The proposed sequence to sequence network structures are
strictly convolutional. Similar structures have recently been
used for discrete-valued data problems like an automated
translation. We demonstrate that with proper network ar-
chitecture, a convolutional sequence to sequence model can
be used for simple regression tasks on strictly continuous
input data.

Our camera registration and force synchronization method-

ologies are based merely on the motion and flight trajectory

of an athlete present in all camera images.

2 RELATED WORK

Camera-calibration. The topic of non-classical camera camera-
calibration, i.e., not based on homography estimation between over-
lapping cameras, was addressed from different directions in the
past. [16, 26] propose search algorithms for temporal alignment us-
ing human kinematics and point trajectories in dual camera setups.
Padua et al. [22] extend the two camera scenario to multi-camera
systems. They define a search space of calibration and synchroniza-
tion parameters called a timeline and proposed an optimization
algorithm for approaching the optimal settings. A common feature
in all these algorithms is that cameras need to film the same scene
to optimize spatiotemporal parameters.

Object dynamics/kinematics. Predicting dynamics of objects
in still images is commonly based on neural networks with two
input arms, one for a (masked) image and a second for force inputs.
Forces are modeled using a game engine [19] or a physics engine
[20, 28], where the whole image scene can be simulated. Alter-
natively, scenarios like billiard games [3, 7] are examined, where
a force can be applied to the scene in a controlled environment.
Recurrent networks have mainly been used for the prediction of hu-
man dynamics from just image/video. For example, deep recurrent
neural networks(RNNs) [18] and Encoder-Recurrent-Decoder net-
works [8] are used to predict the motion of a person continuously.
While they often state that the dynamics of a person’s movement
are estimated, the actual prediction only entails joint kinematics.
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Sequence to sequence learning. Sequence to sequence net-
works have been extensively researched in the last years for ma-
chine translation [15], audio synthesis [25] or language modeling
[6]. While network structures build on Recurrent Networks [2],
LSTMs [12] or Gated Recurrent Units [5] are numerous, convolu-
tional sequence to sequence modeling as an alternative has gained
traction recently in machine translation [9] as well as human kine-
matics prediction [17]. Compared to recurrent models, the width of
the history size can be directly defined and controlled through the
receptive field of the network. Additionally, computations over all
layers can be fully parallelized (in contrary to recurrent models).

Our work. While our work is strongly influenced by generic
state-of-the-art networks [1] for time series prediction with con-
volutional networks, classical applications of these models often
work on discrete-valued input and output data. In contrast to that,
we attempt to use continuous input data to predict purely continu-
ous output data. The prediction of real-world force measurements
solely form camera footage in a entirely uncalibrated scenario -
especially within our scope of application, is a novel problem.

3 MULTIMODAL REGISTRATION AND
SYNCHRONIZATION

In the introduction, we stated that the process of predicting forces
from human poses involves the registration and synchronization
of different modalities to train a neural model that performs the
actual mapping. The necessity of having to calibrate the modalities
is a concern in all multimodal systems. Particularly in ski jumping,
the measurement setup has to cover a wide area (the jumping hill)
where it is often not feasible to densely equip all corners with
sensors and rely on well-studied methods - like extrinsic camera
calibration from overlapping camera views - to calibrate the system.
Additionally, the measurement equipment is exposed to a variety
of weather situations, making re-calibration necessary on a regular
basis (even between runs). In the following, we first describe the
measurement setup on a fully equipped ski jumping hill. Following
this description, we propose a simple yet effective registration and
synchronization strategy for all modalities in the system.

3.1 Measurement Setup

A ski jump hill is equipped with N cameras C = (Cy, ..., Cn) along
the take-off table and the flight trajectory of the athlete. All cameras
shoot at 50 Hz and are temporally synchronized by the athlete
triggering a light barrier when he starts his jump at the top of the
in-run. Cameras are regularly spaced in parallel to the fight path
and usually do not overlap, except for two cameras with minimal
overlap pointing at the take-off table. While all image planes are
assumed to be parallel to the flight trajectory of the athlete, we can
not guarantee the same distance between each image plane and the
jumper due to terrain limitations.

Force measurements are taken at a frequency of 2 kHz from a
series of force measurement plates installed at the last 17 meters
of the in-run, up to the edge of the take-off table. An external
synchronization system for cameras and force plates does not exist.
The plates are triggered and synchronized among one another by
several light barriers along the in-run. The measurement system
compiles the output force signal by accumulating the measurements
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Figure 2: Percentage of correct keypoints [24] for the fine-
tuned detector [27] used for pose estimation in this work.
We achieve very competitive results (~99% recall @ PCKO.2),
which allows for on a par pose estimates as a good starting
point for camera calibration and force prediction.

from all plates. Due to the light barrier triggers, it is known at what
time and in which distance from the edge of the take-off table a
particular force measurement was taken. As a result, the position of
the edge together with the location of the jumper (more precisely:
his ankle) can be used as a temporal synchronization anchor in both
force signal and continuous pose estimates, respectively. Using the
position of the light barriers is not possible as they are typically
invisible in the camera images.

3.2 Pose Estimation for Robust Camera
Calibration

We make some simplifying, but reasonable assumptions to use pose
estimates to compute a solution for the image registration problem.
Firstly, the image planes are approximately parallel to the flight
path of the jumper and they are approximately aligned with the
horizon. While we found both assumptions to be true in our setup,
incorrect installation of the cameras could entail a rotation in the
image plane. In this case, parameters for camera rotation have to be
added to our model. Secondly, the detector used for pose estimation
returns mostly decent pose estimates, although outliers should not
distort the estimated model parameters. Finally, the flight path of
the athlete between two camera views can be approximated with a
second-degree polynomial.

Pose preprocessing. Under these assumptions, we first use a
MobileNet [23] to detect a ski jumper in all images in every video.
The pose of the jumper is estimated using a Convolutional Pose
Machine [27] for each detection. We fine-tune both networks to
our specific task to obtain better detections and pose estimates. The
output of the pose estimator is a set of J joint coordinates for the
head, shoulder, elbow, wrist, hip, knee and ankle of the body side
facing the camera. The PCK [24] for the pose detector is depicted
in Figure 2.

As discussed in the measurement setup in Section 3.1, the result-
ing pose estimates require some pre-processing. First, the scale of
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the jumper may be different for different camera views. Seconds,
pose estimates are obtained from images with a sampling frequency
of 50 fps, while force measurements are taken at 40 times this fre-
quency, i.e., at 2 kHz. Third, we have to account for the fact that
pose estimates may be noisy, mainly due to occlusion in the camera
setup. Regarding the third statement, we found that the recall of our
fine-tuned detector (Figure 2) is on a par with state-of-the-art pose
estimation systems, if not even better due to the limited application
domain. Within the generally accepted threshold of 0.2 of the upper
body length of a person, we can detect >99% of all joints correctly.
Even with a more restrictive threshold of 0.1, we can get a recall of
95%. In our application, this rate translates to a maximal deviation of
only 5 pixels per joint, which is a very acceptable result. Neverthe-
less, we wish to account for this (potential) deviation and propose
a method for robustly estimating the calibration parameters.

The first step is to account for different camera scales. For all
poses obtained from one camera view C;, we compute a scaling
factor s; based on the mean upper body size dy,pper of the athlete,
which is defined as the distance between shoulder and hip, in that
shot:

dre f
si = ———.

dupper

dref denotes a reference body size which is the same for all
athletes in our database, i.e., all athlete have approximately the
same upper body size in all shots. We rescale all pose estimates
in the i-th camera view with s;, resulting in the athlete having
approximately the same relative size in all camera views. We found
that the upper body size hardly changes within a camera view,
can be detected very robustly (see Figure 2) and is, therefore, an
excellent choice for obtaining a robust scale for each camera. To
get a more robust estimate for the camera view scale, we exclude
10% of the largest and smallest detected upper body length when
computing the mean in one view.

Overdetermined System. From our initial pose estimates of
the ski jumper in all camera images of one run, we derive a robust
polynomial regression for the trajectories of all joints of the athlete
as follows. The location [; : R — R? of a joint j at any time ¢ is
given by a coordinate vector

() = [%5(6), g;(0)]"

where x;(t) and ;(t) are the two dimensions of the joint coordinate
of joint j. A robust approximation of the joint trajectory and the
camera offsets Ax and Ay for each location dimension is obtained
using a and degree polynomial. For the x dimension, it is given by

. {[t 0T - [b; Ax] ifLi(t) e C;
%j(t) = T , 1
[t 1]° - [b; Ax] ifl;(t) € Civ1

where b; = [bj 2 bj1 bj o] are the coefficients of the polyno-
mial, Ax is the offset in x direction and t = [t? ¢ 1] is a vector of
polynomial variables (the times in the videos at which %;(t) was
predicted). In order to estimate the parameters b; and camera off-
set Ax for two adjacent camera perspectives C; and Cj4+1 using all
J joints and all K detected poses from both views, we define an
overdetermined system of equations

X = AB. %)



Here, X € RKJ is a vector of detected coordinates for each joint
from each pose estimates. The parameter vector B € R3/*1 is
comprised of all polynomial coefficients and the offset, i.e,

B = [b] ...b] Ax].

Each row in the sparse matrix A € RKJX3J+1 represents the polyno-
mial variables for one joint detection (time the joint was detected)
and is therefore connected to exactly one target value x;(t) € X.
As the structure of this matrix is a bit intricate, we illustrate the
composition of one row in A with a descriptive example. Assume
that at time ¢ = 4, we detected the shoulder joint (j = 1) at x posi-
tion 356 in camera Cj1. Then there would be a row a; in matrix A
coding this detection as

a;=[00016410..01]=[000¢¢t10..01]

and the corresponding target value in X would be X; = £;(4) = 356.
Note that according to Equation 2, this row of A is multiplied by
the parameter vector B. Therefore, the zero values in this vector
guarantee that all parameters that do not affect the estimation of
the joint trajectory, i.e., all but by in this example, are neutralized.
Furthermore, the last attribute in row vector a; is set to 1 because
this sample was taken from camera C;11. It would be = 0 if this
specific joint were predicted in camera C;. Thus, the estimated pa-
rameters express all trajectories relative to the reference camera C;.
While the above deviation was only made for %;, the approximation
of §j(t) is correspondingly defined according to Equation 1 and
solved with a separate system.

Parameter Estimation. An optimal least-squares solution to
Equation 2 is given by the Moore-Penrose inverse B = (AT A)"1ATX.
However, as stated previously, we have to account for noise in the
predicted poses. Hence, we choose to solve Equation 2 using a ro-
bust, iteratively reweighted least squares solution as presented in
[4]:

Biter+1 _ (ATW(iter)A)_lATW(iter)X, 3)
where W is a diagonal matrix of weights and (commonly) W©® =T,
This algorithm determines a set of robust parameters B by itera-
tively reweighting the samples/rows in A with the inverse of their
residual, computing a new weighted solution for the parameters
B according to Equation 3. Thus, this iterative procedure assigns
small weights to prediction outliers and thereby mitigates their
influence on the final parameter set.

We apply this procedure to all pairs of adjacent camera views.
The resulting trajectories and camera offsets for the two cameras
pointed at the take-off table are visualized in Figure 1. The deter-
mined trajectory parameters are used to resample the joint positions
to the sampling rate of the force plates. Thereby, one pose estimate
can be assigned to each measured force value.

3.3 Synchronization of Force and Camera

With all camera images spatially registered, we are left with tem-
porally matching camera views and measured forces. As stated
previously, we know for each force value how far it was taken from
the edge of the take-off table. Together with the upsampled pose
estimates from the spatially registered camera views, temporal syn-
chronization between both modalities is straightforward: The edge
of the table is manually annotated in the respective view. The tem-
poral synchronization anchor in the camera views is determined
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as the point where the angle of the ski jumper passes the edge
and consequently leaves the last force plate. The synchronization
point in the force-time series is merely the last point where a force
measurement was taken on the take-off table. Both modalities are
aligned at both temporal anchors. Finally, we crop the pose esti-
mate time series and the synchronized force measurements to the
same length of 1000 samples, equivalent to the last 25 frames of the
jumper before take-off.

4 TEMPORAL CONVOLUTIONAL MODEL

We present a temporal convolutional sequence to sequence model
based on the findings of Bai et al. in [1], who propose a basic archi-
tecture for a temporal convolutional network (TCN) which aims
at combining the best recent practices in convolutional network
design for sequence prediction. TCNs where originally designed to
map a sequence of input length n to an output sequence of the same
length using only causal convolutions, i.e., there is no "leakage"
from future values to the past. TCNs aim to build a long effec-
tive history size, meaning that they are able to look very far back
into the past to make a prediction. Commonly, TCNs are used for
word-level language synthesis, machine translation modeling or
polyphonic music modeling [6, 15, 25] and are tested on benchmark
tasks defined on discrete valued input and output data. In our ap-
plication, we modify the basic TCN blocks and propose a network
for predicting a continuous time series from a continuous input.

4.1 Pose to Force Learning Task

Our task is to predict a time series representing the jump force
of a ski jumper given a temporal sequence of continuously esti-
mated athlete poses. The general nature of this task is to predict
an output sequence of forces f(0),..., f(T) of length T + 1 from an
input sequence of poses (p(0), ..., p(T)) given some convolutional
deep neural network model M : PT*1 — FT*1 that produces the

mapping
J(0). ... f(T) = MB0), ... p(T)).

A pose p(t) € R/ is defined as an aggregation of J joint coordi-
nates

p(t) = [X1(), G1.(8), ... 2 (1), G (£)]. (O]

In terms of neural networks, the input signal P is a 1-dimensional
array with 2 - J channels, one for each resampled pose coordinate
dimension.

4.2 Dilated Convolution Blocks

A major disadvantage of modeling a sequence to sequence network
only with standard convolutional layers is that a very deep network
with large kernel sizes has to be constructed in order to obtain
a wide receptive field and thereby a large history size. Training
very deep networks with large kernels from scratch is often not
feasible, especially if comparatively few training data is available.
Recently, dilated convolutions have been extensively researched
for increasing the receptive field of a convolutional layer with a
small kernel without having to add additional layers. A dilated
convolution on an arbitrary input sequence f € Rl of length [ is
convolved with a kernel g € R¥ of size k << [ using a dilation
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Figure 3: Left: standard TCN block inspired by [1]. Middle: TCN block without padding and residual connection. Right: An
exemplary network architecture comprised of 6 TCN blocks (tcn_6).
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Dilated convolution spreads the filter coefficients over a larger area
of the input signal, increasing the receptive field and thereby - in a
temporal context - expands the history of past values.

Inspired by [1], we define a temporal convolution network block
(TCN block) as the basic building block. Such a block is depicted in
Figure 3. This block includes two consecutive dilated convolutional
layers with additional padding, augmenting the output features
to the same size as the input features. Each convolutional layer is
followed by batch-normalization [13] and a Rectified Linear Unit
[21]. A residual connection [11] is added to the output of the block,
which allows for learning only the difference between the input
and the output of the block. Each TCN block has two parameters k
and d for the kernel and dilation size, respectively.

In the standard definition of the TCN block, the length of the
input signal does not change throughout the network due to ex-
tensive padding. However, we found that there is a drawback to
dilated convolutions which arises especially when the dilation fac-
tors get very large. In this case, the effective size of the kernel is a
huge and the amount of zero-padding has to be equally increased
to ensure that the output signal has the same length as the input
signal. We found that for large dilation factors (i.e., d > 10 at kernel
size k = 5), extensive padding introduces a lot of noise at the edges
of the final output signal (see Figure 4). Consequently, the gradients
produced from noise at the edges of the output signal may intro-
duce a spurious training stimulus for all underlying convolutional
kernels.
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To examine this effect, we define a variation of TCN block which
is also depicted in Figure 3. This block waives the padding operation
after each convolutional layer. Consequently, the skip connection
has to be dropped due to the difference in input and output size
of the block. We found that this is not a disadvantage to the per-
formance of the network, as residual connections are inherently
beneficial in very deep networks, while our overall network depth
does not exceed 13 convolutional layers. We refer to a TCN block
without padding as tcn_nopad. The output shapes of the last TCN-
output layer are listed in Section 5.

4.3 Network Structure and Losses

The overall structure of a convolutional sequence to sequence net-
work is built on TCN blocks (tcn or ten_nopad). A sample archi-
tecture is depicted in Figure 3. The input of the network is a time
series of resampled pose estimates as described in Section 3.2. The
input layer is followed by some TCN blocks. In order to increase
the receptive field of the network quickly without having to add
too many blocks, the dilation factor for block g in the sequence is
set to be d = 29. In our experiments, the depth of the network does
not exceed 7 TCN blocks. We additionally experiment with differ-
ent quantities of kernels per block and compare classical design
approaches based on a steadily increasing number of kernels with
strategies where the amount of kernel first increases and then de-
creases. Details of different network parameters are listed in Table
1. A final convolutional layer terminates the network with kernel
size 1 and linear activation, which reduces the output of the last
layer to a one-dimensional sequence of force values.

The training loss of our convolutional sequence to sequence
networks is defined by three partial losses. First, the objective loss



name len. input len. output # ten blocks  # channels/block kernelsize/layer
ten 6 950 950 6 [32,64,128,64,32,16] 5
ten 5 950 950 5 [32,64,128,64,32] 5
ten_4 950 950 4 [32,64,128,64] 5
ten_nopad_6 950 446 6 [32,64,128,64,32] 5
ten_nopad_5 950 702 5 [32,64,128,64,32,16] 5
ten_nopad 4 950 830 5 [32,64,128,64,32,16] 5
ten 6 wide 950 950 6 [32,64,128,128,128,128] 5
ten 5 wide 950 950 5 [32,64,128,128,128] 5
ten 7 950 950 7 [32,64,128,128,64,32,16] 5
ten_2_shallow 950 950 2 [64,128] w/ dilation [2,16] 5

Table 1: Overview over different tested network architectures. tcn_x networks are build from standard tcn blocks, tcn_nopad_x
nets discard padding. tcn_x_wide architectures increase the number of kernels from layer to layer.

between the ground truth force F and the predicted force F is
defined by the piece-wise Huber-Loss with § = 1, defined as

0.5(F — F)? |F-F| <68

L _F_F’E = _
Ob]( ) {5(|F—F|—0-55) otherwise.

Second, in order to avoid overfitting convolutional layers, a Lo-
regularization loss per layer is introduced. All regularization losses
are aggregated in the overall regularization loss Lyey. Third, we
found that the output of the network is often noisy. In order to
encourage smoothness in the final force predictions, we define a
smoothness loss Lg,00ih = Lobj(%F - %F, d) to be the Huber-
Loss of the difference between derivatives of ground-truth and
prediction. The derivative of either time series is simply determined
numerically by 4 F(t) = F(t) - F(t - 1).

The total network loss is defined as the weighted sum of all
partial losses:

(6)

Liotal = Lobj + aLreg + BLsmooth-

5 EXPERIMENTS

The prediction of continuous dynamic parameters of ski jumpers
(and athletes in general) solely from continuous pose estimates
using convolutional sequence models is a novel problem in the
scientific community with no published results yet. Hence, we
focus on analyzing different network structures quantitatively and
qualitatively.

5.1 Dataset

We build a dataset from 225 videos of different ski jumpers for
training and testing network architectures mentioned above. Each
video depicts all consecutive camera perspectives for one single
jump. A shot detection algorithm is applied to extract the original
camera views. The videos are recorded at 25 interlaced frames per
second, leaving us with 50 full frames after de-interlacing. The
footage covers a wide range of recording scenarios (day vs. night,
good vs. bad vs. foggy weather, snowy and rainy scenes, winter
and summer footage) and a variety of ski jumpers of all ages and
statures. As described in Section 3.2, we estimate all poses in each
video and derive calibration and synchronization parameters. The
dataset is split into 200 videos for training and 25 for testing. We
artificially augment the size of both sets by cropping sequences of
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length 950 from the original data with length 1000, which increases
the dataset size by a factor of 10. During training, all sequences are
randomly shuffled.

While the pose input of the network was normalized during the
calibration procedure, we have not yet talked about the output. If
not stated otherwise, all force series are normalized by the largest
occurring force value in the dataset, which maps all forces into the
interval [0, 1]. For tcn_nopad networks, we resample the force time
series to the proper network output size using FFT-resampling [14].

5.2 Error measures

We report the Mean Squared error (MSE) and median of the squared
errors between the ground truth F(¢) and the predicted forces F(t)
for different network structures. All errors are computed over all
test-videos and all force values (see Table 2 and Figure 5).

PCKF Recall. In order to give the reader a better intuition of
network performances, we additionally try to answer a real-world
question asked by coaches during the evaluation process: At which
time in the video is the maximal take-off force observed? In a
training situation, the corresponding frame gives the athlete a visual
clue for adjusting the jumping motion in the next run.

We take the argument of the maximal force value argmax(F(t))
and the corresponding pose estimate, which depicts the athlete’s
posture during maximal leg pressure. The temporal occurrence of
this pose is compared to the maximal force occurrence frame of
the ground-truth. For measuring the recall of this comparison, we
take inspiration from the percentage-of-correct-key-points measure
(PCK, [24]), which counts detection as correct if the distance of
a predicted key-point from the ground truth is below a (variable)
threshold 7. We define a similar measure for key-frame detection,
denoted as percentage-of-correct-key-frames (PCKF), which counts
a predicted maximal force occurrence as correct if the temporal
distance to the ground-truth frame falls within a threshold 7. In
case of unpadded networks (tcn_unpad), where the output sequence
length is implicitly defined by the number of dilated convolutional
layers (without padding) and the filter size, we scale the offset
between prediction and ground-truth accordingly.
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Figure 4: Qualitative outputs of different architectures. The best performing networks in terms of MSE (first three columns)
and two more exotic variants (last two columns) are compared for five differnet force series (rows). Ground-truth measure-

ments are depicted in blue, predictions in orange.

5.3 Tested network structures and Training
parameters

With the novelty of the discussed application, specifically in the
context of convolutional sequence to sequence networks, a state-of-
the-art for network architecture and parameters is widely unknown.
We use this opportunity to perform our experiments on a variety
of networks (Table 1). Three different network types are examined.
The basic tcn-network is implemented with 4 to 6 ten blocks (ten_4,
tcn_5 and ten_6) and defines the baseline of our experiments. Non-
padded versions (tcn_unpad_4, ten_unpad_5, ten_unpad_4 ) are
used to examine the influence of noise in output sequences. All
networks use a bicone shaped number of filters throughout the
layers. We compare this parameter set to two networks tcn_5_wide
and ten_6_wide, which implement a more traditional distribution of
kernels, i.e., the number of kernels is steadily increased throughout
the network. We also experiment with two more exotic networks,
namely ten_7 and ten_2_shallow. ten_7 is a 15 layer network, i.e.,
7 TCN blocks and the final layer, where the receptive field covers
the entire pose input of the network. tcn_2_shallow is a shallow
net comprised of 2 TCN blocks. The dilation factors for both blocks
were set to 2 and 16, respectively. With this network, we want to
examine if the reconstruction of a force signal can be achieved
with very few layers with large dilation factors. An overview of all
network parameters is given in Table 1.

The layers in all networks are initialized with variance scaling
initialization [10] and trained until convergence in mini-batches of
size 16 with a learning rate of 0.01 and a learning rate reduction of
0.1 every 3 epochs. The loss weights for regularization loss was set
to a = 0.0001, while the smoothness loss was setto f =1
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Network MSE  median
tcn_6 0.071 0.049
ten 5 0.074 0.051
tcn_ 4 0.088 0.060

ten_nopad_6 | 0.105 0.067
ten_nopad_5 | 0.087 0.057
ten_nopad_4 | 0.091 0.061
ten_6_wide 0.071  0.049
ten 5 wide 0.073 0.047
ten_7 0.062 0.043
ten_2_shallow | 0.093  0.065

Table 2: MSE and median of squared errors between ground
truth and predicted forces.

5.4 Results

Before presenting the results for ten_7 and ten_2_shallow, we first
discuss the basic architectures.

MSE and prediction quality. The results of our experiments
are listed in Table 2 and, for the reader’s convenience, are visual-
ized in Figure 5. We first find that dropping the padding does not
entail good predictions regarding MSE. All architectures without
padding performed considerably worse in all experiments. A visual
inspection of some outputs in Figure 4 (middle column) supports
the quantitative errors. All ten networks and their tcn_wide vari-
ants seem to perform much better. MSE errors indicate that more
layers in a network result in superior performance over networks
with a smaller receptive field. Comparing the quality of the best
performing networks ten_6 and ten_6_wide (left two columns in
Figure 4), we see that tcn_6 produces more noise at the edge of the
signals, despite them having the same MSE and median error. In
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Figure 5: Network architecture error statistics. Whiskers in-
dicate 2nd and 98th percentile, orange lines the median er-
ror, green lines the mean error. Outliers are omitted.

general, the observed noise is a product of the large dilation fac-
tors and stems from the convolution of a filter with large amounts
of padded zero-values. The prediction noise can be observed in
all padded tcn networks. From our experiments, we conclude that
adding more filters to the networks, especially in later layers, might
lower this noise.

The evidence for the hypothesis that deeper networks are su-
perior in reproducing the force signal is supported by the error of
ten_2_shallow, which performs similarly to the tcn_nopad versions.
While this network grasps the general trend of a force graph (4th
column in Figure 4), a significant amount of raw noise can be ob-
served at the edge of the predicted signals, despite a large number
of filters in this model.

The best results are obtained by the deepest network ten_7. As
previously stated, the perceptive field of this network covers the
complete input. While it produces a relatively small MSE, we can
also observe in column 5 of Figure 4 that it creates more noise
in the prediction than all other architectures. While the overall
performance of tcn_7 may be favorable, the noise problem has to
be addressed to deliver a visually superior prediction.

PCKF. We conclude our experimental section with a short dis-
cussion of the PCKF performance of all models, depicted in Figure
6. Our best models tcn_6 and ten_6_wide detect 25% of the sought-
after frames correctly. Within a deviation of 2 frames, tcn_6_wide -
despite producing the same MSE as tcn_6 - surprisingly produces
a superior recall of 55%. Most of the models perform surprisingly
well, although no model beats tcn_6_wide. It may also be surprising
that the best model regarding MSE, tcn_7, does not even come close
to the best scores. This may be attributed to the fact that we inten-
tionally did not perform any post-processing on the predicted force
series, at which point the noise in the tcn_7 output is detrimental.

On the question of why the recall of the networks is compara-
tively small in absolute terms, we point to Figure 4. We found that
force measurements very often have multiple local maxima, some-
times very close together, often with very similar absolute values.
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Figure 6: Percentage of correctly identified key-frames de-
picting the moment of the maximal leg pressure before
the jump. The best performing network predicts 25% of the
frames perfectly correct and 55% within + 2 frames.

This makes the identification of force peaks a great challenge in
general, which we will accept in the future.

6 CONCLUSION AND FUTURE WORK

In this paper, we discussed convolutional sequence to sequence net-
works for the multimodal prediction of jump forces of ski jumpers.
The prediction networks use the estimated pose of the jumper to
infer a series of force measurements, recorded with force plates
at training time. The synchronization between all modalities, i.e.,
multiple cameras and multiple force measurement plates, was imple-
mented through least squares optimization for the joint trajectories
of the athlete. We finally present purely convolutional network
structures and demonstrate their effectiveness experimentally.

While the experimental results are very promising, problems
like prediction noise have to be solved to produce more competitive
force estimates in the future. Furthermore, an interesting question
arises when the problem statement is reversed: Is it possible to
predict the pose of a ski jumper with a convolutional sequence to
sequence model, given only the measured force values of a jump?
This question and many others remain future work.
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